#pragma once #include "llama.h" #include #include #include #define LLAMA_NGRAM_MIN 1 #define LLAMA_NGRAM_MAX 4 #define LLAMA_NGRAM_STATIC 2 // Data structures to map n-grams to empirical token probabilities: struct common_ngram { llama_token tokens[LLAMA_NGRAM_MAX]; common_ngram() { for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) { tokens[i] = -1; } } common_ngram(const llama_token * input, const int ngram_size) { for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) { tokens[i] = i < ngram_size ? input[i] : -1; } } bool operator==(const common_ngram & other) const { for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) { if (tokens[i] != other.tokens[i]) { return false; } } return true; } }; struct common_token_hash_function { size_t operator()(const llama_token token) const { // see https://probablydance.com/2018/06/16/fibonacci-hashing-the-optimization-that-the-world-forgot-or-a-better-alternative-to-integer-modulo/ return token * 11400714819323198485llu; } }; struct common_ngram_hash_function { size_t operator()(const common_ngram & ngram) const { size_t hash = common_token_hash_function{}(ngram.tokens[0]); for (int i = 1; i < LLAMA_NGRAM_MAX; ++i) { hash ^= common_token_hash_function{}(ngram.tokens[i]); } return hash; } }; // token -> number of times token has been seen typedef std::unordered_map common_ngram_cache_part; // n-gram -> empirical distribution of following tokens typedef std::unordered_map common_ngram_cache; // Update an ngram cache with tokens. // ngram_cache: the cache to modify. // ngram_min/ngram_max: the min/max size of the ngrams to extract from inp_data. // inp_data: the token sequence with which to update ngram_cache. // nnew: how many new tokens have been appended to inp_data since the last call to this function. // print_progress: whether to print progress to stderr. // // In order to get correct results inp_data can ONLY BE APPENDED TO. // Changes in the middle need a complete rebuild. void common_ngram_cache_update( common_ngram_cache & ngram_cache, int ngram_min, int ngram_max, std::vector & inp_data, int nnew, bool print_progress); // Try to draft tokens from ngram caches. // inp: the tokens generated so far. // draft: the token sequence to draft. Expected to initially contain the previously sampled token. // n_draft: maximum number of tokens to add to draft. // ngram_min/gram_max: the min/max size of the ngrams in nc_context and nc_dynamic. // nc_context: ngram cache based on current context. // nc_dynamic: ngram cache based on previous user generations. // nc_static: ngram cache generated from a large text corpus, used for validation. void common_ngram_cache_draft( std::vector & inp, std::vector & draft, int n_draft, int ngram_min, int ngram_max, common_ngram_cache & nc_context, common_ngram_cache & nc_dynamic, common_ngram_cache & nc_static); // Save an ngram cache to a file. // ngram_cache: the ngram cache to save. // filename: the path under which to save the ngram cache. void common_ngram_cache_save(common_ngram_cache & ngram_cache, std::string & filename); // Load an ngram cache saved with common_ngram_cache_save. // filename: the path from which to load the ngram cache. // returns: an ngram cache containing the information saved to filename. common_ngram_cache common_ngram_cache_load(std::string & filename); // Merge two ngram caches. // ngram_cache_target: the ngram cache to which to add the information from ngram_cache_add. // ngram_cache_add: the ngram cache to add to ngram_cache_target. void common_ngram_cache_merge(common_ngram_cache & ngram_cache_target, common_ngram_cache & ngram_cache_add);