from __future__ import annotations from typing import Callable, Sequence from numpy.typing import DTypeLike from .constants import GGML_QUANT_SIZES, GGMLQuantizationType from .lazy import LazyNumpyTensor import numpy as np def quant_shape_to_byte_shape(shape: Sequence[int], quant_type: GGMLQuantizationType): block_size, type_size = GGML_QUANT_SIZES[quant_type] if shape[-1] % block_size != 0: raise ValueError(f"Quantized tensor row size ({shape[-1]}) is not a multiple of {quant_type.name} block size ({block_size})") return (*shape[:-1], shape[-1] // block_size * type_size) def quant_shape_from_byte_shape(shape: Sequence[int], quant_type: GGMLQuantizationType): block_size, type_size = GGML_QUANT_SIZES[quant_type] if shape[-1] % type_size != 0: raise ValueError(f"Quantized tensor bytes per row ({shape[-1]}) is not a multiple of {quant_type.name} type size ({type_size})") return (*shape[:-1], shape[-1] // type_size * block_size) # same as ggml_compute_fp32_to_bf16 in ggml-impl.h def __compute_fp32_to_bf16(n: np.ndarray) -> np.ndarray: n = n.astype(np.float32, copy=False).view(np.int32) # force nan to quiet n = np.where((n & 0x7fffffff) > 0x7f800000, (n & 0xffff0000) | (64 << 16), n) # flush subnormals to zero n = np.where((n & 0x7f800000) == 0, n & 0x80000000, n) # round to nearest even n = (n + (0x7fff + ((n >> 16) & 1))) >> 16 return n.astype(np.int16) # This is faster than np.vectorize and np.apply_along_axis because it works on more than one row at a time def __apply_over_grouped_rows(func: Callable[[np.ndarray], np.ndarray], arr: np.ndarray, otype: DTypeLike, oshape: tuple[int, ...]) -> np.ndarray: rows = arr.reshape((-1, arr.shape[-1])) osize = 1 for dim in oshape: osize *= dim out = np.empty(shape=osize, dtype=otype) # compute over groups of 16 rows (arbitrary, but seems good for performance) n_groups = (rows.shape[0] // 16) or 1 np.concatenate([func(group).ravel() for group in np.array_split(rows, n_groups)], axis=0, out=out) return out.reshape(oshape) def __quantize_bf16_array(n: np.ndarray) -> np.ndarray: return __apply_over_grouped_rows(__compute_fp32_to_bf16, arr=n, otype=np.int16, oshape=n.shape) __quantize_bf16_lazy = LazyNumpyTensor._wrap_fn(__quantize_bf16_array, meta_noop=np.int16) def quantize_bf16(n: np.ndarray): if type(n) is LazyNumpyTensor: return __quantize_bf16_lazy(n) else: return __quantize_bf16_array(n) __q8_block_size, __q8_type_size = GGML_QUANT_SIZES[GGMLQuantizationType.Q8_0] def can_quantize_to_q8_0(n: np.ndarray) -> bool: return n.shape[-1] % __q8_block_size == 0 # round away from zero # ref: https://stackoverflow.com/a/59143326/22827863 def np_roundf(n: np.ndarray) -> np.ndarray: a = abs(n) floored = np.floor(a) b = floored + np.floor(2 * (a - floored)) return np.sign(n) * b def __quantize_q8_0_shape_change(s: tuple[int, ...]) -> tuple[int, ...]: return (*s[:-1], s[-1] // __q8_block_size * __q8_type_size) # Implementation of Q8_0 with bit-exact same results as reference implementation in ggml-quants.c def __quantize_q8_0_rows(n: np.ndarray) -> np.ndarray: shape = n.shape assert shape[-1] % __q8_block_size == 0 n_blocks = n.size // __q8_block_size blocks = n.reshape((n_blocks, __q8_block_size)).astype(np.float32, copy=False) d = abs(blocks).max(axis=1, keepdims=True) / 127 with np.errstate(divide="ignore"): id = np.where(d == 0, 0, 1 / d) qs = np_roundf(blocks * id) # (n_blocks, 2) d = d.astype(np.float16).view(np.uint8) # (n_blocks, block_size) qs = qs.astype(np.int8).view(np.uint8) assert d.shape[1] + qs.shape[1] == __q8_type_size return np.concatenate([d, qs], axis=1).reshape(__quantize_q8_0_shape_change(shape)) def __quantize_q8_0_array(n: np.ndarray) -> np.ndarray: return __apply_over_grouped_rows(__quantize_q8_0_rows, arr=n, otype=np.uint8, oshape=__quantize_q8_0_shape_change(n.shape)) __quantize_q8_0_lazy = LazyNumpyTensor._wrap_fn( __quantize_q8_0_array, meta_noop=(np.uint8, __quantize_q8_0_shape_change), ) def quantize_q8_0(data: np.ndarray): if type(data) is LazyNumpyTensor: return __quantize_q8_0_lazy(data) else: return __quantize_q8_0_array(data) __q1_3_block_size, __q1_3_type_size = GGML_QUANT_SIZES[GGMLQuantizationType.Q1_3] def can_quantize_to_q1_3(n: np.ndarray) -> bool: return n.shape[-1] % __q1_3_block_size == 0 def __quantize_q1_3_shape_change(s: tuple[int, ...]) -> tuple[int, ...]: return (*s[:-1], s[-1] // __q1_3_block_size * __q1_3_type_size) def __quantize_q1_3_rows(n: np.ndarray) -> np.ndarray: shape = n.shape assert shape[-1] % __q1_3_block_size == 0 n_blocks = n.size // __q1_3_block_size blocks = n.reshape((n_blocks, __q1_3_block_size)).astype(np.float32, copy=False) # assuming the weights are pre-scaled blocks = (np.sign(blocks).astype(np.int8) + 1).view(np.uint8) q48, rest = np.hsplit(blocks, (48,)) q12, q4 = np.hsplit(rest, (12,)) pow3 = np.array([1, 3, 9, 27]) q48 = q48.reshape((n_blocks, 12, 4)) q48 = np.sum(q48 * pow3.reshape((1, 1, 4)), axis=2, keepdims=True).reshape((n_blocks, 12)) q4 = np.sum(q4 * pow3.reshape((1, 4)), axis=1, keepdims=True) q48 = q48 + (q12 * 81) q = np.concatenate([q48, q4], axis=1) q = (((q.astype(np.uint16) * 256) + (243 - 1)) // 243).astype(np.uint8) return q.reshape(__quantize_q1_3_shape_change(shape)) def __quantize_q1_3_array(n: np.ndarray) -> np.ndarray: return __apply_over_grouped_rows(__quantize_q1_3_rows, arr=n, otype=np.uint8, oshape=__quantize_q1_3_shape_change(n.shape)) __quantize_q1_3_lazy = LazyNumpyTensor._wrap_fn( __quantize_q1_3_array, meta_noop=(np.uint8, __quantize_q1_3_shape_change), ) def quantize_q1_3(data: np.ndarray): if type(data) is LazyNumpyTensor: return __quantize_q1_3_lazy(data) else: return __quantize_q1_3_array(data)