#!/usr/bin/env python3 from __future__ import annotations import json import os import shutil import struct import sys import tempfile from enum import IntEnum, auto from io import BufferedWriter from pathlib import Path from typing import IO, Any, BinaryIO, Callable, Sequence import numpy as np # # constants # GGUF_MAGIC = 0x46554747 GGUF_VERSION = 2 GGUF_DEFAULT_ALIGNMENT = 32 # general KEY_GENERAL_ARCHITECTURE = "general.architecture" KEY_GENERAL_QUANTIZATION_VERSION = "general.quantization_version" KEY_GENERAL_ALIGNMENT = "general.alignment" KEY_GENERAL_NAME = "general.name" KEY_GENERAL_AUTHOR = "general.author" KEY_GENERAL_URL = "general.url" KEY_GENERAL_DESCRIPTION = "general.description" KEY_GENERAL_LICENSE = "general.license" KEY_GENERAL_SOURCE_URL = "general.source.url" KEY_GENERAL_SOURCE_HF_REPO = "general.source.hugginface.repository" KEY_GENERAL_FILE_TYPE = "general.file_type" # LLM KEY_CONTEXT_LENGTH = "{arch}.context_length" KEY_EMBEDDING_LENGTH = "{arch}.embedding_length" KEY_BLOCK_COUNT = "{arch}.block_count" KEY_FEED_FORWARD_LENGTH = "{arch}.feed_forward_length" KEY_USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual" KEY_TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout" # attention KEY_ATTENTION_HEAD_COUNT = "{arch}.attention.head_count" KEY_ATTENTION_HEAD_COUNT_KV = "{arch}.attention.head_count_kv" KEY_ATTENTION_MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias" KEY_ATTENTION_CLAMP_KQV = "{arch}.attention.clamp_kqv" KEY_ATTENTION_LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon" KEY_ATTENTION_LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon" # RoPE KEY_ROPE_DIMENSION_COUNT = "{arch}.rope.dimension_count" KEY_ROPE_FREQ_BASE = "{arch}.rope.freq_base" KEY_ROPE_SCALE_LINEAR = "{arch}.rope.scale_linear" # tokenization KEY_TOKENIZER_MODEL = "tokenizer.ggml.model" KEY_TOKENIZER_LIST = "tokenizer.ggml.tokens" KEY_TOKENIZER_TOKEN_TYPE = "tokenizer.ggml.token_type" KEY_TOKENIZER_SCORES = "tokenizer.ggml.scores" KEY_TOKENIZER_MERGES = "tokenizer.ggml.merges" KEY_TOKENIZER_BOS_ID = "tokenizer.ggml.bos_token_id" KEY_TOKENIZER_EOS_ID = "tokenizer.ggml.eos_token_id" KEY_TOKENIZER_UNK_ID = "tokenizer.ggml.unknown_token_id" KEY_TOKENIZER_SEP_ID = "tokenizer.ggml.seperator_token_id" KEY_TOKENIZER_PAD_ID = "tokenizer.ggml.padding_token_id" KEY_TOKENIZER_HF_JSON = "tokenizer.huggingface.json" KEY_TOKENIZER_RWKV = "tokenizer.rwkv.world" # # recommended mapping of model tensor names for storage in gguf # class MODEL_ARCH(IntEnum): LLAMA : int = auto() FALCON : int = auto() BAICHUAN : int = auto() GPT2 : int = auto() GPTJ : int = auto() GPTNEOX : int = auto() MPT : int = auto() STARCODER : int = auto() class MODEL_TENSOR(IntEnum): TOKEN_EMBD : int = auto() POS_EMBD : int = auto() OUTPUT : int = auto() OUTPUT_NORM : int = auto() ROPE_FREQS : int = auto() ATTN_Q : int = auto() ATTN_K : int = auto() ATTN_V : int = auto() ATTN_QKV : int = auto() ATTN_OUT : int = auto() ATTN_NORM : int = auto() ATTN_NORM_2 : int = auto() ATTN_ROT_EMBD: int = auto() FFN_GATE : int = auto() FFN_DOWN : int = auto() FFN_UP : int = auto() FFN_NORM : int = auto() MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH.LLAMA: "llama", MODEL_ARCH.FALCON: "falcon", MODEL_ARCH.BAICHUAN: "baichuan", MODEL_ARCH.GPT2: "gpt2", MODEL_ARCH.GPTJ: "gptj", MODEL_ARCH.GPTNEOX: "gptneox", MODEL_ARCH.MPT: "mpt", MODEL_ARCH.STARCODER: "starcoder", } MODEL_TENSOR_NAMES: dict[MODEL_ARCH, dict[MODEL_TENSOR, str]] = { MODEL_ARCH.LLAMA: { MODEL_TENSOR.TOKEN_EMBD: "token_embd", MODEL_TENSOR.OUTPUT_NORM: "output_norm", MODEL_TENSOR.OUTPUT: "output", MODEL_TENSOR.ROPE_FREQS: "rope_freqs", MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm", MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q", MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k", MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v", MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output", MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd", MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm", MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate", MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", }, MODEL_ARCH.GPTNEOX: { MODEL_TENSOR.TOKEN_EMBD: "token_embd", MODEL_TENSOR.OUTPUT_NORM: "output_norm", MODEL_TENSOR.OUTPUT: "output", MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm", MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv", MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output", MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm", MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", }, MODEL_ARCH.FALCON: { MODEL_TENSOR.TOKEN_EMBD: "token_embd", MODEL_TENSOR.OUTPUT_NORM: "output_norm", MODEL_TENSOR.OUTPUT: "output", MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm", MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2", MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv", MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output", MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", }, MODEL_ARCH.BAICHUAN: { MODEL_TENSOR.TOKEN_EMBD: "token_embd", MODEL_TENSOR.OUTPUT_NORM: "output_norm", MODEL_TENSOR.OUTPUT: "output", MODEL_TENSOR.ROPE_FREQS: "rope_freqs", MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm", MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q", MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k", MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v", MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output", MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd", MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm", MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate", MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", }, MODEL_ARCH.STARCODER: { MODEL_TENSOR.TOKEN_EMBD: "token_embd", MODEL_TENSOR.POS_EMBD: "position_embd", MODEL_TENSOR.OUTPUT_NORM: "output_norm", MODEL_TENSOR.OUTPUT: "output", MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm", MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv", MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output", MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm", MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_up", }, MODEL_ARCH.GPT2: { # TODO }, # TODO } # tensors that will not be serialized MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_ARCH.LLAMA: [ MODEL_TENSOR.ROPE_FREQS, MODEL_TENSOR.ATTN_ROT_EMBD, ], MODEL_ARCH.BAICHUAN: [ MODEL_TENSOR.ROPE_FREQS, MODEL_TENSOR.ATTN_ROT_EMBD, ], } class TensorNameMap: mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = { # Token embeddings MODEL_TENSOR.TOKEN_EMBD: ( "gpt_neox.embed_in", # gptneox "transformer.wte", # gpt2 mpt "transformer.word_embeddings", # falcon "model.embed_tokens", # llama-hf "tok_embeddings", # llama-pth ), # Position embeddings MODEL_TENSOR.POS_EMBD: ( "transformer.wpe", # gpt2 ), # Output MODEL_TENSOR.OUTPUT: ( "embed_out", # gptneox "lm_head", # gpt2 mpt falcon llama-hf baichuan "output", # llama-pth ), # Output norm MODEL_TENSOR.OUTPUT_NORM: ( "gpt_neox.final_layer_norm", # gptneox "transformer.ln_f", # gpt2 falcon "model.norm", # llama-hf baichuan "norm", # llama-pth ), # Rope frequencies MODEL_TENSOR.ROPE_FREQS: ( "rope.freqs", # llama-pth ), } block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = { # Attention norm MODEL_TENSOR.ATTN_NORM: ( "gpt_neox.layers.{bid}.input_layernorm", # gptneox "transformer.h.{bid}.ln_1", # gpt2 "transformer.blocks.{bid}.norm_1", # mpt "transformer.h.{bid}.input_layernorm", # falcon7b "transformer.h.{bid}.ln_mlp", # falcon40b "model.layers.{bid}.input_layernorm", # llama-hf "layers.{bid}.attention_norm", # llama-pth ), # Attention norm 2 MODEL_TENSOR.ATTN_NORM_2: ( "transformer.h.{bid}.ln_attn", # falcon40b ), # Attention query-key-value MODEL_TENSOR.ATTN_QKV: ( "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox "transformer.h.{bid}.attn.c_attn", # gpt2 "transformer.blocks.{bid}.attn.Wqkv", # mpt "transformer.h.{bid}.self_attention.query_key_value", # falcon ), # Attention query MODEL_TENSOR.ATTN_Q: ( "model.layers.{bid}.self_attn.q_proj", # llama-hf "layers.{bid}.attention.wq", # llama-pth ), # Attention key MODEL_TENSOR.ATTN_K: ( "model.layers.{bid}.self_attn.k_proj", # llama-hf "layers.{bid}.attention.wk", # llama-pth ), # Attention value MODEL_TENSOR.ATTN_V: ( "model.layers.{bid}.self_attn.v_proj", # llama-hf "layers.{bid}.attention.wv", # llama-pth ), # Attention output MODEL_TENSOR.ATTN_OUT: ( "gpt_neox.layers.{bid}.attention.dense", # gptneox "transformer.h.{bid}.attn.c_proj", # gpt2 "transformer.blocks.{bid}.attn.out_proj", # mpt "transformer.h.{bid}.self_attention.dense", # falcon "model.layers.{bid}.self_attn.o_proj", # llama-hf "layers.{bid}.attention.wo", # llama-pth ), # Rotary embeddings MODEL_TENSOR.ATTN_ROT_EMBD: ( "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth ), # Feed-forward norm MODEL_TENSOR.FFN_NORM: ( "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox "transformer.h.{bid}.ln_2", # gpt2 "transformer.blocks.{bid}.norm_2", # mpt "model.layers.{bid}.post_attention_layernorm", # llama-hf "layers.{bid}.ffn_norm", # llama-pth ), # Feed-forward up MODEL_TENSOR.FFN_UP: ( "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox "transformer.h.{bid}.mlp.c_fc", # gpt2 "transformer.blocks.{bid}.ffn.up_proj", # mpt "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon "model.layers.{bid}.mlp.up_proj", # llama-hf "layers.{bid}.feed_forward.w3", # llama-pth ), # Feed-forward gate MODEL_TENSOR.FFN_GATE: ( "model.layers.{bid}.mlp.gate_proj", # llama-hf "layers.{bid}.feed_forward.w1", # llama-pth ), # Feed-forward down MODEL_TENSOR.FFN_DOWN: ( "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox "transformer.h.{bid}.mlp.c_proj", # gpt2 "transformer.blocks.{bid}.ffn.down_proj", # mpt "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon "model.layers.{bid}.mlp.down_proj", # llama-hf "layers.{bid}.feed_forward.w2", # llama-pth ), } mapping: dict[str, tuple[MODEL_TENSOR, str]] tensor_names: dict[MODEL_TENSOR, str] def __init__(self, arch: MODEL_ARCH, n_blocks: int): mapping = self.mapping = {} tensor_names = self.tensor_names = MODEL_TENSOR_NAMES[arch] for tensor, keys in self.mappings_cfg.items(): tensor_name = tensor_names.get(tensor) if tensor_name is None: continue mapping[tensor_name] = (tensor, tensor_name) for key in keys: mapping[key] = (tensor, tensor_name) for bid in range(n_blocks): for tensor, keys in self.block_mappings_cfg.items(): tensor_name = tensor_names.get(tensor) if tensor_name is None: continue tensor_name = tensor_name.format(bid = bid) mapping[tensor_name] = (tensor, tensor_name) for key in keys: key = key.format(bid = bid) mapping[key] = (tensor, tensor_name) def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None: result = self.mapping.get(key) if result is not None: return result for suffix in try_suffixes: if key.endswith(suffix): result = self.mapping.get(key[:-len(suffix)]) if result is not None: return (result[0], result[1] + suffix) return None def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None: result = self.get_type_and_name(key, try_suffixes = try_suffixes) if result is None: return None return result[1] def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None: result = self.get_type_and_name(key, try_suffixes = try_suffixes) if result is None: return None return result[0] def __getitem__(self, key: str) -> str: try: return self.mapping[key][1] except KeyError: raise KeyError(key) def __contains__(self, key: str) -> bool: return key in self.mapping def __repr__(self) -> str: return repr(self.mapping) def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap: return TensorNameMap(arch, n_blocks) class TokenType(IntEnum): NORMAL = 1 UNKNOWN = 2 CONTROL = 3 USER_DEFINED = 4 UNUSED = 5 BYTE = 6 # # implementation # class GGMLQuantizationType(IntEnum): F32 = 0 F16 = 1 Q4_0 = 2 Q4_1 = 3 Q5_0 = 6 Q5_1 = 7 Q8_0 = 8 Q8_1 = 9 Q2_K = 10 Q3_K = 11 Q4_K = 12 Q5_K = 13 Q6_K = 14 Q8_K = 15 class GGUFValueType(IntEnum): UINT8 = 0 INT8 = 1 UINT16 = 2 INT16 = 3 UINT32 = 4 INT32 = 5 FLOAT32 = 6 BOOL = 7 STRING = 8 ARRAY = 9 UINT64 = 10 INT64 = 11 FLOAT64 = 12 @staticmethod def get_type(val): if isinstance(val, str) or isinstance(val, bytes) or isinstance(val, bytearray): return GGUFValueType.STRING elif isinstance(val, list): return GGUFValueType.ARRAY elif isinstance(val, float): return GGUFValueType.FLOAT32 elif isinstance(val, bool): return GGUFValueType.BOOL elif isinstance(val, int): return GGUFValueType.INT32 # TODO: need help with 64-bit types in Python else: print("Unknown type: "+str(type(val))) sys.exit() class GGUFWriter: fout: BufferedWriter arch: str offset_tensor = 0 data_alignment = GGUF_DEFAULT_ALIGNMENT kv_data = b"" kv_data_count = 0 ti_data = b"" ti_data_count = 0 use_temp_file: bool temp_file: tempfile.SpooledTemporaryFile[bytes] | None = None tensors: list[tuple[np.ndarray[Any, Any], int]] def __init__(self, path: os.PathLike[str] | str, arch: str, use_temp_file = True): self.fout = open(path, "wb") self.arch = arch self.add_architecture() self.use_temp_file = use_temp_file self.tensors = [] def write_header_to_file(self): self.fout.write(struct.pack(" 0: ltype = GGUFValueType.get_type(val[0]) if not all(GGUFValueType.get_type(i) is ltype for i in val[1:]): raise ValueError("All items in a GGUF array should be of the same type") self.kv_data += struct.pack(" int: return ((x + n - 1) // n) * n def add_tensor_info(self, name: str, tensor_shape: Sequence[int], tensor_dtype: np.dtype[np.float16] | np.dtype[np.float32], tensor_nbytes: int, raw_dtype: GGMLQuantizationType | None = None): assert raw_dtype is not None or tensor_dtype in (np.float32, np.float16), "Only F32 and F16 tensors are supported for now" encoded_name = name.encode("utf8") self.ti_data += struct.pack(" bool: tokenizer_file = path / 'tokenizer.json' if not tokenizer_file.is_file(): return False with open(tokenizer_file, 'r', encoding = 'utf-8') as f: tokenizer = json.load(f) if self.load_merges: merges = tokenizer.get('model', {}).get('merges') if isinstance(merges, list) and len(merges) > 0 and isinstance(merges[0], str): self.merges = merges tokenizer_config_file = path / 'tokenizer_config.json' added_tokens = tokenizer.get('added_tokens') if added_tokens is None or not tokenizer_config_file.is_file(): return True with open(tokenizer_config_file, 'r', encoding = 'utf-8') as f: tokenizer_config = json.load(f) for typ in self.special_token_types: entry = tokenizer_config.get(f'{typ}_token') if isinstance(entry, str): tc_content = entry elif isinstance(entry, dict): entry_content = entry.get('content') if not isinstance(entry_content, str): continue tc_content = entry_content else: continue for maybe_token_id in (atok.get('id') for atok in added_tokens if atok.get('content') == tc_content): if isinstance(maybe_token_id, int) and maybe_token_id >= 0: self.special_token_ids[typ] = maybe_token_id break return True def try_load_from_config_json(self, path: Path) -> bool: config_file = path / 'config.json' if not config_file.is_file(): return False with open(config_file, 'r', encoding = 'utf-8') as f: config = json.load(f) for typ in self.special_token_types: maybe_token_id = config.get(f'{typ}_token_id') if isinstance(maybe_token_id, int) and maybe_token_id >= 0: self.special_token_ids[typ] = maybe_token_id return True def add_to_gguf(self, gw: GGUFWriter): if len(self.merges) > 0: print(f'gguf: Adding {len(self.merges)} merge(s).') gw.add_token_merges(self.merges) for typ, tokid in self.special_token_ids.items(): handler: Callable[[int], None] | None = getattr(gw, f'add_{typ}_token_id', None) if handler is None: print(f'gguf: WARNING: No handler for special token type {typ} with id {tokid} - skipping') continue print(f'gguf: Setting special token type {typ} to {tokid}') handler(tokid) def __repr__(self): return f'' # Example usage: if __name__ == "__main__": # Example usage with a file gguf_writer = GGUFWriter("example.gguf", "llama") gguf_writer.add_architecture() gguf_writer.add_block_count(12) gguf_writer.add_uint32("answer", 42) # Write a 32-bit integer gguf_writer.add_float32("answer_in_float", 42.0) # Write a 32-bit float gguf_writer.add_custom_alignment(64) tensor1 = np.ones((32,), dtype=np.float32) * 100.0 tensor2 = np.ones((64,), dtype=np.float32) * 101.0 tensor3 = np.ones((96,), dtype=np.float32) * 102.0 gguf_writer.add_tensor("tensor1", tensor1) gguf_writer.add_tensor("tensor2", tensor2) gguf_writer.add_tensor("tensor3", tensor3) gguf_writer.write_header_to_file() gguf_writer.write_kv_data_to_file() gguf_writer.write_tensors_to_file() gguf_writer.close()