#include "unary.cuh" static __global__ void gelu_f32(const float * x, float * dst, const int k) { const float GELU_COEF_A = 0.044715f; const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f; const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { return; } float xi = x[i]; dst[i] = 0.5f*xi*(1.0f + tanhf(SQRT_2_OVER_PI*xi*(1.0f + GELU_COEF_A*xi*xi))); } static __global__ void gelu_quick_f32(const float * x, float * dst, int k) { const float GELU_QUICK_COEF = -1.702f; const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { return; } dst[i] = x[i] * (1.0f / (1.0f + expf(GELU_QUICK_COEF * x[i]))); } static __global__ void silu_f32(const float * x, float * dst, const int k) { const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { return; } dst[i] = x[i] / (1.0f + expf(-x[i])); } static __global__ void tanh_f32(const float * x, float * dst, int k) { const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { return; } dst[i] = tanhf(x[i]); } static __global__ void relu_f32(const float * x, float * dst, const int k) { const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { return; } dst[i] = fmaxf(x[i], 0); } static __global__ void sigmoid_f32(const float * x, float * dst, const int k) { const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { return; } dst[i] = 1.0f / (1.0f + expf(-x[i])); } static __global__ void hardsigmoid_f32(const float * x, float * dst, const int k) { const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { return; } dst[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); } static __global__ void hardswish_f32(const float * x, float * dst, const int k) { const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { return; } dst[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); } static __global__ void leaky_relu_f32(const float * x, float * dst, const int k, const float negative_slope) { const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { return; } dst[i] = fmaxf(x[i], 0) + fminf(x[i], 0.0f) * negative_slope; } static __global__ void sqr_f32(const float * x, float * dst, const int k) { const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { return; } dst[i] = x[i] * x[i]; } static __global__ void sqrt_f32(const float * x, float * dst, const int k) { const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { return; } dst[i] = sqrtf(x[i]); } static void gelu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE; gelu_f32<<>>(x, dst, k); } static void gelu_quick_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE; gelu_quick_f32<<>>(x, dst, k); } static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_SILU_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE; silu_f32<<>>(x, dst, k); } static void tanh_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_TANH_BLOCK_SIZE - 1) / CUDA_TANH_BLOCK_SIZE; tanh_f32<<>>(x, dst, k); } static void relu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE; relu_f32<<>>(x, dst, k); } static void sigmoid_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_SIGMOID_BLOCK_SIZE - 1) / CUDA_SIGMOID_BLOCK_SIZE; sigmoid_f32<<>>(x, dst, k); } static void hardsigmoid_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_HARDSIGMOID_BLOCK_SIZE - 1) / CUDA_HARDSIGMOID_BLOCK_SIZE; hardsigmoid_f32<<>>(x, dst, k); } static void hardswish_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_HARDSWISH_BLOCK_SIZE - 1) / CUDA_HARDSWISH_BLOCK_SIZE; hardswish_f32<<>>(x, dst, k); } static void leaky_relu_f32_cuda(const float * x, float * dst, const int k, const float negative_slope, cudaStream_t stream) { const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE; leaky_relu_f32<<>>(x, dst, k, negative_slope); } static void sqr_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_SQR_BLOCK_SIZE - 1) / CUDA_SQR_BLOCK_SIZE; sqr_f32<<>>(x, dst, k); } static void sqrt_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_SQRT_BLOCK_SIZE - 1) / CUDA_SQRT_BLOCK_SIZE; sqrt_f32<<>>(x, dst, k); } void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *)src0->data; float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); gelu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream); } void ggml_cuda_op_silu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *)src0->data; float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); silu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream); } void ggml_cuda_op_gelu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *)src0->data; float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); gelu_quick_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream); } void ggml_cuda_op_tanh(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *)src0->data; float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); tanh_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream); } void ggml_cuda_op_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *)src0->data; float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); relu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream); } void ggml_cuda_op_sigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *)src0->data; float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); sigmoid_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream); } void ggml_cuda_op_hardsigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *)src0->data; float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); hardsigmoid_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream); } void ggml_cuda_op_hardswish(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *)src0->data; float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); hardswish_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream); } void ggml_cuda_op_leaky_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *)src0->data; float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); float negative_slope; memcpy(&negative_slope, dst->op_params, sizeof(float)); leaky_relu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), negative_slope, stream); } void ggml_cuda_op_sqr(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *)src0->data; float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); sqr_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream); } void ggml_cuda_op_sqrt(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *)src0->data; float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); sqrt_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream); }