#include "sampling.h" struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params) { struct llama_sampling_context * result = new llama_sampling_context(); result->params = params; result->grammar = nullptr; // if there is a grammar, parse it if (!params.grammar.empty()) { result->parsed_grammar = grammar_parser::parse(params.grammar.c_str()); // will be empty (default) if there are parse errors if (result->parsed_grammar.rules.empty()) { fprintf(stderr, "%s: failed to parse grammar\n", __func__); return nullptr; } std::vector grammar_rules(result->parsed_grammar.c_rules()); result->grammar = llama_grammar_init( grammar_rules.data(), grammar_rules.size(), result->parsed_grammar.symbol_ids.at("root")); } result->prev.resize(params.n_prev); return result; } void llama_sampling_free(struct llama_sampling_context * ctx) { if (ctx->grammar != NULL) { llama_grammar_free(ctx->grammar); } delete ctx; } void llama_sampling_reset(llama_sampling_context * ctx) { if (ctx->grammar != NULL) { llama_grammar_free(ctx->grammar); } if (!ctx->parsed_grammar.rules.empty()) { std::vector grammar_rules(ctx->parsed_grammar.c_rules()); ctx->grammar = llama_grammar_init( grammar_rules.data(), grammar_rules.size(), ctx->parsed_grammar.symbol_ids.at("root")); } std::fill(ctx->prev.begin(), ctx->prev.end(), 0); ctx->cur.clear(); } void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst) { if (dst->grammar) { llama_grammar_free(dst->grammar); dst->grammar = nullptr; } if (src->grammar) { dst->grammar = llama_grammar_copy(src->grammar); } dst->prev = src->prev; } std::string llama_sampling_print(const llama_sampling_params & params) { char result[1024]; snprintf(result, sizeof(result), "\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n" "\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, typical_p = %.3f, temp = %.3f\n" "\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f", params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present, params.top_k, params.tfs_z, params.top_p, params.typical_p, params.temp, params.mirostat, params.mirostat_eta, params.mirostat_tau); return std::string(result); } llama_token llama_sampling_sample( struct llama_sampling_context * ctx_sampling, struct llama_context * ctx_main, struct llama_context * ctx_cfg, const int idx) { const llama_sampling_params & params = ctx_sampling->params; const int n_vocab = llama_n_vocab(llama_get_model(ctx_main)); const float temp = params.temp; const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k; const float top_p = params.top_p; const float tfs_z = params.tfs_z; const float typical_p = params.typical_p; const int32_t penalty_last_n = params.penalty_last_n < 0 ? params.n_prev : params.penalty_last_n; const float penalty_repeat = params.penalty_repeat; const float penalty_freq = params.penalty_freq; const float penalty_present = params.penalty_present; const int mirostat = params.mirostat; const float mirostat_tau = params.mirostat_tau; const float mirostat_eta = params.mirostat_eta; const bool penalize_nl = params.penalize_nl; auto & prev = ctx_sampling->prev; auto & cur = ctx_sampling->cur; llama_token id = 0; float * logits = llama_get_logits_ith(ctx_main, idx); // apply params.logit_bias map for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) { logits[it->first] += it->second; } cur.clear(); for (llama_token token_id = 0; token_id < n_vocab; token_id++) { cur.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); } llama_token_data_array cur_p = { cur.data(), cur.size(), false }; if (ctx_cfg) { llama_sample_classifier_free_guidance(ctx_main, &cur_p, ctx_cfg, params.cfg_scale); } // apply penalties if (!prev.empty()) { const float nl_logit = logits[llama_token_nl(ctx_main)]; llama_sample_repetition_penalties(ctx_main, &cur_p, prev.data() + prev.size() - penalty_last_n, penalty_last_n, penalty_repeat, penalty_freq, penalty_present); if (!penalize_nl) { for (size_t idx = 0; idx < cur_p.size; idx++) { if (cur_p.data[idx].id == llama_token_nl(ctx_main)) { cur_p.data[idx].logit = nl_logit; break; } } } } if (ctx_sampling->grammar != NULL) { llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar); } if (temp <= 0) { // greedy sampling id = llama_sample_token_greedy(ctx_main, &cur_p); } else { if (mirostat == 1) { const int mirostat_m = 100; llama_sample_temp(ctx_main, &cur_p, temp); id = llama_sample_token_mirostat(ctx_main, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &ctx_sampling->mirostat_mu); } else if (mirostat == 2) { llama_sample_temp(ctx_main, &cur_p, temp); id = llama_sample_token_mirostat_v2(ctx_main, &cur_p, mirostat_tau, mirostat_eta, &ctx_sampling->mirostat_mu); } else { // temperature sampling size_t min_keep = std::max(1, params.n_probs); llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep); llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep); llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep); llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep); llama_sample_temp (ctx_main, &cur_p, temp); id = llama_sample_token(ctx_main, &cur_p); //{ // const int n_top = 10; // LOG("top %d candidates:\n", n_top); // for (int i = 0; i < n_top; i++) { // const llama_token id = cur_p.data[i].id; // (void)id; // To avoid a warning that id is unused when logging is disabled. // LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx_main, id).c_str(), cur_p.data[i].p); // } //} LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx_main, id).c_str()); } } return id; } void llama_sampling_accept( struct llama_sampling_context * ctx_sampling, struct llama_context * ctx_main, llama_token id) { ctx_sampling->prev.erase(ctx_sampling->prev.begin()); ctx_sampling->prev.push_back(id); if (ctx_sampling->grammar != NULL) { llama_grammar_accept_token(ctx_main, ctx_sampling->grammar, id); } }