# HF llama --> gguf conversion import gguf import gguf_namemap as tmap import os import sys import struct import json import numpy as np import torch from typing import Any, List, Optional from pathlib import Path from sentencepiece import SentencePieceProcessor #NDArray = np.ndarray[Any, Any] # compatible with python < 3.9 NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]' # reverse HF permute back to original pth layout # https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py def reverse_hf_permute(weights: NDArray, n_head: int, n_kv_head: Optional[int] = None) -> NDArray: if n_kv_head is not None and n_head != n_kv_head: n_head //= n_kv_head return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) .swapaxes(1, 2) .reshape(weights.shape)) def count_model_parts(dir_model: str) -> int: num_parts = 0 for filename in os.listdir(dir_model): if filename.startswith("pytorch_model-"): num_parts += 1 if num_parts > 0: print("gguf: found " + str(num_parts) + " model parts") return num_parts if len(sys.argv) < 3: print("Usage: convert-h5-to-ggml.py dir-model ftype\n") print(" ftype == 0 -> float32") print(" ftype == 1 -> float16") sys.exit(1) # output in the same directory as the model dir_model = sys.argv[1] last_dir = os.path.basename(os.path.normpath(dir_model)) # possible tensor data types # ftype == 0 -> float32 # ftype == 1 -> float16 # # map from ftype to string ftype_str = ["f32", "f16"] ftype = 1 if len(sys.argv) > 2: ftype = int(sys.argv[2]) if ftype < 0 or ftype > 1: print("Invalid ftype: " + str(ftype)) sys.exit(1) fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf" print("gguf: loading model "+last_dir) with open(dir_model + "/config.json", "r", encoding="utf-8") as f: hparams = json.load(f) if hparams["architectures"][0] != "LlamaForCausalLM": print("Model architecture not supported: " + hparams["architectures"][0]) sys.exit() # get number of model parts num_parts = count_model_parts(dir_model) gguf_writer = gguf.GGUFWriter.open(fname_out) print("gguf: get model metadata") llm_arch = "llama" block_count = hparams["num_hidden_layers"] head_count = hparams["num_attention_heads"] if "num_key_value_heads" in hparams: head_count_kv = hparams["num_key_value_heads"] else: head_count_kv = head_count if "_name_or_path" in hparams: hf_repo = hparams["_name_or_path"] else: hf_repo="" if "max_sequence_length" in hparams: ctx_length = hparams["max_sequence_length"] elif "max_position_embeddings" in hparams: ctx_length = hparams["max_position_embeddings"] else: print("gguf: can not find ctx length parameter.") sys.exit() gguf_writer.add_architecture(llm_arch) gguf_writer.add_name(last_dir) gguf_writer.add_file_type("All tensors F32" if ftype == 0 else "Most tensors F16, some F32") gguf_writer.add_source_hf_repo(hf_repo) gguf_writer.add_tensor_data_layout(llm_arch, "Meta AI original pth") gguf_writer.add_context_length(llm_arch, ctx_length) gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"]) gguf_writer.add_block_count(llm_arch, block_count) gguf_writer.add_feed_forward_length(llm_arch, hparams["intermediate_size"]) gguf_writer.add_rope_dimension_count(llm_arch, hparams["hidden_size"] // hparams["num_attention_heads"]) gguf_writer.add_head_count(llm_arch, head_count) gguf_writer.add_head_count_kv(llm_arch, head_count_kv) gguf_writer.add_layer_norm_rms_eps(llm_arch, hparams["rms_norm_eps"]) # TOKENIZATION print("gguf: get tokenizer metadata") tokens: List[bytes] = [] scores: List[float] = [] toktypes: List[int] = [] if Path(dir_model + "/tokenizer.model").is_file(): # vocab type sentencepiece print("gguf: get sentencepiece tokenizer vocab, scores and token types") tokenizer = SentencePieceProcessor(dir_model + "/tokenizer.model") for i in range(tokenizer.vocab_size()): text: bytes score: float piece = tokenizer.id_to_piece(i) text = piece.encode("utf-8") score = tokenizer.get_score(i) toktype = 1 # defualt to normal token type if tokenizer.is_unknown(i): toktype = 2 if tokenizer.is_control(i): toktype = 3 # TODO: How to determinate if a token is user defined? # ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto # if tokenizer.is_user_defined(i): toktype = 4 if tokenizer.is_unused(i): toktype = 5 if tokenizer.is_byte(i): toktype = 6 tokens.append(text) scores.append(score) toktypes.append(toktype) gguf_writer.add_tokenizer_model("llama") gguf_writer.add_token_list(tokens) gguf_writer.add_token_scores(scores) gguf_writer.add_token_types(toktypes) if Path(dir_model + "/tokenizer.json").is_file(): with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f: tokenizer = json.load(f) if "added_tokens" in tokenizer and Path(dir_model + "/tokenizer_config.json").is_file(): print("gguf: get special token ids") with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f: tokenizer_config = json.load(f) # find special token ids if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] != None: for key in tokenizer["added_tokens"]: if key["content"] == tokenizer_config["bos_token"]["content"]: gguf_writer.add_bos_token_id(key["id"]) if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] != None: for key in tokenizer["added_tokens"]: if key["content"] == tokenizer_config["eos_token"]["content"]: gguf_writer.add_eos_token_id(key["id"]) if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] != None: for key in tokenizer["added_tokens"]: if key["content"] == tokenizer_config["unk_token"]["content"]: gguf_writer.add_unk_token_id(key["id"]) if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] != None: for key in tokenizer["added_tokens"]: if key["content"] == tokenizer_config["sep_token"]["content"]: gguf_writer.add_sep_token_id(key["id"]) if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] != None: for key in tokenizer["added_tokens"]: if key["content"] == tokenizer_config["pad_token"]["content"]: gguf_writer.add_pad_token_id(key["id"]) # TENSORS tensor_map = tmap.get_tensor_namemap(block_count) # tensor info print("gguf: get tensor metadata") if num_parts == 0: part_names = ("pytorch_model.bin",) else: part_names = ( f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1) ) for part_name in part_names: print("gguf: loading model part '"+ part_name + "'") model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu") for name in model_part.keys(): data = model_part[name] # we don't need these if name.endswith(".rotary_emb.inv_freq"): continue # convert any unsupported data types to float32 if data.dtype != torch.float16 and data.dtype != torch.float32: data = data.to(torch.float32) data = data.squeeze().numpy() # reverse permute these if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"): data = reverse_hf_permute(data, head_count, head_count_kv) # map tensor names if name.endswith(".weight") and name[:-7] in tensor_map: name = tensor_map[name[:-7]] + ".weight" elif name.endswith(".bias") and name[:-5] in tensor_map: name = tensor_map[name[:-5]] + ".bias" else: print( "Can not map tensor '" + name + "'" ) sys.exit() n_dims = len(data.shape) data_dtype = data.dtype # if f32 desired, convert any float16 to float32 if ftype == 0 and data.dtype == np.float16: data_dtype = np.float32 # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 if ftype == 1 and data_dtype == np.float16 and n_dims == 1: data_dtype = np.float32 # if f16 desired, convert any float32 2-dim weight tensors to float16 if ftype == 1 and data.dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data_dtype = np.float16 data_nbytes = data.size * 2 if data_dtype == np.float16 else data.size * 4 gguf_writer.add_tensor_info(name, data.shape, data_dtype, data_nbytes) print("gguf: write header") gguf_writer.write_header_to_file() print("gguf: write metadata") gguf_writer.write_kv_data_to_file() print("gguf: write tensor metadata") gguf_writer.write_ti_data_to_file() # tensor data print("gguf: convert and write tensor data") if num_parts == 0: part_names = ("pytorch_model.bin",) else: part_names = ( f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1) ) for part_name in part_names: print("gguf: loading model part '"+ part_name + "'") model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu") for name in model_part.keys(): data = model_part[name] old_dtype = data.dtype # we don't need these if name.endswith(".rotary_emb.inv_freq"): continue # convert any unsupported data types to float32 if data.dtype != torch.float16 and data.dtype != torch.float32: data = data.to(torch.float32) data = data.squeeze().numpy() # reverse permute these if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"): data = reverse_hf_permute(data, head_count, head_count_kv) # map tensor names if name.endswith(".weight") and name[:-7] in tensor_map: name = tensor_map[name[:-7]] + ".weight" elif name.endswith(".bias") and name[:-5] in tensor_map: name = tensor_map[name[:-5]] + ".bias" else: print( "Can not map tensor '" + name + "'" ) sys.exit() n_dims = len(data.shape) data_dtype = data.dtype # if f32 desired, convert any float16 to float32 if ftype == 0 and data.dtype == np.float16: data = data.astype(np.float32) # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 if ftype == 1 and data_dtype == np.float16 and n_dims == 1: data = data.astype(np.float32) # if f16 desired, convert any float32 2-dim weight tensors to float16 if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) print(name + ", shape " + str(len(data.shape)) + ", " + str(old_dtype) + " --> " + str(data.dtype)) gguf_writer.write_tensor_to_file(data) gguf_writer.close() print("gguf: model successfully exported to '" + fname_out + "'") print("")