#include "ggml.h" #include "common.h" #include "llama.h" #include #include #include #include #include #include #include #include #include #include #include #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif static const float rms_norm_eps = 1e-5f; struct random_normal_distribution { std::mt19937 gen; std::normal_distribution rd; float min; float max; }; struct random_uniform_distribution { std::mt19937 gen; std::uniform_real_distribution rd; }; void init_random_normal_distribution(struct random_normal_distribution * rnd, int seed, float mean, float std, float min, float max) { rnd->gen = std::mt19937(seed); rnd->rd = std::normal_distribution{mean, std}; rnd->min = min; rnd->max = max; } void init_random_uniform_distribution(struct random_uniform_distribution * rnd, int seed, float min, float max) { rnd->gen = std::mt19937(seed); rnd->rd = std::uniform_real_distribution{min, max}; } int clamp(const int v, const int min, const int max) { return ((v < min) ? (min) : (v > max) ? (max) : v); } float fclamp(const float v, const float min, const float max) { return ((v < min) ? (min) : (v > max) ? (max) : v); } float frand() { return (float)rand()/(float)RAND_MAX; } float frand_normal(struct random_normal_distribution * rnd) { return fclamp(rnd->rd(rnd->gen), rnd->min, rnd->max); } float frand_uniform(struct random_uniform_distribution * rnd) { return rnd->rd(rnd->gen); } void ggml_graph_compute_helper(std::vector & buf, ggml_cgraph * graph, int n_threads) { struct ggml_cplan plan = ggml_graph_plan(graph, n_threads); if (plan.work_size > 0) { buf.resize(plan.work_size); plan.work_data = buf.data(); } ggml_graph_compute(graph, &plan); } struct ggml_tensor * randomize_tensor_normal(struct ggml_tensor * tensor, struct random_normal_distribution * rnd) { float scale = 1.0f; // xavier switch (tensor->n_dims) { case 1: scale /= sqrtf(tensor->ne[0]); for (int i0 = 0; i0 < tensor->ne[0]; i0++) { float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]); *dst = scale * frand_normal(rnd); } break; case 2: scale /= sqrtf(tensor->ne[0]+tensor->ne[1]); for (int i1 = 0; i1 < tensor->ne[1]; i1++) { for (int i0 = 0; i0 < tensor->ne[0]; i0++) { float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); *dst = scale * frand_normal(rnd); } } break; case 3: scale /= sqrtf(tensor->ne[0]+tensor->ne[1]); for (int i2 = 0; i2 < tensor->ne[2]; i2++) { for (int i1 = 0; i1 < tensor->ne[1]; i1++) { for (int i0 = 0; i0 < tensor->ne[0]; i0++) { float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]); *dst = scale * frand_normal(rnd); } } } break; case 4: scale /= sqrtf(tensor->ne[0]+tensor->ne[1]); for (int i3 = 0; i3 < tensor->ne[3]; i3++) { for (int i2 = 0; i2 < tensor->ne[2]; i2++) { for (int i1 = 0; i1 < tensor->ne[1]; i1++) { for (int i0 = 0; i0 < tensor->ne[0]; i0++) { float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]); *dst = scale * frand_normal(rnd); } } } } break; default: assert(false); }; return tensor; } struct ggml_tensor * randomize_tensor_uniform(struct ggml_tensor * tensor, struct random_uniform_distribution * rnd) { switch (tensor->n_dims) { case 1: for (int i0 = 0; i0 < tensor->ne[0]; i0++) { float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]); *dst = frand_uniform(rnd); } break; case 2: for (int i1 = 0; i1 < tensor->ne[1]; i1++) { for (int i0 = 0; i0 < tensor->ne[0]; i0++) { float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); *dst = frand_uniform(rnd); } } break; case 3: for (int i2 = 0; i2 < tensor->ne[2]; i2++) { for (int i1 = 0; i1 < tensor->ne[1]; i1++) { for (int i0 = 0; i0 < tensor->ne[0]; i0++) { float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]); *dst = frand_uniform(rnd); } } } break; case 4: for (int i3 = 0; i3 < tensor->ne[3]; i3++) { for (int i2 = 0; i2 < tensor->ne[2]; i2++) { for (int i1 = 0; i1 < tensor->ne[1]; i1++) { for (int i0 = 0; i0 < tensor->ne[0]; i0++) { float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]); *dst = frand_uniform(rnd); } } } } break; default: assert(false); }; return tensor; } struct llama_vocab { using id = int32_t; using token = std::string; struct token_score { token tok; float score; }; std::unordered_map token_to_id; std::vector id_to_token; }; struct my_llama_hparams { uint32_t n_vocab = 32000; uint32_t n_ctx = 512; // this is provided as user input? uint32_t n_embd = 4096; uint32_t n_mult = 4; uint32_t n_head = 32; uint32_t n_layer = 32; uint32_t n_rot = 64; bool operator!=(const my_llama_hparams& other) const { return memcmp(this, &other, sizeof(my_llama_hparams)); } }; struct my_llama_layer { // normalization struct ggml_tensor * attention_norm; // attention struct ggml_tensor * wq; struct ggml_tensor * wk; struct ggml_tensor * wv; struct ggml_tensor * wo; // normalization struct ggml_tensor * ffn_norm; // ff struct ggml_tensor * w1; struct ggml_tensor * w2; struct ggml_tensor * w3; }; struct my_llama_kv_cache { struct ggml_context * ctx = NULL; struct ggml_tensor * k; struct ggml_tensor * v; // llama_ctx_buffer buf; int n; // number of tokens currently in the cache }; struct my_llama_model { struct ggml_context * ctx = NULL; my_llama_hparams hparams; struct ggml_tensor * tok_embeddings; struct ggml_tensor * norm; struct ggml_tensor * output; std::vector layers; uint32_t train_its = 0; uint32_t train_samples = 0; uint32_t train_tokens = 0; }; uint32_t get_n_ff(const struct my_llama_hparams* hparams) { const uint32_t n_ff = ((2*(4*hparams->n_embd)/3 + hparams->n_mult - 1)/hparams->n_mult)*hparams->n_mult; return n_ff; } void print_params(struct my_llama_hparams * params) { printf("%s: n_vocab: %d\n", __func__, params->n_vocab); printf("%s: n_ctx: %d\n", __func__, params->n_ctx); printf("%s: n_embd: %d\n", __func__, params->n_embd); printf("%s: n_mult: %d\n", __func__, params->n_mult); printf("%s: n_head: %d\n", __func__, params->n_head); printf("%s: n_ff: %d\n", __func__, get_n_ff(params)); printf("%s: n_layer: %d\n", __func__, params->n_layer); printf("%s: n_rot: %d\n", __func__, params->n_rot); } void init_model(struct my_llama_model * model) { const auto & hparams = model->hparams; const uint32_t n_embd = hparams.n_embd; const uint32_t n_layer = hparams.n_layer; const uint32_t n_vocab = hparams.n_vocab; const uint32_t n_ff = get_n_ff(&hparams); struct ggml_context * ctx = model->ctx; model->train_its = 0; model->train_samples = 0; model->train_tokens = 0; model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); ggml_set_name(model->tok_embeddings, "tok_embeddings.weight"); ggml_set_name(model->norm, "norm.weight"); ggml_set_name(model->output, "output.weight"); model->layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { auto & layer = model->layers[i]; std::string layers_i = "layers." + std::to_string(i); layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd); layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); ggml_set_name(layer.attention_norm, (layers_i + ".attention_norm.weight").c_str()); ggml_set_name(layer.wq, (layers_i + ".attention.wq.weight").c_str()); ggml_set_name(layer.wk, (layers_i + ".attention.wk.weight").c_str()); ggml_set_name(layer.wv, (layers_i + ".attention.wv.weight").c_str()); ggml_set_name(layer.wo, (layers_i + ".attention.wo.weight").c_str()); ggml_set_name(layer.ffn_norm, (layers_i + ".ffn_norm.weight").c_str()); ggml_format_name(layer.w1, "%s.feed_forward.w1.weight", layers_i.c_str()); ggml_format_name(layer.w2, "%s.feed_forward.w2.weight", layers_i.c_str()); ggml_format_name(layer.w3, "%s.feed_forward.w3.weight", layers_i.c_str()); } } void set_param_model(struct my_llama_model * model) { const auto& hparams = model->hparams; const uint32_t n_layer = hparams.n_layer; struct ggml_context* ctx = model->ctx; ggml_set_param(ctx, model->tok_embeddings); ggml_set_param(ctx, model->norm); ggml_set_param(ctx, model->output); for (uint32_t i = 0; i < n_layer; ++i) { auto & layer = model->layers[i]; ggml_set_param(ctx, layer.attention_norm); ggml_set_param(ctx, layer.wq); ggml_set_param(ctx, layer.wk); ggml_set_param(ctx, layer.wv); ggml_set_param(ctx, layer.wo); ggml_set_param(ctx, layer.ffn_norm); ggml_set_param(ctx, layer.w1); ggml_set_param(ctx, layer.w2); ggml_set_param(ctx, layer.w3); } } void randomize_model(struct my_llama_model * model, int seed, float mean, float std, float min, float max) { const auto & hparams = model->hparams; const uint32_t n_layer = hparams.n_layer; struct random_normal_distribution rnd; init_random_normal_distribution(&rnd, seed, mean, std, min, max); randomize_tensor_normal(model->tok_embeddings, &rnd); randomize_tensor_normal(model->norm, &rnd); randomize_tensor_normal(model->output, &rnd); for (uint32_t i = 0; i < n_layer; ++i) { auto & layer = model->layers[i]; randomize_tensor_normal(layer.attention_norm, &rnd); randomize_tensor_normal(layer.wq, &rnd); randomize_tensor_normal(layer.wk, &rnd); randomize_tensor_normal(layer.wv, &rnd); randomize_tensor_normal(layer.wo, &rnd); randomize_tensor_normal(layer.ffn_norm, &rnd); randomize_tensor_normal(layer.w1, &rnd); randomize_tensor_normal(layer.w2, &rnd); randomize_tensor_normal(layer.w3, &rnd); } } bool init_kv_cache(struct my_llama_kv_cache* cache, struct my_llama_model * model, int n_batch) { const auto & hparams = model->hparams; const uint32_t n_ctx = hparams.n_ctx; const uint32_t n_embd = hparams.n_embd; const uint32_t n_layer = hparams.n_layer; const int64_t n_mem = n_layer*n_ctx*n_batch; const int64_t n_elements = n_embd*n_mem; // cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB); // struct ggml_init_params params; // params.mem_size = cache.buf.size; // params.mem_buffer = cache.buf.addr; // params.no_alloc = false; if (!cache->ctx) { struct ggml_init_params params; params.mem_size = 2u*n_elements*ggml_type_size(GGML_TYPE_F32) + 2u*1024*1024; params.mem_buffer = NULL; params.no_alloc = false; cache->ctx = ggml_init(params); if (!cache->ctx) { fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__); return false; } } cache->k = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements); cache->v = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements); return true; } struct ggml_tensor * forward( struct my_llama_model * model, struct my_llama_kv_cache * cache, struct ggml_context * ctx0, struct ggml_cgraph * gf, struct ggml_tensor * tokens_input, const int n_tokens, const int n_past) { const int N = n_tokens; struct my_llama_kv_cache& kv_self = *cache; const auto & hparams = model->hparams; const int n_ctx = hparams.n_ctx; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_head = hparams.n_head; const int n_rot = hparams.n_rot; struct ggml_tensor * tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); memcpy(tokens->data, tokens_input->data, N*ggml_element_size(tokens)); struct ggml_tensor * kc = kv_self.k; struct ggml_tensor * vc = kv_self.v; // inpL shape [n_embd,N,1,1] struct ggml_tensor * inpL = ggml_get_rows(ctx0, model->tok_embeddings, tokens); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; struct ggml_tensor * cur; // lctx.use_buf(ctx0, 0); // norm { // cur shape [n_embd,N,1,1] cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps); // cur = attention_norm*cur cur = ggml_mul(ctx0, ggml_repeat(ctx0, model->layers[il].attention_norm, cur), cur); } // self-attention { // compute Q and K and RoPE them // wq shape [n_embd, n_embd, 1, 1] // wk shape [n_embd, n_embd, 1, 1] // Qcur shape [n_embd/n_head, n_head, N, 1] // Kcur shape [n_embd/n_head, n_head, N, 1] struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0, 0); struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0, 0); // store key and value to memory { // compute the transposed [N, n_embd] V matrix // wv shape [n_embd, n_embd, 1, 1] // Vcur shape [n_embd, N, 1, 1] struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wv, cur), n_embd, N))); // kv_self.k shape [n_embd * n_ctx * n_layer, 1] // kv_self.v shape [n_embd * n_ctx * n_layer, 1] // k shape [n_embd * N, 1] == kv_self.k[:,n_past:n_past+N,il,0] // v shape [N, n_embd, 1, 1] == kv_self.v[:,n_past:n_past+N,il,0] /* { struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past)); struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd, ( n_ctx)*ggml_element_size(kv_self.v), (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v)); // important: storing RoPE-ed version of K in the KV cache! ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); } //*/ kc = ggml_set_1d_inplace(ctx0, kc, ggml_reshape_1d(ctx0, Kcur, n_embd*N), (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past)); vc = ggml_set_2d_inplace(ctx0, vc, Vcur, ( n_ctx)*ggml_element_size(kv_self.v), (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v)); } // Qcur shape [n_embd/n_head, n_head, N, 1] // Q shape [n_embd/n_head, N, n_head, 1] struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); // kv_self.k shape [n_embd * n_ctx * n_layer, 1] // K shape [n_embd/n_head, n_past + N, n_head, 1] struct ggml_tensor * K = ggml_permute(ctx0, ggml_reshape_3d(ctx0, ggml_view_1d(ctx0, kc, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kc)*n_embd), n_embd/n_head, n_head, n_past + N), 0, 2, 1, 3); // K * Q // KQ shape [n_past + N, N, n_head, 1] struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); // KQ_scaled = KQ / sqrt(n_embd/n_head) // KQ_scaled shape [n_past + N, N, n_head, 1] struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head))); // KQ_masked = mask_past(KQ_scaled) // KQ_masked shape [n_past + N, N, n_head, 1] struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past); // KQ = soft_max(KQ_masked) // KQ_soft_max shape [n_past + N, N, n_head, 1] struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); // split cached V into n_head heads //// V shape [n_past + N, n_embd/n_head, n_head, 1] // V shape [n_past + N, n_embd/n_head, n_head, 1] == kv_self.v[:,:(n_past+N),il,1] struct ggml_tensor * V = ggml_view_3d(ctx0, vc, n_past + N, n_embd/n_head, n_head, n_ctx*ggml_element_size(vc), n_ctx*ggml_element_size(vc)*n_embd/n_head, il*n_ctx*ggml_element_size(vc)*n_embd); // KQV shape [n_embd/n_head, N, n_head, 1] struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); // KQV_merged = KQV.permute(0, 2, 1, 3) // KQV_merged shape [n_embd/n_head, n_head, N, 1] struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); // KQV_merged shape // cur = KQV_merged.contiguous().view(n_embd, N) // cur shape [n_embd,N,1,1] cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, KQV_merged), n_embd, N); // cur = ggml_cpy(ctx0, // KQV_merged, // ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); // projection (no bias) // cur shape [n_embd,N,1,1] cur = ggml_mul_mat(ctx0, model->layers[il].wo, cur); } // lctx.use_buf(ctx0, 1); // inpFF shape [n_embd,N,1,1] struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA); // feed-forward network { // norm { // cur shape [n_embd,N,1,1] cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps); // cur = ffn_norm*cur // cur shape [n_embd,N,1,1] cur = ggml_mul(ctx0, ggml_repeat(ctx0, model->layers[il].ffn_norm, cur), cur); } // tmp shape [n_ff,N,1,1] struct ggml_tensor * tmp = ggml_mul_mat(ctx0, model->layers[il].w3, cur); // cur shape [n_ff,N,1,1] cur = ggml_mul_mat(ctx0, model->layers[il].w1, cur); // SILU activation // cur shape [n_ff,N,1,1] cur = ggml_silu(ctx0, cur); // cur shape [n_ff,N,1,1] cur = ggml_mul(ctx0, cur, tmp); // cur shape [n_embd,N,1,1] cur = ggml_mul_mat(ctx0, model->layers[il].w2, cur); } // cur shape [n_embd,N,1,1] cur = ggml_add(ctx0, cur, inpFF); // input for next layer // inpL shape [n_embd,N,1,1] inpL = cur; } // norm { // inpL shape [n_embd,N,1,1] inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps); // inpL = norm*inpL // inpL shape [n_embd,N,1,1] inpL = ggml_mul(ctx0, ggml_repeat(ctx0, model->norm, inpL), inpL); //embeddings = inpL; } // lm_head // inpL shape [n_vocab,N,1,1] inpL = ggml_mul_mat(ctx0, model->output, inpL); // run the computation ggml_build_forward_expand(gf, inpL); return inpL; } void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0) { GGML_ASSERT(tensor->n_dims == 1); GGML_ASSERT(tensor->ne[0] == ne0); } void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1) { GGML_ASSERT(tensor->n_dims == 2); GGML_ASSERT(tensor->ne[0] == ne0); GGML_ASSERT(tensor->ne[1] == ne1); } void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2) { GGML_ASSERT(tensor->n_dims == 3); GGML_ASSERT(tensor->ne[0] == ne0); GGML_ASSERT(tensor->ne[1] == ne1); GGML_ASSERT(tensor->ne[2] == ne2); } void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) { GGML_ASSERT(tensor->n_dims == 4); GGML_ASSERT(tensor->ne[0] == ne0); GGML_ASSERT(tensor->ne[1] == ne1); GGML_ASSERT(tensor->ne[2] == ne2); GGML_ASSERT(tensor->ne[3] == ne3); } struct ggml_tensor * forward_batch( struct my_llama_model * model, struct my_llama_kv_cache * cache, struct ggml_context * ctx0, struct ggml_cgraph * gf, struct ggml_tensor * tokens_input, const int n_tokens, const int n_past, const int n_batch) { const int N = n_tokens; struct my_llama_kv_cache& kv_self = *cache; const auto & hparams = model->hparams; const int n_ctx = hparams.n_ctx; const int n_vocab = hparams.n_vocab; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_head = hparams.n_head; const int n_rot = hparams.n_rot; const int n_ff = get_n_ff(&hparams); struct ggml_tensor * tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N*n_batch); memcpy(tokens->data, tokens_input->data, ggml_element_size(tokens)*N*n_batch); struct ggml_tensor * kc = kv_self.k; struct ggml_tensor * vc = kv_self.v; // inpL shape [n_embd,N*n_batch,1] struct ggml_tensor * inpL = ggml_get_rows(ctx0, model->tok_embeddings, tokens); assert_shape_2d(inpL, n_embd, N*n_batch); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; struct ggml_tensor * cur; // lctx.use_buf(ctx0, 0); // norm { // cur shape [n_embd,N*n_batch,1,1] cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps); assert_shape_2d(cur, n_embd, N*n_batch); // cur = attention_norm*cur cur = ggml_mul(ctx0, ggml_repeat(ctx0, model->layers[il].attention_norm, cur), cur); assert_shape_2d(cur, n_embd, N*n_batch); } // self-attention { // compute Q and K and RoPE them // wq shape [n_embd, n_embd, 1, 1] // wk shape [n_embd, n_embd, 1, 1] // Qcur shape [n_embd/n_head, n_head, N, n_batch] // Kcur shape [n_embd/n_head, n_head, N, n_batch] struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0, 0); struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0, 0); assert_shape_4d(Qcur, n_embd/n_head, n_head, N, n_batch); assert_shape_4d(Kcur, n_embd/n_head, n_head, N, n_batch); // store key and value to memory { // compute the transposed [N, n_embd] V matrix // wv shape [n_embd, n_embd, 1, 1] // Vcur shape [N, n_embd, n_batch, 1] struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_permute(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wv, cur), n_embd, N, n_batch), 1, 0, 2, 3)); assert_shape_3d(Vcur, N, n_embd, n_batch); // kv_self.k shape [n_embd * n_ctx * n_batch * n_layer] // kv_self.v shape [n_ctx * n_embd * n_batch * n_layer] // k shape [n_embd * N, n_batch] == kv_self.k[:,n_past:n_past+N,:,il] // v shape [N, n_embd, n_batch, 1] == kv_self.v[:,n_past:n_past+N,:,il] /* { struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past)); struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd, ( n_ctx)*ggml_element_size(kv_self.v), (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v)); // important: storing RoPE-ed version of K in the KV cache! ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); } //*/ kc = ggml_set_2d_inplace(ctx0, kc, ggml_reshape_2d(ctx0, Kcur, n_embd*N, n_batch), ggml_element_size(kc)*n_embd*n_ctx, (ggml_element_size(kc)*n_embd)*(il*n_batch*n_ctx + n_past)); vc = ggml_set_2d_inplace(ctx0, vc, ggml_reshape_2d(ctx0, Vcur, N*n_embd, n_batch), ggml_element_size(vc)*n_ctx*n_embd, ggml_element_size(vc)*(n_past + il*n_embd*n_batch*n_ctx)); assert_shape_1d(kc, n_embd * n_ctx * n_batch * n_layer); assert_shape_1d(vc, n_embd * n_ctx * n_batch * n_layer); } // Qcur shape [n_embd/n_head, n_head, N, n_batch] // Q shape [n_embd/n_head, N, n_head, n_batch] struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); assert_shape_4d(Q, n_embd/n_head, N, n_head, n_batch); // kv_self.k shape [n_embd * n_ctx * n_batch * n_layer] // K shape [n_embd/n_head, n_past + N, n_head, n_batch] struct ggml_tensor * K = ggml_permute(ctx0, ggml_reshape_4d(ctx0, ggml_view_3d(ctx0, kc, n_embd, (n_past + N), n_batch, n_embd*ggml_element_size(kc), n_ctx*n_embd*ggml_element_size(kc), il*n_batch*n_ctx*n_embd*ggml_element_size(kc)), n_embd/n_head, n_head, n_past + N, n_batch), 0, 2, 1, 3); assert_shape_4d(K, n_embd/n_head, n_past + N, n_head, n_batch); // K * Q // KQ shape [n_past + N, N, n_head, n_batch] struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); assert_shape_4d(KQ, n_past + N, N, n_head, n_batch); // KQ_scaled = KQ / sqrt(n_embd/n_head) // KQ_scaled shape [n_past + N, N, n_head, n_batch] struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head))); assert_shape_4d(KQ_scaled, n_past + N, N, n_head, n_batch); // KQ_masked = mask_past(KQ_scaled) // KQ_masked shape [n_past + N, N, n_head, n_batch] struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past); assert_shape_4d(KQ_masked, n_past + N, N, n_head, n_batch); // KQ = soft_max(KQ_masked) // KQ_soft_max shape [n_past + N, N, n_head, n_batch] struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked); assert_shape_4d(KQ_soft_max, n_past + N, N, n_head, n_batch); // split cached V into n_head heads // kv_self.v shape [n_ctx * n_embd * n_batch * n_layer] // V shape [n_past + N, n_embd/n_head, n_head, n_batch] == kv_self.v[:(n_past+N),:,:,il] struct ggml_tensor * V = ggml_view_4d(ctx0, vc, n_past + N, n_embd/n_head, n_head, n_batch, ggml_element_size(vc)*n_ctx, ggml_element_size(vc)*n_ctx*n_embd/n_head, ggml_element_size(vc)*n_ctx*n_embd, il*n_batch*n_ctx*n_embd*ggml_element_size(vc)); assert_shape_4d(V, n_past + N, n_embd/n_head, n_head, n_batch); // KQV shape [n_embd/n_head, N, n_head, n_batch] struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); assert_shape_4d(KQV, n_embd/n_head, N, n_head, n_batch); // KQV_merged = KQV.permute(0, 2, 1, 3) // KQV_merged shape [n_embd/n_head, n_head, N, n_batch] struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); assert_shape_4d(KQV_merged, n_embd/n_head, n_head, N, n_batch); // KQV_merged shape // cur = KQV_merged.contiguous().view(n_embd, N) // cur shape [n_embd,N*n_batch,1,1] cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, KQV_merged), n_embd, N*n_batch); assert_shape_2d(cur, n_embd, N*n_batch); // cur = ggml_cpy(ctx0, // KQV_merged, // ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); // projection (no bias) // cur shape [n_embd,N*n_batch,1,1] cur = ggml_mul_mat(ctx0, model->layers[il].wo, cur); assert_shape_2d(cur, n_embd, N*n_batch); } // lctx.use_buf(ctx0, 1); // inpFF shape [n_embd,N*n_batch,1,1] struct ggml_tensor * inpFF = ggml_add_inplace(ctx0, cur, inpSA); assert_shape_2d(inpFF, n_embd, N*n_batch); // feed-forward network { // norm { // cur shape [n_embd,N*n_batch,1,1] cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps); assert_shape_2d(cur, n_embd, N*n_batch); // cur = ffn_norm*cur // cur shape [n_embd,N*n_batch,1,1] cur = ggml_mul(ctx0, ggml_repeat(ctx0, model->layers[il].ffn_norm, cur), cur); assert_shape_2d(cur, n_embd, N*n_batch); } // tmp shape [n_ff,N*n_batch,1,1] struct ggml_tensor * tmp = ggml_mul_mat(ctx0, model->layers[il].w3, cur); assert_shape_2d(tmp, n_ff, N*n_batch); // cur shape [n_ff,N*n_batch,1,1] cur = ggml_mul_mat(ctx0, model->layers[il].w1, cur); assert_shape_2d(cur, n_ff, N*n_batch); // SILU activation // cur shape [n_ff,N*n_batch,1,1] cur = ggml_silu(ctx0, cur); assert_shape_2d(cur, n_ff, N*n_batch); // cur shape [n_ff,N*n_batch,1,1] cur = ggml_mul(ctx0, cur, tmp); assert_shape_2d(cur, n_ff, N*n_batch); // cur shape [n_embd,N*n_batch,1,1] cur = ggml_mul_mat(ctx0, model->layers[il].w2, cur); assert_shape_2d(cur, n_embd, N*n_batch); } // cur shape [n_embd,N*n_batch,1,1] cur = ggml_add_inplace(ctx0, cur, inpFF); assert_shape_2d(cur, n_embd, N*n_batch); // input for next layer // inpL shape [n_embd,N*n_batch,1,1] inpL = cur; assert_shape_2d(inpL, n_embd, N*n_batch); } // norm { // inpL shape [n_embd,N*n_batch,1,1] inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps); assert_shape_2d(inpL, n_embd, N*n_batch); // inpL = norm*inpL // inpL shape [n_embd,N*n_batch,1,1] inpL = ggml_mul(ctx0, ggml_repeat(ctx0, model->norm, inpL), inpL); assert_shape_2d(inpL, n_embd, N*n_batch); //embeddings = inpL; } // lm_head // inpL shape [n_vocab,N*n_batch,1,1] inpL = ggml_mul_mat(ctx0, model->output, inpL); assert_shape_2d(inpL, n_vocab, N*n_batch); { // inpL shape [n_vocab,N,n_batch,1] inpL = ggml_reshape_3d(ctx0, inpL, n_vocab, N, n_batch); assert_shape_3d(inpL, n_vocab, N, n_batch); } // run the computation ggml_build_forward_expand(gf, inpL); return inpL; } struct ggml_tensor * forward_batch_wo_cache( struct my_llama_model * model, struct ggml_context * ctx0, struct ggml_cgraph * gf, struct ggml_tensor * tokens_input, const int n_tokens, const int n_batch) { const int n_past = 0; const int N = n_tokens; const auto & hparams = model->hparams; //const int n_ctx = hparams.n_ctx; const int n_vocab = hparams.n_vocab; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_head = hparams.n_head; const int n_rot = hparams.n_rot; const int n_ff = get_n_ff(&hparams); struct ggml_tensor * tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N*n_batch); memcpy(tokens->data, tokens_input->data, ggml_element_size(tokens)*N*n_batch); // inpL shape [n_embd,N*n_batch,1] struct ggml_tensor * inpL = ggml_get_rows(ctx0, model->tok_embeddings, tokens); assert_shape_2d(inpL, n_embd, N*n_batch); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; struct ggml_tensor * cur; // lctx.use_buf(ctx0, 0); // norm { // cur shape [n_embd,N*n_batch,1,1] cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps); assert_shape_2d(cur, n_embd, N*n_batch); // cur = attention_norm*cur cur = ggml_mul(ctx0, ggml_repeat(ctx0, model->layers[il].attention_norm, cur), cur); assert_shape_2d(cur, n_embd, N*n_batch); } // self-attention { // compute Q and K and RoPE them // wq shape [n_embd, n_embd, 1, 1] // wk shape [n_embd, n_embd, 1, 1] // Qcur shape [n_embd/n_head, n_head, N, n_batch] // Kcur shape [n_embd/n_head, n_head, N, n_batch] struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0, 0); struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0, 0); assert_shape_4d(Qcur, n_embd/n_head, n_head, N, n_batch); assert_shape_4d(Kcur, n_embd/n_head, n_head, N, n_batch); // Vcur shape [N, n_batch, n_embd/n_head, n_head] struct ggml_tensor * Vcur = ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, cur, model->layers[il].wv), N, n_batch, n_embd/n_head, n_head); assert_shape_4d(Vcur, N, n_batch, n_embd/n_head, n_head); // Qcur shape [n_embd/n_head, n_head, N, n_batch] // Q shape [n_embd/n_head, N, n_head, n_batch] struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); assert_shape_4d(Q, n_embd/n_head, N, n_head, n_batch); // kv_self.k shape [n_embd * n_ctx * n_batch * n_layer] // K shape [n_embd/n_head, N, n_head, n_batch] struct ggml_tensor * K = ggml_permute(ctx0, Kcur, 0, 2, 1, 3); assert_shape_4d(K, n_embd/n_head, N, n_head, n_batch); // K * Q // KQ shape [N, N, n_head, n_batch] struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); assert_shape_4d(KQ, N, N, n_head, n_batch); // KQ_scaled = KQ / sqrt(n_embd/n_head) // KQ_scaled shape [N, N, n_head, n_batch] struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head))); assert_shape_4d(KQ_scaled, N, N, n_head, n_batch); // KQ_masked = mask_past(KQ_scaled) // KQ_masked shape [N, N, n_head, n_batch] struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past); assert_shape_4d(KQ_masked, N, N, n_head, n_batch); // KQ = soft_max(KQ_masked) // KQ_soft_max shape [N, N, n_head, n_batch] struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked); assert_shape_4d(KQ_soft_max, N, N, n_head, n_batch); // Vcur shape [N, n_batch, n_embd/n_head, n_head] // V shape [N, n_embd/n_head, n_head, n_batch] struct ggml_tensor * V = ggml_permute(ctx0, Vcur, 0, 3, 1, 2); assert_shape_4d(V, N, n_embd/n_head, n_head, n_batch); // KQV shape [n_embd/n_head, N, n_head, n_batch] struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); assert_shape_4d(KQV, n_embd/n_head, N, n_head, n_batch); // KQV_merged = KQV.permute(0, 2, 1, 3) // KQV_merged shape [n_embd/n_head, n_head, N, n_batch] struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); assert_shape_4d(KQV_merged, n_embd/n_head, n_head, N, n_batch); // KQV_merged shape // cur shape [n_embd,N*n_batch,1,1] cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, KQV_merged), n_embd, N*n_batch); assert_shape_2d(cur, n_embd, N*n_batch); // projection (no bias) // cur shape [n_embd,N*n_batch,1,1] cur = ggml_mul_mat(ctx0, model->layers[il].wo, cur); assert_shape_2d(cur, n_embd, N*n_batch); } // lctx.use_buf(ctx0, 1); // inpFF shape [n_embd,N*n_batch,1,1] struct ggml_tensor * inpFF = ggml_add_inplace(ctx0, cur, inpSA); assert_shape_2d(inpFF, n_embd, N*n_batch); // feed-forward network { // norm { // cur shape [n_embd,N*n_batch,1,1] cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps); assert_shape_2d(cur, n_embd, N*n_batch); // cur = ffn_norm*cur // cur shape [n_embd,N*n_batch,1,1] cur = ggml_mul(ctx0, ggml_repeat(ctx0, model->layers[il].ffn_norm, cur), cur); assert_shape_2d(cur, n_embd, N*n_batch); } // tmp shape [n_ff,N*n_batch,1,1] struct ggml_tensor * tmp = ggml_mul_mat(ctx0, model->layers[il].w3, cur); assert_shape_2d(tmp, n_ff, N*n_batch); // cur shape [n_ff,N*n_batch,1,1] cur = ggml_mul_mat(ctx0, model->layers[il].w1, cur); assert_shape_2d(cur, n_ff, N*n_batch); // SILU activation // cur shape [n_ff,N*n_batch,1,1] cur = ggml_silu(ctx0, cur); assert_shape_2d(cur, n_ff, N*n_batch); // cur shape [n_ff,N*n_batch,1,1] cur = ggml_mul(ctx0, cur, tmp); assert_shape_2d(cur, n_ff, N*n_batch); // cur shape [n_embd,N*n_batch,1,1] cur = ggml_mul_mat(ctx0, model->layers[il].w2, cur); assert_shape_2d(cur, n_embd, N*n_batch); } // cur shape [n_embd,N*n_batch,1,1] cur = ggml_add_inplace(ctx0, cur, inpFF); assert_shape_2d(cur, n_embd, N*n_batch); // input for next layer // inpL shape [n_embd,N*n_batch,1,1] inpL = cur; assert_shape_2d(inpL, n_embd, N*n_batch); } // norm { // inpL shape [n_embd,N*n_batch,1,1] inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps); assert_shape_2d(inpL, n_embd, N*n_batch); // inpL = norm*inpL // inpL shape [n_embd,N*n_batch,1,1] inpL = ggml_mul(ctx0, ggml_repeat(ctx0, model->norm, inpL), inpL); assert_shape_2d(inpL, n_embd, N*n_batch); //embeddings = inpL; } // lm_head // inpL shape [n_vocab,N*n_batch,1,1] inpL = ggml_mul_mat(ctx0, model->output, inpL); assert_shape_2d(inpL, n_vocab, N*n_batch); { // inpL shape [n_vocab,N,n_batch,1] inpL = ggml_reshape_3d(ctx0, inpL, n_vocab, N, n_batch); assert_shape_3d(inpL, n_vocab, N, n_batch); } // run the computation ggml_build_forward_expand(gf, inpL); return inpL; } struct ggml_tensor * forward_batch_wo_cache_flash_attn( struct my_llama_model * model, struct ggml_context * ctx0, struct ggml_cgraph * gf, struct ggml_tensor * tokens_input, const int n_tokens, const int n_batch) { const int n_past = 0; const int N = n_tokens; const auto & hparams = model->hparams; //const int n_ctx = hparams.n_ctx; const int n_vocab = hparams.n_vocab; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_head = hparams.n_head; const int n_rot = hparams.n_rot; const int n_ff = get_n_ff(&hparams); struct ggml_tensor * tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N*n_batch); memcpy(tokens->data, tokens_input->data, ggml_element_size(tokens)*N*n_batch); struct ggml_tensor * inpL = ggml_get_rows(ctx0, model->tok_embeddings, tokens); assert_shape_2d(inpL, n_embd, N*n_batch); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; struct ggml_tensor * cur; // norm { cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps); assert_shape_2d(cur, n_embd, N*n_batch); // cur = attention_norm*cur cur = ggml_mul(ctx0, ggml_repeat(ctx0, model->layers[il].attention_norm, cur), cur); assert_shape_2d(cur, n_embd, N*n_batch); } // self-attention { // compute Q and K and RoPE them // wq shape [n_embd, n_embd, 1, 1] // wk shape [n_embd, n_embd, 1, 1] struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0, 0); struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0, 0); assert_shape_4d(Qcur, n_embd/n_head, n_head, N, n_batch); assert_shape_4d(Kcur, n_embd/n_head, n_head, N, n_batch); struct ggml_tensor * Vcur = ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, cur, model->layers[il].wv), N, n_batch, n_embd/n_head, n_head); assert_shape_4d(Vcur, N, n_batch, n_embd/n_head, n_head); struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); assert_shape_4d(Q, n_embd/n_head, N, n_head, n_batch); struct ggml_tensor * K = ggml_permute(ctx0, Kcur, 0, 2, 1, 3); assert_shape_4d(K, n_embd/n_head, N, n_head, n_batch); struct ggml_tensor * V = ggml_permute(ctx0, Vcur, 0, 3, 1, 2); assert_shape_4d(V, N, n_embd/n_head, n_head, n_batch); bool masked = true; struct ggml_tensor * KQV = ggml_flash_attn(ctx0, Q, K, V, masked); assert_shape_4d(KQV, n_embd/n_head, N, n_head, n_batch); struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); assert_shape_4d(KQV_merged, n_embd/n_head, n_head, N, n_batch); cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, KQV_merged), n_embd, N*n_batch); assert_shape_2d(cur, n_embd, N*n_batch); // projection (no bias) cur = ggml_mul_mat(ctx0, model->layers[il].wo, cur); assert_shape_2d(cur, n_embd, N*n_batch); } struct ggml_tensor * inpFF = ggml_add_inplace(ctx0, cur, inpSA); assert_shape_2d(inpFF, n_embd, N*n_batch); // feed-forward network { // norm { cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps); assert_shape_2d(cur, n_embd, N*n_batch); // cur = ffn_norm*cur cur = ggml_mul(ctx0, ggml_repeat(ctx0, model->layers[il].ffn_norm, cur), cur); assert_shape_2d(cur, n_embd, N*n_batch); } struct ggml_tensor * tmp = ggml_mul_mat(ctx0, model->layers[il].w3, cur); assert_shape_2d(tmp, n_ff, N*n_batch); cur = ggml_mul_mat(ctx0, model->layers[il].w1, cur); assert_shape_2d(cur, n_ff, N*n_batch); // SILU activation cur = ggml_silu(ctx0, cur); assert_shape_2d(cur, n_ff, N*n_batch); cur = ggml_mul(ctx0, cur, tmp); assert_shape_2d(cur, n_ff, N*n_batch); cur = ggml_mul_mat(ctx0, model->layers[il].w2, cur); assert_shape_2d(cur, n_embd, N*n_batch); } cur = ggml_add_inplace(ctx0, cur, inpFF); assert_shape_2d(cur, n_embd, N*n_batch); // input for next layer inpL = cur; assert_shape_2d(inpL, n_embd, N*n_batch); } // norm { inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps); assert_shape_2d(inpL, n_embd, N*n_batch); // inpL = norm*inpL inpL = ggml_mul(ctx0, ggml_repeat(ctx0, model->norm, inpL), inpL); assert_shape_2d(inpL, n_embd, N*n_batch); } // lm_head inpL = ggml_mul_mat(ctx0, model->output, inpL); assert_shape_2d(inpL, n_vocab, N*n_batch); { inpL = ggml_reshape_3d(ctx0, inpL, n_vocab, N, n_batch); assert_shape_3d(inpL, n_vocab, N, n_batch); } // run the computation ggml_build_forward_expand(gf, inpL); return inpL; } // expand the graph nodes without creating leafs. struct ggml_tensor * expand(struct ggml_cgraph * g, struct ggml_tensor * t) { // check if already visited for (int i = 0; i < g->n_nodes; i++) { if (g->nodes[i] == t) { return t; } } for (int i = 0; i < g->n_leafs; i++) { if (g->leafs[i] == t) { return t; } } for (int i = 0; i < GGML_MAX_SRC; ++i) { if (t->src[i]) { expand(g, t->src[i]); } } GGML_ASSERT(g->n_nodes < GGML_MAX_NODES); if (strlen(t->name) == 0) { snprintf(t->name, sizeof(t->name), "node_%d", g->n_nodes); } g->nodes[g->n_nodes] = t; g->grads[g->n_nodes] = t->grad; g->n_nodes++; return t; } void graph_set_leafs_grads(struct ggml_cgraph * g) { // moves leaf nodes to g->leafs. // i.e. g->n_nodes might change. int n_nodes = 0; for (int i = 0; i < g->n_nodes; ++i) { struct ggml_tensor * node = g->nodes[i]; const bool is_leaf = node->op == GGML_OP_NONE && node->grad == NULL; if (is_leaf) { GGML_ASSERT(g->n_leafs < GGML_MAX_NODES); if (strlen(node->name) == 0) { snprintf(node->name, sizeof(node->name), "leaf_%d", g->n_leafs); } g->leafs[g->n_leafs] = node; g->n_leafs++; } else { GGML_ASSERT(n_nodes < GGML_MAX_NODES); if (strlen(node->name) == 0) { snprintf(node->name, sizeof(node->name), "node_%d", n_nodes); } g->nodes[n_nodes] = node; g->grads[n_nodes] = node->grad; n_nodes++; } } for (int i=n_nodes; i < g->n_nodes; ++i) { g->nodes[n_nodes] = NULL; g->grads[n_nodes] = NULL; } g->n_nodes = n_nodes; } struct ggml_tensor * forward_batch_wo_cache_flash_attn_train( struct my_llama_model * model, struct ggml_context * ctx0, struct ggml_cgraph * gf, struct ggml_cgraph * gb, struct ggml_tensor * * logits, struct ggml_tensor * tokens_input, struct ggml_tensor * targets, void * compute_buf_0, void * compute_buf_1, size_t size_buf_0, size_t size_buf_1, const int n_tokens, const int n_batch) { ggml_set_scratch(ctx0, { 0, 0, nullptr, }); const int n_past = 0; const int N = n_tokens; gf->n_nodes = 0; gf->n_leafs = 0; gf->perf_runs = 0; gf->perf_cycles = 0; gf->perf_time_us = 0; const auto & hparams = model->hparams; const int n_ctx = hparams.n_ctx; const int n_vocab = hparams.n_vocab; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_head = hparams.n_head; const int n_rot = hparams.n_rot; const int n_ff = get_n_ff(&hparams); const int rope_mode = 0; int last_buf = -1; size_t buf_offs[2] = { 0, 0 }; size_t buf_size[2] = { size_buf_0, size_buf_1 }; void * buf_data[2] = { compute_buf_0, compute_buf_1 }; auto use_buf = [ctx0, &last_buf, &buf_offs, &buf_size, &buf_data] (int buf) { size_t last_offs = 0; last_offs = ggml_set_scratch(ctx0, { 0, 0, nullptr, }); if (last_buf >= 0) { buf_offs[last_buf] = last_offs; } if (buf >= 0) { size_t offs = buf_offs[buf]; size_t size = buf_size[buf]; void * data = buf_data[buf]; ggml_set_scratch(ctx0, { offs, size, data, }); } last_buf = buf; }; bool track_max_mem = false; size_t buf_maxs[2] = { 0, 0 }; auto clr_buf = [ctx0, &last_buf, &buf_offs, &buf_size, &buf_data, &buf_maxs, track_max_mem] (int buf) { if (buf < 0) return; if (track_max_mem) { size_t last_offs = 0; last_offs = ggml_set_scratch(ctx0, { 0, 0, nullptr, }); if (last_buf >= 0) { buf_offs[last_buf] = last_offs; buf_maxs[last_buf] = std::max(buf_maxs[last_buf], buf_offs[last_buf]); } } buf_offs[buf] = 0; if (track_max_mem && last_buf >= 0) { size_t offs = buf_offs[last_buf]; size_t size = buf_size[last_buf]; void * data = buf_data[last_buf]; ggml_set_scratch(ctx0, { offs, size, data, }); } }; auto view__q = [ctx0, n_embd, n_head, N, n_batch] (struct ggml_tensor * t) -> struct ggml_tensor * { int64_t ne0 = n_embd/n_head; int64_t ne1 = N; int64_t ne2 = n_head; int64_t ne3 = n_batch; size_t nb0 = ggml_element_size(t); size_t nb1 = nb0*ne0; size_t nb2 = nb1*ne1; size_t nb3 = nb2*ne2; size_t offset = 0; return ggml_view_4d(ctx0, t, ne0, ne1, ne2, ne3, nb1, nb2, nb3, offset); }; auto view__k = [ctx0, n_embd, n_head, N, n_batch] (struct ggml_tensor * t) -> struct ggml_tensor * { int64_t ne0 = n_embd/n_head; int64_t ne1 = N; int64_t ne2 = n_head; int64_t ne3 = n_batch; size_t nb0 = ggml_element_size(t); size_t nb1 = nb0*ne0; size_t nb2 = nb1*ne1; size_t nb3 = nb2*ne2; size_t offset = nb3*ne3; return ggml_view_4d(ctx0, t, ne0, ne1, ne2, ne3, nb1, nb2, nb3, offset); }; auto view__v = [ctx0, n_embd, n_head, N, n_batch] (struct ggml_tensor * t) -> struct ggml_tensor * { int64_t ne0 = N; int64_t ne1 = n_embd/n_head; int64_t ne2 = n_head; int64_t ne3 = n_batch; size_t nb0 = ggml_element_size(t); size_t nb1 = nb0*ne0; size_t nb2 = nb1*ne1; size_t nb3 = nb2*ne2; size_t offset = 2*nb3*ne3; return ggml_view_4d(ctx0, t, ne0, ne1, ne2, ne3, nb1, nb2, nb3, offset); }; auto add_or_set = [ctx0] (struct ggml_tensor * a, struct ggml_tensor * b) -> struct ggml_tensor * { if (a == NULL) { return b; } else { return ggml_add_inplace(ctx0, a, b); } }; use_buf(-1); model->tok_embeddings->grad = NULL; model->norm->grad = NULL; model->output->grad = NULL; for (int il = 0; il < n_layer; ++il) { struct my_llama_layer & layer = model->layers[il]; layer.attention_norm->grad = NULL; layer.wq->grad = NULL; layer.wk->grad = NULL; layer.wv->grad = NULL; layer.wo->grad = NULL; layer.ffn_norm->grad = NULL; layer.w1->grad = NULL; layer.w2->grad = NULL; layer.w3->grad = NULL; } clr_buf(0); clr_buf(1); use_buf(-1); struct ggml_tensor * t00 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N*n_batch); assert_shape_1d(t00, N*n_batch); memcpy(t00->data, tokens_input->data, ggml_element_size(t00)*N*n_batch); use_buf(-1); struct ggml_tensor * t01 = expand(gf, ggml_get_rows(ctx0, model->tok_embeddings, t00)); assert_shape_2d(t01, n_embd, N*n_batch); // need to remember these for the backward pass std::vector t02L; t02L.resize(n_layer, NULL); std::vector t03L; t03L.resize(n_layer, NULL); std::vector t04L; t04L.resize(n_layer, NULL); std::vector t05L; t05L.resize(n_layer, NULL); std::vector t06L; t06L.resize(n_layer, NULL); std::vector t07L; t07L.resize(n_layer, NULL); std::vector t08L; t08L.resize(n_layer, NULL); std::vector t09L; t09L.resize(n_layer, NULL); std::vector t10L; t10L.resize(n_layer, NULL); std::vector t11L; t11L.resize(n_layer, NULL); std::vector t12L; t12L.resize(n_layer, NULL); std::vector t13L; t13L.resize(n_layer, NULL); std::vector t14L; t14L.resize(n_layer, NULL); std::vector t15L; t15L.resize(n_layer, NULL); std::vector t16L; t16L.resize(n_layer, NULL); std::vector t17L; t17L.resize(n_layer, NULL); std::vector t18L; t18L.resize(n_layer, NULL); std::vector t19L; t19L.resize(n_layer, NULL); std::vector t20L; t20L.resize(n_layer, NULL); std::vector t21L; t21L.resize(n_layer, NULL); std::vector t22L; t22L.resize(n_layer, NULL); std::vector t23L; t23L.resize(n_layer, NULL); std::vector t24L; t24L.resize(n_layer, NULL); std::vector t25L; t25L.resize(n_layer, NULL); std::vector t26L; t26L.resize(n_layer, NULL); std::vector t27L; t27L.resize(n_layer, NULL); std::vector t28L; t28L.resize(n_layer, NULL); std::vector t29L; t29L.resize(n_layer, NULL); std::vector t30L; t30L.resize(n_layer, NULL); struct ggml_tensor * cur = t01; for (int il = 0; il < n_layer; ++il) { clr_buf(0); struct my_llama_layer & layer = model->layers[il]; // tensors with values necessary for backward pass are in persistent buf(-1) // other tensors with buf(0) and buf(1) are only temporary needed, and their memory reused after layer is completed. use_buf(-1); struct ggml_tensor * t02 = expand(gf, ggml_rms_norm (ctx0, cur, rms_norm_eps)); assert_shape_2d(t02, n_embd, N*n_batch); use_buf( 0); struct ggml_tensor * t03 = expand(gf, ggml_repeat (ctx0, layer.attention_norm, t02)); assert_shape_2d(t03, n_embd, N*n_batch); use_buf(-1); struct ggml_tensor * t04 = expand(gf, ggml_mul (ctx0, t02, t03)); assert_shape_2d(t04, n_embd, N*n_batch); use_buf(-1); struct ggml_tensor * t05 = expand(gf, ggml_mul_mat (ctx0, layer.wq, t04)); assert_shape_2d(t05, n_embd, N*n_batch); use_buf(-1); struct ggml_tensor * t06 = expand(gf, ggml_reshape_4d (ctx0, t05, n_embd/n_head, n_head, N, n_batch)); assert_shape_4d(t06, n_embd/n_head, n_head, N, n_batch); use_buf(-1); struct ggml_tensor * t07 = expand(gf, ggml_rope_inplace (ctx0, t06, n_past, n_rot, rope_mode, 0)); assert_shape_4d(t07, n_embd/n_head, n_head, N, n_batch); use_buf(-1); struct ggml_tensor * t08 = expand(gf, ggml_mul_mat (ctx0, layer.wk, t04)); assert_shape_2d(t08, n_embd, N*n_batch); use_buf(-1); struct ggml_tensor * t09 = expand(gf, ggml_reshape_4d (ctx0, t08, n_embd/n_head, n_head, N, n_batch)); assert_shape_4d(t09, n_embd/n_head, n_head, N, n_batch); use_buf(-1); struct ggml_tensor * t10 = expand(gf, ggml_rope_inplace (ctx0, t09, n_past, n_rot, rope_mode, 0)); assert_shape_4d(t10, n_embd/n_head, n_head, N, n_batch); use_buf(-1); struct ggml_tensor * t11 = expand(gf, ggml_mul_mat (ctx0, t04, layer.wv)); assert_shape_2d(t11, N*n_batch, n_embd); use_buf(-1); struct ggml_tensor * t12 = expand(gf, ggml_reshape_4d (ctx0, t11, N, n_batch, n_embd/n_head, n_head)); assert_shape_4d(t12, N, n_batch, n_embd/n_head, n_head); use_buf(-1); struct ggml_tensor * t13 = expand(gf, ggml_permute (ctx0, t07, 0, 2, 1, 3)); assert_shape_4d(t13, n_embd/n_head, N, n_head, n_batch); use_buf(-1); struct ggml_tensor * t14 = expand(gf, ggml_permute (ctx0, t10, 0, 2, 1, 3)); assert_shape_4d(t14, n_embd/n_head, N, n_head, n_batch); use_buf(-1); struct ggml_tensor * t15 = expand(gf, ggml_permute (ctx0, t12, 0, 3, 1, 2)); assert_shape_4d(t15, N, n_embd/n_head, n_head, n_batch); use_buf(-1); struct ggml_tensor * t16 = expand(gf, ggml_flash_attn (ctx0, t13, t14, t15, true)); assert_shape_4d(t16, n_embd/n_head, N, n_head, n_batch); use_buf( 0); struct ggml_tensor * t17 = expand(gf, ggml_permute (ctx0, t16, 0, 2, 1, 3)); assert_shape_4d(t17, n_embd/n_head, n_head, N, n_batch); use_buf(-1); struct ggml_tensor * t18 = expand(gf, ggml_cont (ctx0, t17)); assert_shape_4d(t18, n_embd/n_head, n_head, N, n_batch); use_buf(-1); struct ggml_tensor * t19 = expand(gf, ggml_reshape_2d (ctx0, t18, n_embd, N*n_batch)); assert_shape_2d(t19, n_embd, N*n_batch); use_buf( 0); struct ggml_tensor * t20 = expand(gf, ggml_mul_mat (ctx0, layer.wo, t19)); assert_shape_2d(t20, n_embd, N*n_batch); use_buf(-1); struct ggml_tensor * t21 = expand(gf, ggml_add (ctx0, t20, cur)); assert_shape_2d(t21, n_embd, N*n_batch); use_buf(-1); struct ggml_tensor * t22 = expand(gf, ggml_rms_norm (ctx0, t21, rms_norm_eps)); assert_shape_2d(t22, n_embd, N*n_batch); use_buf( 0); struct ggml_tensor * t23 = expand(gf, ggml_repeat (ctx0, layer.ffn_norm, t22)); assert_shape_2d(t23, n_embd, N*n_batch); use_buf(-1); struct ggml_tensor * t24 = expand(gf, ggml_mul (ctx0, t23, t22)); assert_shape_2d(t24, n_embd, N*n_batch); use_buf(-1); struct ggml_tensor * t25 = expand(gf, ggml_mul_mat (ctx0, layer.w3, t24)); assert_shape_2d(t25, n_ff, N*n_batch); use_buf(-1); struct ggml_tensor * t26 = expand(gf, ggml_mul_mat (ctx0, layer.w1, t24)); assert_shape_2d(t26, n_ff, N*n_batch); use_buf(-1); struct ggml_tensor * t27 = expand(gf, ggml_silu (ctx0, t26)); assert_shape_2d(t27, n_ff, N*n_batch); use_buf(-1); struct ggml_tensor * t28 = expand(gf, ggml_mul (ctx0, t27, t25)); assert_shape_2d(t28, n_ff, N*n_batch); use_buf( 0); struct ggml_tensor * t29 = expand(gf, ggml_mul_mat (ctx0, layer.w2, t28)); assert_shape_2d(t29, n_embd, N*n_batch); use_buf(-1); struct ggml_tensor * t30 = expand(gf, ggml_add (ctx0, t21, t29)); assert_shape_2d(t30, n_embd, N*n_batch); t02L[il] = t02; t03L[il] = t03; t04L[il] = t04; t05L[il] = t05; t06L[il] = t06; t07L[il] = t07; t08L[il] = t08; t09L[il] = t09; t10L[il] = t10; t11L[il] = t11; t12L[il] = t12; t13L[il] = t13; t14L[il] = t14; t15L[il] = t15; t16L[il] = t16; t17L[il] = t17; t18L[il] = t18; t19L[il] = t19; t20L[il] = t20; t21L[il] = t21; t22L[il] = t22; t23L[il] = t23; t24L[il] = t24; t25L[il] = t25; t26L[il] = t26; t27L[il] = t27; t28L[il] = t28; t29L[il] = t29; t30L[il] = t30; cur = t30; } clr_buf(0); use_buf(0); struct ggml_tensor * t31 = expand(gf, ggml_rms_norm (ctx0, cur, rms_norm_eps)); assert_shape_2d(t31, n_embd, N*n_batch); struct ggml_tensor * t32 = expand(gf, ggml_repeat (ctx0, model->norm, t31)); assert_shape_2d(t32, n_embd, N*n_batch); struct ggml_tensor * t33 = expand(gf, ggml_mul (ctx0, t32, t31)); assert_shape_2d(t33, n_embd, N*n_batch); use_buf(-1); struct ggml_tensor * t34 = expand(gf, ggml_mul_mat (ctx0, model->output, t33)); assert_shape_2d(t34, n_vocab, N*n_batch); struct ggml_tensor * t35 = expand(gf, ggml_reshape_3d(ctx0, t34, n_vocab, N, n_batch)); assert_shape_3d(t35, n_vocab, N, n_batch); struct ggml_tensor * t36 = expand(gf, ggml_cross_entropy_loss(ctx0, t35, targets)); assert_shape_1d(t36, 1); { /* tok_embeddings | grad_tok_embeddings = ggml_get_rows_back(grad_t01, t00) L0_att_norm | grad_L0_att_norm = ggml_repeat_back(grad_t03L0, L0_att_norm.shape) L0_wq | grad_L0_wq = ggml_out_prod(t04L0, grad_t05L0) L0_wk | grad_L0_wk = ggml_out_prod(t04L0, grad_t08L0) L0_wv | grad_L0_wv = ggml_out_prod(t04L0, ggml_transpose(grad_t11L0)) L0_wo | grad_L0_wo = ggml_out_prod(t19L0, grad_t20L0) L0_ffn_norm | grad_L0_ffn_norm = ggml_repeat_back(grad_t23L0, L0_ffn_norm.shape) L0_w1 | grad_L0_w1 = ggml_out_prod(t24L0, grad_t26L0) L0_w2 | grad_L0_w2 = ggml_out_prod(t28L0, grad_t29L0) L0_w3 | grad_L0_w3 = ggml_out_prod(t24L0, grad_t25L0) L1_att_norm | grad_L1_att_norm = ggml_repeat_back(grad_t03L1, L1_att_norm.shape) L1_wq | grad_L1_wq = ggml_out_prod(t04L1, grad_t05L1) L1_wk | grad_L1_wk = ggml_out_prod(t04L1, grad_t08L1) L1_wv | grad_L1_wv = ggml_out_prod(t04L1, ggml_transpose(grad_t11L1)) L1_wo | grad_L1_wo = ggml_out_prod(t19L1, grad_t20L1) L1_ffn_norm | grad_L1_ffn_norm = ggml_repeat_back(grad_t23L1, L1_ffn_norm.shape) L1_w1 | grad_L1_w1 = ggml_out_prod(t24L1, grad_t26L1) L1_w2 | grad_L1_w2 = ggml_out_prod(t28L1, grad_t29L1) L1_w3 | grad_L1_w3 = ggml_out_prod(t24L1, grad_t25L1) norm | grad_norm = ggml_repeat_back(grad_t32, norm.shape) output | grad_output = ggml_out_prod(t33, grad_t34) | t01 = ggml_get_rows(tok_embeddings, t00) | grad_t01 = grad_t21L0 + ggml_rms_norm_back(t01, grad_t02L0) for layer: | t02L0*= ggml_rms_norm (t01) | grad_t02L0 = ggml_mul(grad_t04L0, t03L0) t03L0 = ggml_repeat (L0_att_norm, t02L0_shape) | grad_t03L0 = ggml_mul(grad_t04L0, t02L0) t04L0*= ggml_mul (t02L0, t03L0) | grad_t04L0 = ggml_out_prod(L0_wv, grad_t11L0) + ggml_out_prod(L0_wk, ggml_transpose(grad_t08L0)) + ggml_out_prod(L0_wq, ggml_transpose(grad_t05L0)) t05L0 = ggml_mul_mat (L0_wq, t04L0) | grad_t05L0 = ggml_reshape(grad_t06L0, t05L0_shape) t06L0 = ggml_reshape_4d (t05L0, n_embd/n_head, n_head, N, n_batch) | grad_t06L0 = ggml_rope_back(grad_t07L0) t07L0 = ggml_rope_inplace (t06L0) | grad_t07L0 = ggml_permute_back(grad_t13L0, 0, 2, 1, 3) = ggml_permute(grad_t13L0, 0, 2, 1, 3) t08L0 = ggml_mul_mat (L0_wk, t04L0) | grad_t08L0 = ggml_reshape(grad_t09L0, t08L0_shape) t09L0 = ggml_reshape_4d (t08L0, n_embd/n_head, n_head, N, n_batch) | grad_t09L0 = ggml_rope_back(grad_t10L0) t10L0 = ggml_rope_inplace (t09L0) | grad_t10L0 = ggml_permute_back(grad_t14L0, 0, 2, 1, 3) = ggml_permute(grad_t14L0, 0, 2, 1, 3) t11L0 = ggml_mul_mat (t04L0, L0_wv) | grad_t11L0 = ggml_reshape(grad_t12L0, t11L0_shape) t12L0 = ggml_reshape_4d (t11L0, N, n_batch, n_embd/n_head, n_head) | grad_t12L0 = ggml_permute_back(grad_t15L0, 0, 3, 1, 2) = ggml_permute(grad_t15L0, 0, 2, 3, 1) t13L0*= ggml_permute (t07L0, 0, 2, 1, 3) | grad_t13L0 = view__q(ggml_flash_attn_back(t13L0, t14L0, t15L0, grad_t16L0)) t14L0*= ggml_permute (t10L0, 0, 2, 1, 3) | grad_t14L0 = view__k(ggml_flash_attn_back(t13L0, t14L0, t15L0, grad_t16L0)) t15L0*= ggml_permute (t12L0, 0, 3, 1, 2) | grad_t15L0 = view__v(ggml_flash_attn_back(t13L0, t14L0, t15L0, grad_t16L0)) t16L0 = ggml_flash_attn (t13L0, t14L0, t15L0) | grad_t16L0 = ggml_permute_back(grad_t17L0, 0, 2, 1, 3) = ggml_permute(grad_t17L0, 0, 2, 1, 3) t17L0 = ggml_permute (t16L0, 0, 2, 1, 3) | grad_t17L0 = grad_t18L0 t18L0 = ggml_cont (t17L0) | grad_t18L0 = ggml_reshape(grad_t19L0, t18L0_shape) t19L0*= ggml_reshape_2d (t18L0, n_embd, N*n_batch) | grad_t19L0 = ggml_out_prod(L0_wo, ggml_transpose(grad_t20L0)) t20L0 = ggml_mul_mat (L0_wo, t19L0) | grad_t20L0 = grad_t21L0 t21L0*= ggml_add (t20L0, t01) | grad_t21L0 = grad_t30L0 + ggml_rms_norm_back(t21L0, grad_t22L0) t22L0*= ggml_rms_norm (t21L0) | grad_t22L0 = ggml_mul(grad_t24L0, t23L0) t23L0 = ggml_repeat (L0_ffn_norm, t22L0_shape) | grad_t23L0 = ggml_mul(grad_t24L0, t22L0) t24L0*= ggml_mul (t23L0, t22L0) | grad_t24L0 = ggml_out_prod(L0_w1, ggml_transpose(grad_t26L0)) + ggml_out_prod(L0_w3, ggml_transpose(grad_t25L0)) t25L0*= ggml_mul_mat (L0_w3, t24L0) | grad_t25L0 = ggml_mul(grad_t28L0, t27L0) t26L0*= ggml_mul_mat (L0_w1, t24L0) | grad_t26L0 = ggml_silu_back(t26L0, grad_t27L0) t27L0*= ggml_silu (t26L0) | grad_t27L0 = ggml_mul(grad_t28L0, t25L0) t28L0*= ggml_mul (t27L0, t25L0) | grad_t28L0 = ggml_out_prod(L0_w2, ggml_transpose(grad_t29L0)) t29L0 = ggml_mul_mat (L0_w2, t28L0) | grad_t29L0 = grad_t30L0 t30L0*= ggml_add (t21L0, t29L0) | grad_t30L0 = ggml_rms_norm_back(t30L0, grad_t02L1) + grad_t21L1 ^ t02L1*= ggml_rms_norm (t30L0) | grad_t02L1 = ggml_mul(grad_t04L1, t03L1) t03L1 = ggml_repeat (L1_att_norm, t02L1_shape) | grad_t03L1 = ggml_mul(grad_t04L1, t02L1) t04L1*= ggml_mul (t02L1, t03L1) | grad_t04L1 = ggml_out_prod(L1_wv, grad_t11L1) + ggml_out_prod(L1_wk, ggml_transpose(grad_t08L1)) + ggml_out_prod(L1_wq, ggml_transpose(grad_t05L1)) t05L1 = ggml_mul_mat (L1_wq, t04L1) | grad_t05L1 = ggml_reshape(grad_t06L1, t05L1_shape) t06L1 = ggml_reshape_4d (t05L1, n_embd/n_head, n_head, N, n_batch) | grad_t06L1 = ggml_rope_back(grad_t07L1) t07L1 = ggml_rope_inplace (t06L1) | grad_t07L1 = ggml_permute_back(grad_t13L1, 0, 2, 1, 3) = ggml_permute(grad_t13L1, 0, 2, 1, 3) t08L1 = ggml_mul_mat (L1_wk, t04L1) | grad_t08L1 = ggml_reshape(grad_t09L1, t08L1_shape) t09L1 = ggml_reshape_4d (t08L1, n_embd/n_head, n_head, N, n_batch) | grad_t09L1 = ggml_rope_back(grad_t10L1) t10L1 = ggml_rope_inplace (t09L1) | grad_t10L1 = ggml_permute_back(grad_t14L1, 0, 2, 1, 3) = ggml_permute(grad_t14L1, 0, 2, 1, 3) t11L1 = ggml_mul_mat (t04L1, L1_wv) | grad_t11L1 = ggml_reshape(grad_t12L1, t11L1_shape) t12L1 = ggml_reshape_4d (t11L1, N, n_batch, n_embd/n_head, n_head) | grad_t12L1 = ggml_permute_back(grad_t15L1, 0, 3, 1, 2) = ggml_permute(grad_t15L1, 0, 2, 3, 1) t13L1*= ggml_permute (t07L1, 0, 2, 1, 3) | grad_t13L1 = view__q(ggml_flash_attn_back(t13L1, t14L1, t15L1, grad_t16L1)) t14L1*= ggml_permute (t10L1, 0, 2, 1, 3) | grad_t14L1 = view__k(ggml_flash_attn_back(t13L1, t14L1, t15L1, grad_t16L1)) t15L1*= ggml_permute (t12L1, 0, 3, 1, 2) | grad_t15L1 = view__v(ggml_flash_attn_back(t13L1, t14L1, t15L1, grad_t16L1)) t16L1 = ggml_flash_attn (t13L1, t14L1, t15L1) | grad_t16L1 = ggml_permute_back(grad_t17L1, 0, 2, 1, 3) = ggml_permute(grad_t17L1, 0, 2, 1, 3) t17L1 = ggml_permute (t16L1, 0, 2, 1, 3) | grad_t17L1 = grad_t18L1 t18L1 = ggml_cont (t17L1) | grad_t18L1 = ggml_reshape(grad_t19L1, t18L1_shape) t19L1*= ggml_reshape_2d (t18L1, n_embd, N*n_batch) | grad_t19L1 = ggml_out_prod(L1_wo, ggml_transpose(grad_t20L1)) t20L1 = ggml_mul_mat (L1_wo, t19L1) | grad_t20L1 = grad_t21L1 t21L1*= ggml_add (t20L1, t30L0) | grad_t21L1 = grad_t30L1 + ggml_rms_norm_back(t21L1, grad_t22L1) t22L1*= ggml_rms_norm (t21L1) | grad_t22L1 = ggml_mul(grad_t24L1, t23L1) t23L1 = ggml_repeat (L1_ffn_norm, t22L1_shape) | grad_t23L1 = ggml_mul(grad_t24L1, t22L1) t24L1*= ggml_mul (t23L1, t22L1) | grad_t24L1 = ggml_out_prod(L1_w1, ggml_transpose(grad_t26L1)) + ggml_out_prod(L1_w3, ggml_transpose(grad_t25L1)) t25L1*= ggml_mul_mat (L1_w3, t24L1) | grad_t25L1 = ggml_mul(grad_t28L1, t27L1) t26L1*= ggml_mul_mat (L1_w1, t24L1) | grad_t26L1 = ggml_silu_back(t26L1, grad_t27L1) t27L1*= ggml_silu (t26L1) | grad_t27L1 = ggml_mul(grad_t28L1, t25L1) t28L1*= ggml_mul (t27L1, t25L1) | grad_t28L1 = ggml_out_prod(L1_w2, ggml_transpose(grad_t29L1)) t29L1 = ggml_mul_mat (L1_w2, t28L1) | grad_t29L1 = grad_t30L1 t30L1*= ggml_add (t21L1, t29L1) | grad_t30L1 = ggml_rms_norm_back(t30L1, grad_t31) ^ t31 = ggml_rms_norm (t30L1) | grad_t31 = ggml_mul(grad_t33, t32) t32 = ggml_repeat (norm, t31.shape) | grad_t32 = ggml_mul(grad_t33, t31) t33 = ggml_mul (t32, t31) | grad_t33 = ggml_out_prod(output, ggml_transpose(grad_t34)) t34 = ggml_mul_mat (output, t33) | grad_t34 = ggml_reshape(grad_t35, t34.shape) t35 = ggml_reshape_3d (t34, n_vocab, N, n_batch) | grad_t35 = ggml_cross_entropy_loss_back(t35, targets, grad_t36) t36 = ggml_cross_entropy_loss(t35, targets) | grad_t36 = 1 (optimizer) tensors marked with * need to be stored until grad computation tensors during grad computation are all temporary */ } *gb = *gf; // t36->grad gets set to one by optimizer, so we need the tensor. // initialize it with 1.0f to make sure. use_buf(-1); t36->grad = expand(gb, ggml_new_f32(ctx0, 1.0f)); use_buf(0); t35->grad = expand(gb, ggml_cross_entropy_loss_back(ctx0, t35, targets, t36->grad)); assert_shape_3d(t35->grad, n_vocab, N, n_batch); t34->grad = expand(gb, ggml_reshape_2d (ctx0, t35->grad, n_vocab, N*n_batch)); assert_shape_2d(t34->grad, n_vocab, N*n_batch); t33->grad = expand(gb, ggml_out_prod (ctx0, model->output, ggml_transpose(ctx0, t34->grad))); assert_shape_2d(t33->grad, n_embd, N*n_batch); t32->grad = expand(gb, ggml_mul (ctx0, t33->grad, t31)); assert_shape_2d(t32->grad, n_embd, N*n_batch); use_buf(-1); model->norm->grad = expand(gb, add_or_set(model->norm->grad, ggml_repeat_back(ctx0, t32->grad, model->norm))); assert_shape_1d(model->norm->grad, n_embd); model->output->grad = expand(gb, add_or_set(model->output->grad, ggml_out_prod(ctx0, t33, t34->grad))); assert_shape_2d(model->output->grad, n_embd, n_vocab); clr_buf(1); use_buf(1); t31->grad = expand(gb, ggml_mul(ctx0, t33->grad, t32)); assert_shape_2d(t31->grad, n_embd, N*n_batch); struct ggml_tensor * back_layer_inp = t31; struct ggml_tensor * grad_layer_inp = NULL; for (int k = 0; k < n_layer; ++k) { int il = n_layer-1-k; struct my_llama_layer & layer = model->layers[il]; struct ggml_tensor * t02 = t02L[il]; struct ggml_tensor * t03 = t03L[il]; struct ggml_tensor * t04 = t04L[il]; struct ggml_tensor * t05 = t05L[il]; struct ggml_tensor * t06 = t06L[il]; struct ggml_tensor * t07 = t07L[il]; struct ggml_tensor * t08 = t08L[il]; struct ggml_tensor * t09 = t09L[il]; struct ggml_tensor * t10 = t10L[il]; struct ggml_tensor * t11 = t11L[il]; struct ggml_tensor * t12 = t12L[il]; struct ggml_tensor * t13 = t13L[il]; struct ggml_tensor * t14 = t14L[il]; struct ggml_tensor * t15 = t15L[il]; struct ggml_tensor * t16 = t16L[il]; struct ggml_tensor * t17 = t17L[il]; struct ggml_tensor * t18 = t18L[il]; struct ggml_tensor * t19 = t19L[il]; struct ggml_tensor * t20 = t20L[il]; struct ggml_tensor * t21 = t21L[il]; struct ggml_tensor * t22 = t22L[il]; struct ggml_tensor * t23 = t23L[il]; struct ggml_tensor * t24 = t24L[il]; struct ggml_tensor * t25 = t25L[il]; struct ggml_tensor * t26 = t26L[il]; struct ggml_tensor * t27 = t27L[il]; struct ggml_tensor * t28 = t28L[il]; struct ggml_tensor * t29 = t29L[il]; struct ggml_tensor * t30 = t30L[il]; clr_buf(0); use_buf(0); t30->grad = expand(gb, ggml_rms_norm_back(ctx0, t30, back_layer_inp->grad)); assert_shape_2d(t30->grad, n_embd, N*n_batch); if (grad_layer_inp) { t30->grad = expand(gb, ggml_add(ctx0, t30->grad, grad_layer_inp->grad)); assert_shape_2d(t30->grad, n_embd, N*n_batch); } clr_buf(1); t29->grad = t30->grad; assert_shape_2d(t29->grad, n_embd, N*n_batch); t28->grad = expand(gb, ggml_out_prod(ctx0, layer.w2, ggml_transpose(ctx0, t29->grad))); assert_shape_2d(t28->grad, n_ff, N*n_batch); t27->grad = expand(gb, ggml_mul(ctx0, t28->grad, t25)); assert_shape_2d(t27->grad, n_ff, N*n_batch); t26->grad = expand(gb, ggml_silu_back(ctx0, t26, t27->grad)); assert_shape_2d(t26->grad, n_ff, N*n_batch); t25->grad = expand(gb, ggml_mul(ctx0, t28->grad, t27)); assert_shape_2d(t25->grad, n_ff, N*n_batch); t24->grad = expand(gb, ggml_add_inplace(ctx0, ggml_out_prod(ctx0, layer.w1, ggml_transpose(ctx0, t26->grad)), ggml_out_prod(ctx0, layer.w3, ggml_transpose(ctx0, t25->grad)))); assert_shape_2d(t24->grad, n_embd, N*n_batch); t23->grad = expand(gb, ggml_mul(ctx0, t24->grad, t22)); assert_shape_2d(t23->grad, n_embd, N*n_batch); t22->grad = expand(gb, ggml_mul(ctx0, t24->grad, ggml_repeat(ctx0, layer.ffn_norm, t24->grad))); assert_shape_2d(t22->grad, n_embd, N*n_batch); use_buf(1); t21->grad = expand(gb, ggml_add(ctx0, t30->grad, ggml_rms_norm_back(ctx0, t21, t22->grad))); assert_shape_2d(t21->grad, n_embd, N*n_batch); grad_layer_inp = t21; use_buf(0); t20->grad = t21->grad; assert_shape_2d(t20->grad, n_embd, N*n_batch); t19->grad = expand(gb, ggml_out_prod(ctx0, layer.wo, ggml_transpose(ctx0, t20->grad))); assert_shape_2d(t19->grad, n_embd, N*n_batch); t18->grad = expand(gb, ggml_reshape_4d(ctx0, t19->grad, n_embd/n_head, n_head, N, n_batch)); assert_shape_4d(t18->grad, n_embd/n_head, n_head, N, n_batch); t17->grad = t18->grad; assert_shape_4d(t17->grad, n_embd/n_head, n_head, N, n_batch); t16->grad = expand(gb, ggml_permute(ctx0, t17->grad, 0, 2, 1, 3)); assert_shape_4d(t16->grad, n_embd/n_head, N, n_head, n_batch); struct ggml_tensor * flash_attn = expand(gb, ggml_flash_attn_back(ctx0, t13, t14, t15, t16->grad, true)); assert_shape_4d(flash_attn, n_embd/n_head, N*3, n_head, n_batch); t15->grad = expand(gb, view__v(flash_attn)); assert_shape_4d(t15->grad, N, n_embd/n_head, n_head, n_batch); t14->grad = expand(gb, view__k(flash_attn)); assert_shape_4d(t14->grad, n_embd/n_head, N, n_head, n_batch); t13->grad = expand(gb, view__q(flash_attn)); assert_shape_4d(t13->grad, n_embd/n_head, N, n_head, n_batch); t12->grad = expand(gb, ggml_permute(ctx0, t15->grad, 0, 2, 3, 1)); assert_shape_4d(t12->grad, N, n_batch, n_embd/n_head, n_head); t11->grad = expand(gb, ggml_reshape_2d(ctx0, ggml_cont(ctx0, t12->grad), N*n_batch, n_embd)); assert_shape_2d(t11->grad, N*n_batch, n_embd); t10->grad = expand(gb, ggml_permute(ctx0, t14->grad, 0, 2, 1, 3)); assert_shape_4d(t10->grad, n_embd/n_head, n_head, N, n_batch); t09->grad = expand(gb, ggml_rope_back(ctx0, t10->grad, n_past, n_rot, rope_mode, n_ctx)); assert_shape_4d(t09->grad, n_embd/n_head, n_head, N, n_batch); t08->grad = expand(gb, ggml_reshape_2d(ctx0, t09->grad, n_embd, N*n_batch)); assert_shape_2d(t08->grad, n_embd, N*n_batch); t07->grad = expand(gb, ggml_permute(ctx0, t13->grad, 0, 2, 1, 3)); assert_shape_4d(t07->grad, n_embd/n_head, n_head, N, n_batch); t06->grad = expand(gb, ggml_rope_back(ctx0, t07->grad, n_past, n_rot, rope_mode, n_ctx)); assert_shape_4d(t06->grad, n_embd/n_head, n_head, N, n_batch); t05->grad = expand(gb, ggml_reshape_2d(ctx0, t06->grad, n_embd, N*n_batch)); assert_shape_2d(t05->grad, n_embd, N*n_batch); t04->grad = expand(gb, ggml_add_inplace(ctx0, ggml_add_inplace(ctx0, ggml_out_prod(ctx0, layer.wv, t11->grad), ggml_out_prod(ctx0, layer.wk, ggml_transpose(ctx0, t08->grad))), ggml_out_prod(ctx0, layer.wq, ggml_transpose(ctx0, t05->grad)))); assert_shape_2d(t04->grad, n_embd, N*n_batch); t03->grad = expand(gb, ggml_mul(ctx0, t04->grad, t02)); assert_shape_2d(t04->grad, n_embd, N*n_batch); use_buf(1); t02->grad = expand(gb, ggml_mul(ctx0, t04->grad, ggml_repeat(ctx0, layer.attention_norm, t02))); assert_shape_2d(t02->grad, n_embd, N*n_batch); back_layer_inp = t02; // use_buf(0); use_buf(-1); layer.attention_norm->grad = expand(gb, add_or_set(layer.attention_norm->grad, ggml_repeat_back(ctx0, t03->grad, layer.attention_norm))); assert_shape_1d(layer.attention_norm->grad, n_embd); layer.wq->grad = expand(gb, add_or_set(layer.wq->grad, ggml_out_prod(ctx0, t04, t05->grad))); assert_shape_2d(layer.wq->grad, n_embd, n_embd); layer.wk->grad = expand(gb, add_or_set(layer.wk->grad, ggml_out_prod(ctx0, t04, t08->grad))); assert_shape_2d(layer.wk->grad, n_embd, n_embd); layer.wv->grad = expand(gb, add_or_set(layer.wv->grad, ggml_out_prod(ctx0, t04, ggml_transpose(ctx0, t11->grad)))); assert_shape_2d(layer.wv->grad, n_embd, n_embd); layer.wo->grad = expand(gb, add_or_set(layer.wo->grad, ggml_out_prod(ctx0, t19, t20->grad))); assert_shape_2d(layer.wo->grad, n_embd, n_embd); layer.ffn_norm->grad = expand(gb, add_or_set(layer.ffn_norm->grad, ggml_repeat_back(ctx0, t23->grad, layer.ffn_norm))); assert_shape_1d(layer.ffn_norm->grad, n_embd); layer.w1->grad = expand(gb, add_or_set(layer.w1->grad, ggml_out_prod(ctx0, t24, t26->grad))); assert_shape_2d(layer.w1->grad, n_embd, n_ff); layer.w2->grad = expand(gb, add_or_set(layer.w2->grad, ggml_out_prod(ctx0, t28, t29->grad))); assert_shape_2d(layer.w2->grad, n_ff, n_embd); layer.w3->grad = expand(gb, add_or_set(layer.w3->grad, ggml_out_prod(ctx0, t24, t25->grad))); assert_shape_2d(layer.w3->grad, n_embd, n_ff); // use_buf(0); } clr_buf(0); use_buf(0); t01->grad = expand(gb, ggml_add_inplace(ctx0, grad_layer_inp->grad, ggml_rms_norm_back(ctx0, t01, back_layer_inp->grad))); assert_shape_2d(t01->grad, n_embd, N*n_batch); use_buf(-1); model->tok_embeddings->grad = expand(gb, ggml_get_rows_back(ctx0, t01->grad, t00, model->tok_embeddings)); assert_shape_2d(model->tok_embeddings->grad, n_embd, n_vocab); // clr_buf(1); // clr_buf(0); *logits = t35; if (track_max_mem) { printf("%s: max size compute buf0: %zu\n", __func__, buf_maxs[0]); printf("%s: max size compute buf1: %zu\n", __func__, buf_maxs[1]); } // now that all grads are created, set the graph leafs and grads graph_set_leafs_grads(gf); graph_set_leafs_grads(gb); return t36; } void set_f32_3d(struct ggml_tensor * tensor, int64_t i0, int64_t i1, int64_t i2, float value) { float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]); *ptr = value; } void set_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1, float value) { float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); *ptr = value; } void set_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1, int32_t value) { int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); *ptr = value; } float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) { float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); return *ptr; } int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) { int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); return *ptr; } void print_row(struct ggml_tensor * probs, int i) { for (int k = 0; k < probs->ne[0]; ++k) { float p = get_f32_2d(probs, k, i); printf(" %.2f", p); } printf("\n"); } void print_matrix(struct ggml_tensor * probs) { assert(probs->n_dims == 2); for (int i = 0; i < probs->ne[1]; ++i) { for (int k = 0; k < probs->ne[0]; ++k) { float p = get_f32_2d(probs, k, i); printf(" %.2f", p); } printf("\n"); } } void print_token(struct llama_context * ctx, llama_token token) { printf("%s", llama_token_to_str(ctx, token).c_str()); } void print_tokens(struct llama_context* ctx, struct ggml_tensor * tokens) { for (int i=0; ine[0]; ++i) { int token = ggml_get_i32_1d(tokens, i); print_token(ctx, token); } } void print_tokens_batch(struct llama_context* ctx, struct ggml_tensor * tokens) { for (int i1=0; i1ne[1]; ++i1) { //int num_newline = 0; for (int i0=0; i0ne[0]; ++i0) { int token = get_i32_2d(tokens, i0, i1); print_token(ctx, token); // bool isnl = (token == llama_token_nl()); // if (isnl) { // ++num_newline; // } // if (isnl) { // if (num_newline < 2) { // print_token(ctx, token); // } else { // printf("\\n"); // } // } else { // print_token(ctx, token); // } } printf("\n--\n"); } } void get_example_targets(struct llama_context * lctx, const int * train_samples, size_t n_train_samples, const llama_token * train_data, size_t n_train_data, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * target_logits, struct ggml_tensor * target_probs) { int n_tokens = tokens_input->ne[0]; int n_vocab = target_logits->ne[0]; size_t sample = train_samples[example_id % n_train_samples]; GGML_ASSERT(sample+n_tokens-1 < n_train_data); ggml_set_f32(target_logits, -1.0f/n_vocab); ggml_set_f32(target_probs, 0.0f); ggml_set_i32_1d(tokens_input, 0, llama_token_bos(lctx)); for (int i=1; in_dims == 2); GGML_ASSERT(target_logits->n_dims == 3); GGML_ASSERT(target_probs->n_dims == 3); int n_vocab = target_logits->ne[0]; int n_tokens = tokens_input->ne[0]; int n_batch = tokens_input->ne[1]; GGML_ASSERT(n_tokens == target_logits->ne[1]); GGML_ASSERT(n_batch == target_logits->ne[2]); GGML_ASSERT(n_vocab == target_probs->ne[0]); GGML_ASSERT(n_tokens == target_probs->ne[1]); GGML_ASSERT(n_batch == target_probs->ne[2]); ggml_set_f32(target_logits, -1.0f/n_vocab); ggml_set_f32(target_probs, 0.0f); for (int k=0; kne[0]; int n_vocab = target_logits->ne[0]; for (int i=0; i= 0 && size < INT_MAX); std::vector buf(size + 1); int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2); GGML_ASSERT(size2 == size); va_end(ap2); va_end(ap); return std::string(buf.data(), size); } struct llama_file { // use FILE * so we don't have to re-open the file to mmap FILE * fp; size_t size; llama_file(const char * fname, const char * mode) { fp = std::fopen(fname, mode); if (fp == NULL) { size = 0; } else { seek(0, SEEK_END); size = tell(); seek(0, SEEK_SET); } } size_t tell() const { #ifdef _WIN32 __int64 ret = _ftelli64(fp); #else long ret = std::ftell(fp); #endif GGML_ASSERT(ret != -1); // this really shouldn't fail return (size_t) ret; } void seek(size_t offset, int whence) { #ifdef _WIN32 int ret = _fseeki64(fp, (__int64) offset, whence); #else int ret = std::fseek(fp, (long) offset, whence); #endif GGML_ASSERT(ret == 0); // same } void read_raw(void * ptr, size_t size) { if (size == 0) { return; } errno = 0; std::size_t ret = std::fread(ptr, size, 1, fp); if (ferror(fp)) { throw std::runtime_error(format("read error: %s", strerror(errno))); } if (ret != 1) { throw std::runtime_error(std::string("unexpectedly reached end of file")); } } std::uint32_t read_u32() { std::uint32_t ret; read_raw(&ret, sizeof(ret)); return ret; } std::string read_string(std::uint32_t len) { std::vector chars(len); read_raw(chars.data(), len); return std::string(chars.data(), len); } void write_raw(const void * ptr, size_t size) { if (size == 0) { return; } errno = 0; size_t ret = std::fwrite(ptr, size, 1, fp); if (ret != 1) { throw std::runtime_error(format("write error: %s", strerror(errno))); } } void write_u32(std::uint32_t val) { write_raw(&val, sizeof(val)); } ~llama_file() { if (fp) { std::fclose(fp); } } }; int tokenize_file(struct llama_context * lctx, const char * filename, std::vector& out) { struct llama_file f(filename, "rb"); std::vector buf; buf.resize(f.size+1); f.read_raw(buf.data(), f.size); buf[f.size] = '\0'; int n_tokens = llama_tokenize(lctx, buf.data(), out.data(), out.size(), false); if (n_tokens < 0) { out.resize(-n_tokens); llama_tokenize(lctx, buf.data(), out.data(), out.size(), false); } bool verify = false; if (verify) { const char * in = buf.data(); const char * end = buf.data() + buf.size(); for (int i = 0; i < (int) out.size(); ++i) { std::string s = llama_token_to_str(lctx, out[i]); int len = s.length(); if (in >= end) { printf("%s: unexpected end of original text.\n", __func__); break; } const bool matches = (strncmp(in, s.c_str(), len) == 0); if (matches) { in += len; } else { printf("%s: mismatch: expected '%s', but got '%s'\n", __func__, std::string(in, len).c_str(), s.c_str()); } } } return n_tokens; } void shuffle_ints(int * begin, int * end) { if (end <= begin) return; int max=begin[0]; for (int i=1; i max) { max = begin[i]; } } std::vector vals; vals.resize(max+1); for (int i=0; i candidates; llama_token_data_array candidates_p; }; void init_sampler(struct my_llama_sampler * sampler, struct llama_context * ctx) { sampler->ctx = ctx; sampler->n_vocab = llama_n_vocab(sampler->ctx); sampler->n_ctx = llama_n_ctx(sampler->ctx); sampler->mirostat_mu = 2.0f * sampler->params.mirostat_tau; } llama_token sample(struct my_llama_sampler * sampler, float * logits, const llama_token * last_tokens, int n_last_tokens) { GGML_ASSERT(sampler->ctx != NULL); struct llama_context * ctx = sampler->ctx; sampler->candidates.resize(sampler->n_vocab); for (llama_token token_id = 0; token_id < sampler->n_vocab; ++token_id) { sampler->candidates[token_id].id = token_id; sampler->candidates[token_id].logit = logits[token_id]; sampler->candidates[token_id].p = 0.0; } llama_token_data_array * candidates_p = & sampler->candidates_p; candidates_p->data = sampler->candidates.data(); candidates_p->size = sampler->candidates.size(); candidates_p->sorted = false; const auto params = sampler->params; // Apply penalties const float nl_logit = logits[llama_token_nl(ctx)]; const int n_last = std::min(std::min(n_last_tokens, params.repeat_last_n), sampler->n_ctx); llama_sample_repetition_penalty( ctx, candidates_p, last_tokens + n_last_tokens - n_last, n_last, params.repeat_penalty); llama_sample_frequency_and_presence_penalties( ctx, candidates_p, last_tokens + n_last_tokens - n_last, n_last, params.alpha_frequency, params.alpha_presence); if (!params.penalize_nl) { logits[llama_token_nl(ctx)] = nl_logit; } llama_token token = 0; if (params.temp <= 0) { // Greedy sampling token = llama_sample_token_greedy(ctx, candidates_p); } else { if (params.mirostat == 1) { int mirostat_m = 100; llama_sample_temperature(ctx, candidates_p, params.temp); token = llama_sample_token_mirostat(ctx, candidates_p, params.mirostat_tau, params.mirostat_eta, mirostat_m, &sampler->mirostat_mu); } else if (params.mirostat == 2) { llama_sample_temperature(ctx, candidates_p, params.temp); token = llama_sample_token_mirostat_v2(ctx, candidates_p, params.mirostat_tau, params.mirostat_eta, &sampler->mirostat_mu); } else { // Temperature sampling llama_sample_top_k (ctx, candidates_p, params.top_k, 1); llama_sample_tail_free (ctx, candidates_p, params.tfs_z, 1); llama_sample_typical (ctx, candidates_p, params.typical_p, 1); llama_sample_top_p (ctx, candidates_p, params.top_p, 1); llama_sample_temperature (ctx, candidates_p, params.temp); token = llama_sample_token(ctx, candidates_p); } } return token; } void set_logits_masked(struct ggml_tensor * logits, std::vector& mask, float value) { GGML_ASSERT(logits->ne[0] == (int64_t) mask.size()); for (int i2 = 0; i2 < logits->ne[2]; ++i2) { for (int i1 = 0; i1 < logits->ne[1]; ++i1) { for (int i0 = 0; i0 < logits->ne[0]; ++i0) { if (!mask[i0]) continue; float * ptr = (float *) ((char *) logits->data + i2*logits->nb[2] + i1*logits->nb[1] + i0*logits->nb[0]); *ptr = value; } } } } void write_tensor(struct llama_file * file, struct ggml_tensor * tensor) { if (tensor == NULL) { file->write_u32(0); file->write_u32(0); file->write_u32(GGML_TYPE_F32); file->seek((0-file->tell()) & 31, SEEK_CUR); return; } const char * name = ggml_get_name(tensor); uint32_t name_len = strlen(name); uint32_t nd = tensor->n_dims; uint32_t ne[4] = { (uint32_t)tensor->ne[0], (uint32_t)tensor->ne[1], (uint32_t)tensor->ne[2], (uint32_t)tensor->ne[3] }; file->write_u32(nd); file->write_u32(name_len); file->write_u32(tensor->type); file->write_raw(ne, sizeof(ne[0]) * nd); file->write_raw(name, name_len); file->seek((0-file->tell()) & 31, SEEK_CUR); file->write_raw(tensor->data, ggml_nbytes(tensor)); } void read_tensor(struct llama_file * file, struct ggml_tensor * tensor) { int32_t nd = file->read_u32(); GGML_ASSERT(nd == tensor->n_dims); uint32_t name_len = file->read_u32(); enum ggml_type type = (enum ggml_type) file->read_u32(); GGML_ASSERT(type == tensor->type); uint32_t ne[4]; file->read_raw(ne, sizeof(ne[0]) * nd); for (int i=0; ine[i]); } std::string name = file->read_string(name_len); GGML_ASSERT(strncmp(ggml_get_name(tensor), name.c_str(), sizeof(tensor->name)-1) == 0); file->seek((0-file->tell()) & 31, SEEK_CUR); file->read_raw(tensor->data, ggml_nbytes(tensor)); } void write_opt_context(struct llama_file * file, struct ggml_opt_context * opt) { const uint32_t version = 0; GGML_ASSERT(opt->nx >= 0); GGML_ASSERT(opt->iter >= 0); file->write_u32(version); file->write_raw(&opt->params, sizeof(opt->params)); file->write_raw(&opt->nx, sizeof(opt->nx)); file->write_raw(&opt->iter, sizeof(opt->iter)); file->write_u32((uint32_t) opt->just_initialized); switch (opt->params.type) { case GGML_OPT_ADAM: { GGML_ASSERT(opt->adam.x != NULL); write_tensor(file, opt->adam.x); write_tensor(file, opt->adam.g1); write_tensor(file, opt->adam.g2); write_tensor(file, opt->adam.m); write_tensor(file, opt->adam.v); write_tensor(file, opt->adam.mh); write_tensor(file, opt->adam.vh); write_tensor(file, opt->adam.pf); file->write_raw(&opt->adam.fx_best, sizeof(opt->adam.fx_best)); file->write_raw(&opt->adam.fx_prev, sizeof(opt->adam.fx_prev)); file->write_raw(&opt->adam.n_no_improvement, sizeof(opt->adam.n_no_improvement)); } break; case GGML_OPT_LBFGS: { GGML_ASSERT(opt->adam.x != NULL); write_tensor(file, opt->lbfgs.x); write_tensor(file, opt->lbfgs.xp); write_tensor(file, opt->lbfgs.g); write_tensor(file, opt->lbfgs.gp); write_tensor(file, opt->lbfgs.d); write_tensor(file, opt->lbfgs.pf); write_tensor(file, opt->lbfgs.lmal); write_tensor(file, opt->lbfgs.lmys); write_tensor(file, opt->lbfgs.lms); write_tensor(file, opt->lbfgs.lmy); file->write_raw(&opt->lbfgs.fx_best, sizeof(opt->lbfgs.fx_best)); file->write_raw(&opt->lbfgs.step, sizeof(opt->lbfgs.step)); file->write_raw(&opt->lbfgs.j, sizeof(opt->lbfgs.j)); file->write_raw(&opt->lbfgs.k, sizeof(opt->lbfgs.k)); file->write_raw(&opt->lbfgs.end, sizeof(opt->lbfgs.end)); file->write_raw(&opt->lbfgs.n_no_improvement, sizeof(opt->lbfgs.n_no_improvement)); } break; } } void read_opt_context(struct llama_file * file, struct ggml_context * ctx, struct ggml_opt_context * opt) { uint32_t version = file->read_u32(); GGML_ASSERT(version == 0); file->read_raw(&opt->params, sizeof(opt->params)); file->read_raw(&opt->nx, sizeof(opt->nx)); ggml_opt_init(ctx, opt, opt->params, opt->nx); file->read_raw(&opt->iter, sizeof(opt->iter)); opt->just_initialized = (bool) file->read_u32(); switch (opt->params.type) { case GGML_OPT_ADAM: { read_tensor(file, opt->adam.x); read_tensor(file, opt->adam.g1); read_tensor(file, opt->adam.g2); read_tensor(file, opt->adam.m); read_tensor(file, opt->adam.v); read_tensor(file, opt->adam.mh); read_tensor(file, opt->adam.vh); if (opt->adam.pf) { read_tensor(file, opt->adam.pf); } file->read_raw(&opt->adam.fx_best, sizeof(opt->adam.fx_best)); file->read_raw(&opt->adam.fx_prev, sizeof(opt->adam.fx_prev)); file->read_raw(&opt->adam.n_no_improvement, sizeof(opt->adam.n_no_improvement)); } break; case GGML_OPT_LBFGS: { GGML_ASSERT(opt->adam.x != NULL); read_tensor(file, opt->lbfgs.x); read_tensor(file, opt->lbfgs.xp); read_tensor(file, opt->lbfgs.g); read_tensor(file, opt->lbfgs.gp); read_tensor(file, opt->lbfgs.d); if (opt->lbfgs.pf) { read_tensor(file, opt->lbfgs.pf); } read_tensor(file, opt->lbfgs.lmal); read_tensor(file, opt->lbfgs.lmys); read_tensor(file, opt->lbfgs.lms); read_tensor(file, opt->lbfgs.lmy); file->read_raw(&opt->lbfgs.fx_best, sizeof(opt->lbfgs.fx_best)); file->read_raw(&opt->lbfgs.step, sizeof(opt->lbfgs.step)); file->read_raw(&opt->lbfgs.j, sizeof(opt->lbfgs.j)); file->read_raw(&opt->lbfgs.k, sizeof(opt->lbfgs.k)); file->read_raw(&opt->lbfgs.end, sizeof(opt->lbfgs.end)); file->read_raw(&opt->lbfgs.n_no_improvement, sizeof(opt->lbfgs.n_no_improvement)); } break; } } void save_checkpoint(struct my_llama_model * model, struct ggml_opt_context * opt, const char * filename) { struct llama_file file(filename, "wb"); if (file.fp == NULL) { return; } const uint32_t magic = 'ggcp'; const uint32_t version = 0; file.write_u32(magic); file.write_u32(version); file.write_u32(model->train_its); file.write_u32(model->train_samples); file.write_u32(model->train_tokens); file.write_u32(model->hparams.n_vocab); file.write_u32(model->hparams.n_embd); file.write_u32(model->hparams.n_mult); file.write_u32(model->hparams.n_head); file.write_u32(model->hparams.n_layer); file.write_u32(model->hparams.n_rot); write_tensor(&file, model->tok_embeddings); write_tensor(&file, model->norm); write_tensor(&file, model->output); for (uint32_t i = 0; i < model->hparams.n_layer; ++i) { auto & layer = model->layers[i]; write_tensor(&file, layer.attention_norm); write_tensor(&file, layer.wq); write_tensor(&file, layer.wk); write_tensor(&file, layer.wv); write_tensor(&file, layer.wo); write_tensor(&file, layer.ffn_norm); write_tensor(&file, layer.w1); write_tensor(&file, layer.w2); write_tensor(&file, layer.w3); } write_opt_context(&file, opt); } bool load_checkpoint(struct my_llama_model * model, struct ggml_opt_context * opt, const char * filename, bool init) { struct llama_file file(filename, "rb"); uint32_t magic; uint32_t version; uint32_t train_its = 0; uint32_t train_samples = 0; uint32_t train_tokens = 0; if (file.fp) { printf("%s: Loading model from '%s'.\n", __func__, filename); magic = file.read_u32(); GGML_ASSERT(magic == 'ggcp'); version = file.read_u32(); GGML_ASSERT(version == 0); train_its = file.read_u32(); train_samples = file.read_u32(); train_tokens = file.read_u32(); model->hparams.n_vocab = file.read_u32(); model->hparams.n_embd = file.read_u32(); model->hparams.n_mult = file.read_u32(); model->hparams.n_head = file.read_u32(); model->hparams.n_layer = file.read_u32(); model->hparams.n_rot = file.read_u32(); print_params(&model->hparams); } if (init) { init_model(model); } if (file.fp) { model->train_its = train_its; model->train_samples = train_samples; model->train_tokens = train_tokens; } printf("%s: Training iterations: %u.\n", __func__, model->train_its); printf("%s: Training samples: %u.\n", __func__, model->train_samples); printf("%s: Training tokens: %u.\n", __func__, model->train_tokens); if (file.fp) { read_tensor(&file, model->tok_embeddings); read_tensor(&file, model->norm); read_tensor(&file, model->output); for (uint32_t i = 0; i < model->hparams.n_layer; ++i) { auto & layer = model->layers[i]; read_tensor(&file, layer.attention_norm); read_tensor(&file, layer.wq); read_tensor(&file, layer.wk); read_tensor(&file, layer.wv); read_tensor(&file, layer.wo); read_tensor(&file, layer.ffn_norm); read_tensor(&file, layer.w1); read_tensor(&file, layer.w2); read_tensor(&file, layer.w3); } read_opt_context(&file, model->ctx, opt); } return (file.fp != NULL); } void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * model, const char * filename) { struct llama_file file(filename, "wb"); if (file.fp == NULL) { return; } #pragma message("TODO: implement file saving using gguf") (void) vocab; (void) model; // // write_magic // file.write_u32(LLAMA_FILE_MAGIC); // magic // file.write_u32(LLAMA_FILE_VERSION); // version // // write_hparams // file.write_u32(model->hparams.n_vocab); // file.write_u32(model->hparams.n_embd); // file.write_u32(model->hparams.n_mult); // file.write_u32(model->hparams.n_head); // file.write_u32(model->hparams.n_layer); // file.write_u32(model->hparams.n_rot); // file.write_u32(LLAMA_FTYPE_ALL_F32); // // write_vocab // uint32_t n_vocab = model->hparams.n_vocab; // for (uint32_t i = 0; i < n_vocab; i++) { // const auto & token_score = vocab->id_to_token.at(i); // file.write_u32((uint32_t) token_score.tok.size()); // file.write_raw(token_score.tok.data(), token_score.tok.size()); // file.write_raw(&token_score.score, sizeof(token_score.score)); // } // // write tensors // write_tensor(&file, model->tok_embeddings); // write_tensor(&file, model->norm); // write_tensor(&file, model->output); // for (uint32_t i = 0; i < model->hparams.n_layer; ++i) { // auto & layer = model->layers[i]; // // write_tensor(&file, layer.attention_norm); // write_tensor(&file, layer.wq); // write_tensor(&file, layer.wk); // write_tensor(&file, layer.wv); // write_tensor(&file, layer.wo); // write_tensor(&file, layer.ffn_norm); // write_tensor(&file, layer.w1); // write_tensor(&file, layer.w2); // write_tensor(&file, layer.w3); // } } float cosine_decay(const int decay_steps, const float alpha, int step) { if (step > decay_steps) { step = decay_steps; } const float cosine_decay = 0.50f*(1.0f + cosf(3.14159265359f*step/decay_steps)); const float decay = (1 - alpha)*cosine_decay + alpha; return decay; } float cosine_decay_restart(int decay_steps, const float alpha, int step, float restart_step_mult) { while (step > decay_steps) { step -= decay_steps; decay_steps = (int) restart_step_mult * decay_steps; } return cosine_decay(decay_steps, alpha, step); } struct train_params { const char * fn_vocab_model; const char * fn_train_data; const char * fn_checkpoint_in; const char * fn_checkpoint_out; const char * fn_model_out; uint32_t seed; int n_ctx; int n_embd; int n_mult; int n_head; int n_layer; int n_rotmax; int n_threads; int n_batch; int n_examples; int n_predict; int print_info_interval; int print_details_interval; bool samples_start_after_nl; bool use_adam; bool use_flash; bool use_scratch; // only adam int warmup; int cos_decay_steps; float cos_decay_restart; float cos_decay_alpha; int lbfgs_n_iter; int adam_n_iter; float adam_alpha; float adam_decay; int mem_model_gb; int mem_compute_gb; int mem_compute0_gb; int mem_compute1_gb; }; struct train_params get_default_train_params() { struct train_params params; params.fn_vocab_model = "ggml-vic7b-uncensored-q4_0.bin"; params.fn_train_data = "shakespeare.txt"; params.fn_checkpoint_in = "checkpoint.bin"; params.fn_checkpoint_out = "checkpoint.bin"; params.fn_model_out = "ggml-checkpoint-f32.bin"; params.seed = -1; params.n_ctx = 128; params.n_embd = 256; params.n_mult = 256; params.n_head = 8; params.n_layer = 16; params.n_rotmax = 64; params.n_threads = 6; params.n_batch = 8; params.n_examples = 8; params.n_predict = 1024; params.print_info_interval = 1; params.print_details_interval = 2; params.samples_start_after_nl = false; params.use_adam = true; params.use_flash = true; params.use_scratch = true; // only adam params.warmup = 100; params.cos_decay_steps = 1000; params.cos_decay_restart = 1.1f; params.cos_decay_alpha = 0.0f; params.lbfgs_n_iter = 16; params.adam_n_iter = 16; params.adam_alpha = 1e-3f; params.adam_decay = 1e-3f; params.mem_model_gb = 2; params.mem_compute_gb = 24; params.mem_compute0_gb = 8; params.mem_compute1_gb = 2; return params; } void train_print_usage(int /*argc*/, char ** argv, const struct train_params * params) { fprintf(stderr, "usage: %s [options]\n", argv[0]); fprintf(stderr, "\n"); fprintf(stderr, "options:\n"); fprintf(stderr, " -h, --help show this help message and exit\n"); fprintf(stderr, " --vocab-model FNAME model path from which to load vocab (default '%s')\n", params->fn_vocab_model); fprintf(stderr, " --train-data FNAME path from which to load training data (default '%s')\n", params->fn_train_data); fprintf(stderr, " --checkpoint-in FNAME path from which to load training checkpoint (default '%s')\n", params->fn_checkpoint_in); fprintf(stderr, " --checkpoint-out FNAME path to save training checkpoint (default '%s')\n", params->fn_checkpoint_out); fprintf(stderr, " --model-out FNAME path to save ggml model (default '%s')\n", params->fn_model_out); fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1, use random seed for -1)\n"); fprintf(stderr, " -c N, --ctx N Context size used during training (default %d)\n", params->n_ctx); fprintf(stderr, " --embd N Embedding size used for new models (default %d)\n", params->n_embd); fprintf(stderr, " --mult N Mult size used for new models, influences feedforward size. (default %d)\n", params->n_mult); fprintf(stderr, " --head N Number of heads for new models (default %d)\n", params->n_head); fprintf(stderr, " --layer N Number of layers for new models (default %d)\n", params->n_layer); fprintf(stderr, " --rotmax N Maximal number Rope dimensions for new models (default %d)\n", params->n_rotmax); fprintf(stderr, " -t N, --threads N Number of threads (default %d)\n", params->n_threads); fprintf(stderr, " -b N, --batch N Parallel batch size (default %d)\n", params->n_batch); fprintf(stderr, " -n N, --examples N Number of examples to train (default %d)\n", params->n_examples); fprintf(stderr, " --predict N Number of tokens to generate after training (default %d)\n", params->n_predict); fprintf(stderr, " --print-info-interval N Print infos during training each N examples (default %d)\n", params->print_info_interval); fprintf(stderr, " --print-details-interval N Print details during training each N examples (default %d)\n", params->print_details_interval); fprintf(stderr, " --samples-after-nl Training samples start after newlines. (default %s)\n", params->samples_start_after_nl ? "on" : "off"); fprintf(stderr, " --use-lbfgs Use LBFGS optimizer instead of default Adam\n"); fprintf(stderr, " --use-adam Use Adam optimizer (default)\n"); fprintf(stderr, " --no-flash Don't use flash attention.\n"); fprintf(stderr, " --use-flash Use flash attention (default)\n"); fprintf(stderr, " --no-scratch Don't use scratch buffers\n"); fprintf(stderr, " --use-scratch Use scratch buffers (default)\n"); fprintf(stderr, " --warmup N Number of warmup steps (default %d)\n", params->warmup); fprintf(stderr, " --cos-decay-steps N Number of cosine decay steps (default %d)\n", params->cos_decay_steps); fprintf(stderr, " --cos-decay-restart N Increase of cosine decay steps after restart (default %f)\n", params->cos_decay_restart); fprintf(stderr, " --cos-decay-alpha N Cosine decay alpha (default %f)\n", params->cos_decay_alpha); fprintf(stderr, " --lbfgs-iter N Maximum number of LBFGS optimization iterations for each batch (default %d)\n", params->lbfgs_n_iter); fprintf(stderr, " --adam-iter N Maximum number of Adam optimization iterations for each batch (default %d)\n", params->adam_n_iter); fprintf(stderr, " --adam-alpha N Adam learning rate alpha (default %f)\n", params->adam_alpha); fprintf(stderr, " --adam-decay N AdamW weight decay. Values greater zero enable AdamW instead of regular Adam. (default %f)\n", params->adam_decay); fprintf(stderr, " --mem-model N Memory to allocate for model and cache in gigabytes. (default %d)\n", params->mem_model_gb); fprintf(stderr, " --mem-compute N Memory to allocate for compute in gigabytes. (default %d)\n", params->mem_compute_gb); fprintf(stderr, " --mem-compute0 N Memory to allocate for compute in gigabytes. (default %d)\n", params->mem_compute0_gb); fprintf(stderr, " --mem-compute1 N Memory to allocate for compute in gigabytes. (default %d)\n", params->mem_compute1_gb); fprintf(stderr, "\n"); } bool train_params_parse(int argc, char ** argv, struct train_params * params) { bool invalid_param = false; std::string arg; struct train_params default_params = get_default_train_params(); const std::string arg_prefix = "--"; for (int i = 1; i < argc; i++) { arg = argv[i]; if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { std::replace(arg.begin(), arg.end(), '_', '-'); } if (arg == "--vocab-model") { if (++i >= argc) { invalid_param = true; break; } params->fn_vocab_model = argv[i]; } else if (arg == "--train-data") { if (++i >= argc) { invalid_param = true; break; } params->fn_train_data = argv[i]; } else if (arg == "--checkpoint-in") { if (++i >= argc) { invalid_param = true; break; } params->fn_checkpoint_in = argv[i]; } else if (arg == "--checkpoint-out") { if (++i >= argc) { invalid_param = true; break; } params->fn_checkpoint_out = argv[i]; } else if (arg == "--model-out") { if (++i >= argc) { invalid_param = true; break; } params->fn_model_out = argv[i]; } else if (arg == "-s" || arg == "--seed") { if (++i >= argc) { invalid_param = true; break; } params->seed = std::stoi(argv[i]); } else if (arg == "-c" || arg == "--ctx") { if (++i >= argc) { invalid_param = true; break; } params->n_ctx = std::stoi(argv[i]); } else if (arg == "--embd") { if (++i >= argc) { invalid_param = true; break; } params->n_embd = std::stoi(argv[i]); } else if (arg == "--mult") { if (++i >= argc) { invalid_param = true; break; } params->n_mult = std::stoi(argv[i]); } else if (arg == "--head") { if (++i >= argc) { invalid_param = true; break; } params->n_head = std::stoi(argv[i]); } else if (arg == "--layer") { if (++i >= argc) { invalid_param = true; break; } params->n_layer = std::stoi(argv[i]); } else if (arg == "--rotmax") { if (++i >= argc) { invalid_param = true; break; } params->n_rotmax = std::stoi(argv[i]); } else if (arg == "-t" || arg == "--threads") { if (++i >= argc) { invalid_param = true; break; } params->n_threads = std::stoi(argv[i]); } else if (arg == "-b" || arg == "--batch") { if (++i >= argc) { invalid_param = true; break; } params->n_batch = std::stoi(argv[i]); } else if (arg == "-n" || arg == "--examples") { if (++i >= argc) { invalid_param = true; break; } params->n_examples = std::stoi(argv[i]); } else if (arg == "--predict") { if (++i >= argc) { invalid_param = true; break; } params->n_predict = std::stoi(argv[i]); } else if (arg == "--print-info-interval") { if (++i >= argc) { invalid_param = true; break; } params->print_info_interval = std::stoi(argv[i]); } else if (arg == "--print-details-interval") { if (++i >= argc) { invalid_param = true; break; } params->print_details_interval = std::stoi(argv[i]); } else if (arg == "--samples-after-nl") { params->samples_start_after_nl = true; } else if (arg == "--use-lbfgs") { params->use_adam = false; } else if (arg == "--use-adam") { params->use_adam = true; } else if (arg == "--no-flash") { params->use_flash = false; } else if (arg == "--use-flash") { params->use_flash = true; } else if (arg == "--no-scratch") { params->use_scratch = false; } else if (arg == "--use-scratch") { params->use_scratch = true; } else if (arg == "--warmup") { if (++i >= argc) { invalid_param = true; break; } params->warmup = std::stoi(argv[i]); } else if (arg == "--cos-decay-steps") { if (++i >= argc) { invalid_param = true; break; } params->cos_decay_steps = std::stof(argv[i]); } else if (arg == "--cos-decay-restart") { if (++i >= argc) { invalid_param = true; break; } params->cos_decay_restart = std::stof(argv[i]); } else if (arg == "--cos-decay-alpha") { if (++i >= argc) { invalid_param = true; break; } params->cos_decay_alpha = std::stof(argv[i]); } else if (arg == "--lbfgs-iter") { if (++i >= argc) { invalid_param = true; break; } params->lbfgs_n_iter = std::stoi(argv[i]); } else if (arg == "--adam-iter") { if (++i >= argc) { invalid_param = true; break; } params->adam_n_iter = std::stoi(argv[i]); } else if (arg == "--adam-alpha") { if (++i >= argc) { invalid_param = true; break; } params->adam_alpha = std::stof(argv[i]); } else if (arg == "--adam-decay") { if (++i >= argc) { invalid_param = true; break; } params->adam_decay = std::stof(argv[i]); } else if (arg == "--mem-model") { if (++i >= argc) { invalid_param = true; break; } params->mem_model_gb = std::stoi(argv[i]); } else if (arg == "--mem-compute") { if (++i >= argc) { invalid_param = true; break; } params->mem_compute_gb = std::stoi(argv[i]); } else if (arg == "--mem-compute0") { if (++i >= argc) { invalid_param = true; break; } params->mem_compute0_gb = std::stoi(argv[i]); } else if (arg == "--mem-compute1") { if (++i >= argc) { invalid_param = true; break; } params->mem_compute1_gb = std::stoi(argv[i]); } else if (arg == "-h" || arg == "--help") { train_print_usage(argc, argv, &default_params); exit(0); } else { fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); train_print_usage(argc, argv, &default_params); exit(1); } } if (invalid_param) { fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); train_print_usage(argc, argv, &default_params); exit(1); } return true; } int main(int argc, char ** argv) { struct train_params params = get_default_train_params(); if (!train_params_parse(argc, argv, ¶ms)) { return 1; } if (params.seed == LLAMA_DEFAULT_SEED) { params.seed = time(NULL); } printf("%s: seed: %u\n", __func__, params.seed); srand(params.seed); struct llama_context_params llama_params = llama_context_default_params(); llama_params.vocab_only = true; struct llama_model * lmodel = llama_load_model_from_file(params.fn_vocab_model, llama_params); struct llama_context * lctx = llama_new_context_with_model(lmodel, llama_params); struct llama_vocab vocab; { std::vector strings; std::vector scores; int n_vocab = llama_n_vocab(lctx); strings.resize(n_vocab, NULL); scores.resize(n_vocab, 0); n_vocab = llama_get_vocab(lctx, strings.data(), scores.data(), n_vocab); GGML_ASSERT(n_vocab == llama_n_vocab(lctx)); vocab.id_to_token.resize(n_vocab); for (int i=0; i train_tokens; if (tokenize_file(lctx, params.fn_train_data, train_tokens) < 0) { fprintf(stderr, "%s: failed to tokenize file '%s'\n", __func__, params.fn_train_data); } printf("%s: number of training tokens: %d\n", __func__, (int) train_tokens.size()); struct my_llama_model model; model.hparams.n_vocab = llama_n_vocab(lctx); model.hparams.n_ctx = params.n_ctx; model.hparams.n_embd = params.n_embd; model.hparams.n_mult = params.n_mult; model.hparams.n_head = params.n_head; model.hparams.n_layer = params.n_layer; model.hparams.n_rot = std::min((uint32_t)params.n_rotmax, model.hparams.n_embd / model.hparams.n_head); print_params(&model.hparams); std::vector token_noccurs; std::vector token_notavail; token_noccurs.resize(model.hparams.n_vocab, 0); token_notavail.resize(model.hparams.n_vocab, true); for (int i = 0; i < (int) train_tokens.size(); ++i) { ++token_noccurs[train_tokens[i]]; token_notavail[train_tokens[i]] = false; } std::vector token_freq; token_freq.resize(model.hparams.n_vocab, 0); int n_unique_tokens = 0; for (int i = 0; i < (int) token_noccurs.size(); ++i) { token_freq[i] = (float) token_noccurs[i] / (float) train_tokens.size(); n_unique_tokens += (token_noccurs[i] > 0) ? 1 : 0; } printf("%s: number of unique tokens: %d\n", __func__, n_unique_tokens); struct my_llama_kv_cache kv_self; struct ggml_init_params lcparams; lcparams.mem_size = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb); lcparams.mem_buffer = NULL; lcparams.no_alloc = false; model.ctx = ggml_init(lcparams); kv_self.ctx = model.ctx; my_llama_sampler sampler; int n_tokens = model.hparams.n_ctx; int n_vocab = model.hparams.n_vocab; int n_batch = params.n_batch; struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context)); memset(opt, 0, sizeof(struct ggml_opt_context)); struct ggml_opt_params opt_params_adam = ggml_opt_default_params(GGML_OPT_ADAM); struct ggml_opt_params opt_params_lbfgs = ggml_opt_default_params(GGML_OPT_LBFGS); opt_params_adam.print_forward_graph = false; opt_params_adam.print_backward_graph = false; opt_params_adam.n_threads = params.n_threads; opt_params_adam.adam.n_iter = params.adam_n_iter; opt_params_adam.adam.sched = 1.0f; opt_params_adam.adam.alpha = params.adam_alpha; opt_params_adam.adam.decay = params.adam_decay; opt_params_lbfgs.print_forward_graph = false; opt_params_lbfgs.print_backward_graph = false; opt_params_lbfgs.n_threads = params.n_threads; opt_params_lbfgs.lbfgs.n_iter = params.lbfgs_n_iter; opt->ctx = model.ctx; opt->params = params.use_adam ? opt_params_adam : opt_params_lbfgs; printf("%s: init model\n", __func__); bool existed = load_checkpoint(&model, opt, params.fn_checkpoint_in, true); set_param_model(&model); opt->params = params.use_adam ? opt_params_adam : opt_params_lbfgs; opt->iter = model.train_its; printf("%s: opt iter %d\n", __func__, opt->iter); bool from_scratch = !existed; if (from_scratch) { randomize_model(&model, params.seed, 0.0f, 1.0f, -1.0f, +1.0f); } init_kv_cache(&kv_self, &model, 1); // init_kv_cache(&kv_self, &model, n_batch); init_sampler(&sampler, lctx); printf("used_mem model+cache: %zu bytes\n", ggml_used_mem(model.ctx)); // ggml_print_tensor_objects(model.ctx); // TODO: use std::vector intead of "new" size_t compute_size = 1024ll*1024ll*1024ll*((size_t) params.mem_compute_gb); uint8_t * compute_addr = new uint8_t[compute_size]; size_t size_buf_0 = 1024ll*1024ll*1024ll*((size_t) params.mem_compute0_gb); size_t size_buf_1 = 1024ll*1024ll*1024ll*((size_t) params.mem_compute1_gb); uint8_t * compute_buf_0 = new uint8_t[size_buf_0]; uint8_t * compute_buf_1 = new uint8_t[size_buf_1]; GGML_ASSERT(n_tokens < (int) train_tokens.size()); std::vector train_samples; train_samples.push_back(0); for (int i = 1; i < (int) train_tokens.size() - n_tokens; ++i) { if (!params.samples_start_after_nl || (train_tokens[i-1] == llama_token_nl(lctx))) { train_samples.push_back(i); } } shuffle_ints(train_samples.data(), train_samples.data() + train_samples.size()); for (int i = 0; i < (int) train_samples.size(); ++i) { GGML_ASSERT(train_samples[i]+n_tokens-1 < (int) train_tokens.size()); } std::vector work_buffer; printf("%s: begin training\n", __func__); for (int ex = 0; ex < params.n_examples; ++ex) { if (ex*n_batch >= (int) train_samples.size()) { shuffle_ints(train_samples.data(), train_samples.data() + train_samples.size()); for (int i = 0; i < (int) train_samples.size(); ++i) { GGML_ASSERT(train_samples[i]+n_tokens-1 < (int) train_tokens.size()); } } struct ggml_init_params cparams = { /*.mem_size =*/ compute_size, /*.mem_buffer =*/ compute_addr, /*.no_alloc =*/ false, }; struct ggml_context * ctx0 = ggml_init(cparams); struct ggml_tensor * after_opt_best_samples = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_batch); //struct ggml_tensor * after_opt_probs = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab, n_tokens, n_batch); struct ggml_tensor * tokens_input = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_batch); struct ggml_tensor * target_logits = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab, n_tokens, n_batch); struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab, n_tokens, n_batch); int n_past = 0; struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32) + (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0)); struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32) + (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0)); memset(gfbuf->data, 0, ggml_nbytes(gfbuf)); memset(gbbuf->data, 0, ggml_nbytes(gbbuf)); struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data; struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data; get_example_targets_batch(lctx, train_samples.data(), train_samples.size(), train_tokens.data(), train_tokens.size(), ex, tokens_input, target_logits, target_probs); GGML_ASSERT(n_past == 0); struct ggml_tensor * loss = NULL; struct ggml_tensor * logits = NULL; if (params.use_scratch) { loss = forward_batch_wo_cache_flash_attn_train( &model, ctx0, gf, gb, &logits, tokens_input, target_probs, compute_buf_0, compute_buf_1, size_buf_0, size_buf_1, n_tokens, n_batch); } else if (params.use_flash) { logits = forward_batch_wo_cache_flash_attn(&model, ctx0, gf, tokens_input, n_tokens, n_batch); loss = cross_entropy_loss(ctx0, logits, target_probs); ggml_build_forward_expand(gf, loss); *gb = ggml_build_backward(ctx0, gf, true); } else { logits = forward_batch_wo_cache(&model, ctx0, gf, tokens_input, n_tokens, n_batch); loss = cross_entropy_loss(ctx0, logits, target_probs); ggml_build_forward_expand(gf, loss); *gb = ggml_build_backward(ctx0, gf, true); } ggml_graph_compute_helper(work_buffer, gf, params.n_threads); size_t used_mem_before_opt = ggml_used_mem(ctx0); float error_before_opt = ggml_get_f32_1d(loss, 0); opt->params.adam.sched = (opt->iter < params.warmup) ? (float) opt->iter / (float) params.warmup : cosine_decay_restart( params.cos_decay_steps, params.cos_decay_alpha, opt->iter - params.warmup, params.cos_decay_restart); printf("%s: opt->params.adam.sched %.5f\n", __func__, opt->params.adam.sched); ggml_opt_resume_g(ctx0, opt, loss, gf, gb); size_t used_mem_after_opt = ggml_used_mem(ctx0); model.train_its = opt->iter; model.train_samples += n_batch; model.train_tokens += n_batch * n_tokens; ggml_graph_compute_helper(work_buffer, gf, params.n_threads); float error_after_opt = ggml_get_f32_1d(loss, 0); if (params.print_info_interval > 0 && ex % params.print_info_interval == 0) { printf("Example %d, opt iter %d\n", ex, opt->iter); printf("error_before_opt: %.6f\n", error_before_opt); printf("error_after_opt: %.6f\n", error_after_opt); printf("used_mem_before_opt: %zu bytes\n", used_mem_before_opt); printf("used_mem_after_opt: %zu bytes\n", used_mem_after_opt); } if (params.print_details_interval > 0 && ex % params.print_details_interval == 0) { // set_logits_masked(logits, token_notavail, -1e9); for (int i=0; idata + i*logits->nb[2] + k*logits->nb[1]), (llama_token *) ((char *) tokens_input->data + i*tokens_input->nb[1]), k); * ((int32_t *) ((char *) after_opt_best_samples->data + i*after_opt_best_samples->nb[1] + k*after_opt_best_samples->nb[0])) = token; } } // printf("probabilities after optimization:\n"); // print_matrix(after_opt_probs); printf("Example:\n---\n"); print_tokens_batch(lctx, tokens_input); printf("\n---\n"); // printf("best samples after optimization:\n---\n"); printf("samples after optimization:\n---\n"); print_tokens_batch(lctx, after_opt_best_samples); printf("\n---\n"); } ggml_free(ctx0); } if (params.n_examples > 0) { save_checkpoint(&model, opt, params.fn_checkpoint_out); } if (strlen(params.fn_model_out) > 0) { save_as_llama_model(&vocab, &model, params.fn_model_out); } { int n_gen = params.n_predict; int sample_ctx = n_tokens - n_tokens/8; sampler.params.temp = 0.2f; sampler.params.repeat_penalty = 1.1f; sampler.params.mirostat = 2; init_sampler(&sampler, lctx); printf("Generating %d tokens.\n", n_gen); struct ggml_tensor * tokens_input = ggml_new_tensor_1d(model.ctx, GGML_TYPE_I32, n_tokens); struct ggml_tensor * target_logits = ggml_new_tensor_2d(model.ctx, GGML_TYPE_F32, n_vocab, n_tokens); struct ggml_tensor * target_probs = ggml_new_tensor_2d(model.ctx, GGML_TYPE_F32, n_vocab, n_tokens); get_example_targets(lctx, train_samples.data(), train_samples.size(), train_tokens.data(), train_tokens.size(), rand()%train_samples.size(), tokens_input, target_logits, target_probs); for (int i=sample_ctx; idata + (sample_ctx-1)*logits->nb[1]), (llama_token *) tokens_input->data, sample_ctx-1); //int token = ggml_get_i32_1d(best_samples, sample_ctx-1); // print_row(probs, sample_at); print_token(lctx, token); lshift_examples(tokens_input, target_logits, target_probs, 1); ggml_set_i32_1d(tokens_input, 0, 0); ggml_set_i32_1d(tokens_input, sample_ctx-1, token); ggml_free(ctx0); } } delete[] compute_addr; delete[] compute_buf_0; delete[] compute_buf_1; llama_free(lctx); llama_free_model(lmodel); ggml_free(model.ctx); return 0; }