#include "common.h" #include "ggml.h" #include "ggml-alloc.h" #include #include #include #include #include static bool g_verbose = false; struct tensor_transformation { struct ggml_tensor * in; struct ggml_tensor * out; bool is_copy; }; static std::string get_kv_str(struct gguf_context * ctx_gguf, const std::string & key){ int id = gguf_find_key(ctx_gguf, key.c_str()); return id < 0 ? "" : std::string(gguf_get_val_str(ctx_gguf, id)); } static float get_kv_f32(struct gguf_context * ctx_gguf, const std::string & key) { int id = gguf_find_key(ctx_gguf, key.c_str()); return id < 0 ? 0.0f : gguf_get_val_f32(ctx_gguf, id); } static void zeros(std::ofstream & file, size_t n) { char zero = 0; for (size_t i = 0; i < n; ++i) { file.write(&zero, 1); } } static std::string ggml_ne_string(const ggml_tensor * t) { std::string str; for (int i = 0; i < GGML_MAX_DIMS; ++i) { str += std::to_string(t->ne[i]); if (i + 1 < GGML_MAX_DIMS) { str += ", "; } } return str; } static struct gguf_context * load_gguf(std::string & fname, struct ggml_context ** ctx_ggml) { struct gguf_init_params params = { /*.no_alloc = */ true, /*.ctx = */ ctx_ggml, }; struct gguf_context * ctx_gguf = gguf_init_from_file(fname.c_str(), params); if (!ctx_gguf) { throw std::runtime_error("failed to load input GGUF from " + fname); } return ctx_gguf; } struct file_input { struct ggml_context * ctx_meta = nullptr; struct gguf_context * ctx_gguf = nullptr; std::ifstream f_in; std::map tensors; float alpha; float scale; file_input(std::string & fname, float scale): f_in(fname, std::ios::binary), scale(scale) { if (!f_in.is_open()) { throw std::runtime_error("failed to open input gguf from " + fname); } ctx_gguf = load_gguf(fname, &ctx_meta); alpha = get_kv_f32(ctx_gguf, "adapter.lora.alpha"); printf("%s: loaded gguf from %s\n", __func__, fname.c_str()); for (ggml_tensor * cur = ggml_get_first_tensor(ctx_meta); cur; cur = ggml_get_next_tensor(ctx_meta, cur)) { std::string name(cur->name); tensors[name] = cur; if (g_verbose) { printf("%s: %s\n", __func__, cur->name); } } } ggml_tensor * get_tensor(std::string name) { if (tensors.find(name) == tensors.end()) { return nullptr; } return tensors[name]; } void read_tensor_data(std::string name, std::vector & buf) { if (tensors.find(name) == tensors.end()) { throw std::runtime_error("cannot find tensor with name: " + name); } auto len = ggml_nbytes(tensors[name]); if (buf.size() < len) { buf.resize(len); } auto i_tensor_in = gguf_find_tensor(ctx_gguf, name.c_str()); // idx of tensor in the input file auto offset = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, i_tensor_in); f_in.seekg(offset); f_in.read((char* )buf.data(), len); } ~file_input() { gguf_free(ctx_gguf); ggml_free(ctx_meta); } }; struct lora_merge_ctx { // input base model + adapters file_input base_model; std::vector> adapters; // for computing merged tensor int n_threads; ggml_backend_t backend = nullptr; ggml_gallocr_t allocr = nullptr; std::vector read_buf; // output file struct gguf_context * ctx_out; struct ggml_context * ctx_out_ggml; std::ofstream fout; lora_merge_ctx( std::string & base_fname, std::vector & lora_files, std::string & outfile, int n_threads) : base_model(base_fname, 0), n_threads(n_threads), fout(outfile, std::ios::binary) { fout.exceptions(std::ofstream::failbit); // fail fast on write errors if (gguf_find_key(base_model.ctx_gguf, LLM_KV_SPLIT_COUNT) >= 0) { throw std::runtime_error("split model is not yet supported"); } for (auto & lora_inp : lora_files) { auto fname = lora_inp.path; auto scale = lora_inp.scale; std::unique_ptr adapter(new file_input(fname, scale)); check_metadata_lora(adapter.get()); adapters.push_back(std::move(adapter)); } ctx_out = gguf_init_empty(); struct ggml_init_params params = { /*.mem_size =*/ gguf_get_n_tensors(base_model.ctx_gguf)*ggml_tensor_overhead(), /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, }; ctx_out_ggml = ggml_init(params); backend = ggml_backend_cpu_init(); allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend)); } void check_metadata_lora(file_input * adapter) { auto general_type = get_kv_str(adapter->ctx_gguf, "general.type"); if (general_type != "adapter") { throw std::runtime_error("expect general.type to be 'adapter', but got: " + general_type); } auto adapter_type = get_kv_str(adapter->ctx_gguf, "adapter.type"); if (adapter_type != "lora") { throw std::runtime_error("expect adapter.type to be 'lora', but got: " + adapter_type); } auto general_arch_base = get_kv_str(base_model.ctx_gguf, "general.architecture"); auto general_arch_lora = get_kv_str(adapter->ctx_gguf, "general.architecture"); if (general_arch_base != general_arch_lora) { throw std::runtime_error("model arch and LoRA arch mismatch"); } } ggml_type get_out_tensor_type(struct ggml_tensor * t) { if (t->type == GGML_TYPE_F32) { return GGML_TYPE_F32; } else { return GGML_TYPE_F16; } } void run_merge() { // prepare metadata gguf_set_kv(ctx_out, base_model.ctx_gguf); // output is forced to f16 for now gguf_set_val_u32(ctx_out, "general.file_type", LLAMA_FTYPE_MOSTLY_F16); // check if all lora adapters have the same tensors // TODO: remove this when we can support merging subset of adapters. Ref: https://github.com/ggerganov/llama.cpp/pull/8607#discussion_r1686027777 static const char * err_no_subset_adapter = "Input adapters do not have the same list of tensors. This is not yet supported. Please merge the adapter one-by-one instead of merging all at once."; if (adapters.size() > 1) { for (size_t i = 1; i < adapters.size(); ++i) { if (adapters[0]->tensors.size() != adapters[i]->tensors.size()) { throw std::runtime_error(err_no_subset_adapter); } for (auto & it : adapters[i]->tensors) { if (adapters[0]->get_tensor(it.first) == nullptr) { throw std::runtime_error(err_no_subset_adapter); } } } } // mapping base tensor to out tensor (same shape with base, but different type) std::vector trans; for (auto & it : base_model.tensors) { bool t_a = true; bool t_b = true; for (auto & adapter : adapters) { t_a &= nullptr != adapter->get_tensor(it.first + ".lora_a"); t_b &= nullptr != adapter->get_tensor(it.first + ".lora_b"); } auto base_tensor = it.second; if (!t_a && !t_b) { // only copy struct ggml_tensor * cpy_tensor = ggml_dup_tensor(ctx_out_ggml, base_tensor); ggml_set_name(cpy_tensor, base_tensor->name); trans.push_back({ cpy_tensor, cpy_tensor, true, }); gguf_add_tensor(ctx_out, cpy_tensor); } else if (t_a && t_b) { // need merging struct ggml_tensor * out_tensor = ggml_new_tensor( ctx_out_ggml, get_out_tensor_type(base_tensor), GGML_MAX_DIMS, base_tensor->ne); ggml_set_name(out_tensor, base_tensor->name); trans.push_back({ base_tensor, out_tensor, false, }); gguf_add_tensor(ctx_out, out_tensor); } else { throw std::runtime_error("tensor " + it.first + " missing either lora_a or lora_b"); } } // placeholder for the meta data { size_t meta_size = gguf_get_meta_size(ctx_out); zeros(fout, meta_size); } // process base model tensors size_t n_merged = 0; for (auto & it : trans) { if (!it.is_copy) { merge_tensor(it.in, it.out); n_merged++; } else { copy_tensor(it.in); } } // write output metadata { std::vector data(gguf_get_meta_size(ctx_out)); gguf_get_meta_data(ctx_out, data.data()); fout.seekp(0); fout.write((const char *)data.data(), data.size()); } printf("%s : merged %ld tensors with lora adapters\n", __func__, n_merged); printf("%s : wrote %ld tensors to output file\n", __func__, trans.size()); } void copy_tensor(struct ggml_tensor * base) { printf("%s : %s [%s]\n", __func__, base->name, ggml_ne_string(base).c_str()); size_t len = ggml_nbytes(base); base_model.read_tensor_data(base->name, read_buf); fout.write((char* )read_buf.data(), len); zeros(fout, GGML_PAD(len, GGUF_DEFAULT_ALIGNMENT) - len); } void merge_tensor(struct ggml_tensor * base, struct ggml_tensor * out) { std::string name_base(base->name); std::string name_lora_a = name_base + ".lora_a"; std::string name_lora_b = name_base + ".lora_b"; printf("%s : %s [%s]\n", __func__, base->name, ggml_ne_string(base).c_str()); // context for input tensor std::vector inp_a(adapters.size()); std::vector inp_b(adapters.size()); struct ggml_init_params params { /*.mem_size =*/ ggml_tensor_overhead()*(2+adapters.size()*2), /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, }; struct ggml_context * ctx = ggml_init(params); // alloc tensors struct ggml_tensor * inp_base = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, base->ne); for (size_t i = 0; i < adapters.size(); ++i) { auto t_a = adapters[i]->get_tensor(name_lora_a); auto t_b = adapters[i]->get_tensor(name_lora_b); // TODO: add support for quantized lora if (ggml_is_quantized(t_a->type) || ggml_is_quantized(t_b->type)) { throw std::runtime_error("quantized LoRA adapters is not supported, please retry with f16 or f32"); } inp_a[i] = ggml_dup_tensor(ctx, t_a); inp_b[i] = ggml_dup_tensor(ctx, t_b); } ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx, backend); // load base tensor to backend buffer base_model.read_tensor_data(name_base, read_buf); if (base->type != GGML_TYPE_F32) { // optionally dequantize it printf("%s : + dequantize base tensor from %s to F32\n", __func__, ggml_type_name(base->type)); auto nels = ggml_nelements(inp_base); ggml_type_traits_t qtype = ggml_internal_get_type_traits(base->type); std::vector dequant_buf(nels * sizeof(float)); qtype.to_float(read_buf.data(), (float *)dequant_buf.data(), nels); ggml_backend_tensor_set(inp_base, dequant_buf.data(), 0, dequant_buf.size()); } else { ggml_backend_tensor_set(inp_base, read_buf.data(), 0, ggml_nbytes(inp_base)); } // load lora tensors to backend buffer for (size_t i = 0; i < adapters.size(); ++i) { adapters[i]->read_tensor_data(name_lora_a, read_buf); ggml_backend_tensor_set(inp_a[i], read_buf.data(), 0, ggml_nbytes(inp_a[i])); adapters[i]->read_tensor_data(name_lora_b, read_buf); ggml_backend_tensor_set(inp_b[i], read_buf.data(), 0, ggml_nbytes(inp_b[i])); } // build graph struct ggml_cgraph * gf; { static size_t buf_size = ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead(); static std::vector buf(buf_size); struct ggml_init_params params0 = { /*.mem_size =*/ buf_size, /*.mem_buffer =*/ buf.data(), /*.no_alloc =*/ true, }; struct ggml_context * ctx0 = ggml_init(params0); gf = ggml_new_graph(ctx0); struct ggml_tensor * cur = inp_base; for (size_t i = 0; i < adapters.size(); ++i) { struct ggml_tensor * a_T = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_cast(ctx0, inp_a[i], GGML_TYPE_F32))); struct ggml_tensor * delta = ggml_mul_mat(ctx0, a_T, ggml_cast(ctx0, inp_b[i], GGML_TYPE_F32)); // scale const float alpha = adapters[i]->alpha; const float rank = (float) inp_b[i]->ne[0]; const float scale = alpha ? adapters[i]->scale * alpha / rank : adapters[i]->scale; delta = ggml_scale(ctx0, delta, scale); cur = ggml_add(ctx0, delta, cur); printf("%s : + merging from adapter[%ld] type=%s\n", __func__, i, ggml_type_name(inp_a[i]->type)); printf("%s : input_scale=%f calculated_scale=%f rank=%d\n", __func__, adapters[i]->scale, scale, (int) inp_b[i]->ne[0]); } cur = ggml_cast(ctx0, cur, out->type); printf("%s : + output type is %s\n", __func__, ggml_type_name(out->type)); ggml_build_forward_expand(gf, cur); ggml_free(ctx0); } // compute { ggml_gallocr_alloc_graph(allocr, gf); ggml_backend_cpu_set_n_threads(backend, n_threads); ggml_backend_graph_compute(backend, gf); } // write data to output file { auto result = gf->nodes[gf->n_nodes - 1]; size_t len = ggml_nbytes(result); if (read_buf.size() < len) { read_buf.resize(len); } ggml_backend_tensor_get(result, read_buf.data(), 0, len); fout.write((char* )read_buf.data(), len); zeros(fout, GGML_PAD(len, GGUF_DEFAULT_ALIGNMENT) - len); } ggml_free(ctx); ggml_backend_buffer_free(buffer); } ~lora_merge_ctx() { ggml_gallocr_free(allocr); ggml_backend_free(backend); gguf_free(ctx_out); ggml_free(ctx_out_ggml); } }; static void print_usage(int argc, char ** argv, const gpt_params & params) { gpt_params_print_usage(argc, argv, params); printf("\nexample usage:\n"); printf("\n %s -m base-model.gguf --lora lora-file.gguf -o merged-model-f16.gguf\n", argv[0]); printf("\nNOTE: output model is F16\n"); printf("\n"); } int main(int argc, char ** argv) { gpt_params params; if (!gpt_params_parse(argc, argv, params)) { print_usage(argc, argv, params); return 1; } g_verbose = (params.verbosity == 1); try { lora_merge_ctx ctx(params.model, params.lora_adapters, params.lora_outfile, params.n_threads); ctx.run_merge(); } catch (const std::exception & err) { fprintf(stderr, "%s\n", err.what()); exit(EXIT_FAILURE); } printf("done, output file is %s\n", params.lora_outfile.c_str()); return 0; }