#include "common.h" #include "ggml.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif static void ggml_graph_compute_helper(std::vector & buf, ggml_cgraph * graph, int n_threads) { struct ggml_cplan plan = ggml_graph_plan(graph, n_threads); if (plan.work_size > 0) { buf.resize(plan.work_size); plan.work_data = buf.data(); } ggml_graph_compute(graph, &plan); } static float tensor_sum_elements(const ggml_tensor * tensor) { double sum = 0; if (tensor->type == GGML_TYPE_F32) { for (int j = 0; j < tensor->ne[1]; j++) { for (int k = 0; k < tensor->ne[0]; k++) { sum += ((float *) tensor->data)[j*tensor->ne[0] + k]; } } } return sum; } static void tensor_dump(const ggml_tensor * tensor, const char * name) { printf("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64 " x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi) - ", name, tensor->type, ggml_type_name(tensor->type), tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->nb[0], tensor->nb[1], tensor->nb[2]); float sum = tensor_sum_elements(tensor); printf("Sum of tensor %s is %6.2f\n", name, sum); } #define TENSOR_DUMP(tensor) tensor_dump(tensor, #tensor) struct benchmark_params_struct { int32_t n_threads = 1; int32_t n_iterations = 10; }; static void print_usage(int /*argc*/, char ** argv, struct benchmark_params_struct params) { fprintf(stderr, "usage: %s [options]\n", argv[0]); fprintf(stderr, "\n"); fprintf(stderr, "options:\n"); fprintf(stderr, " -h, --help show this help message and exit\n"); fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); fprintf(stderr, " -i N, --iter N number of iterations to use during computation (default: %d)\n", params.n_iterations); fprintf(stderr, "\n"); } int main(int argc, char ** argv) { struct benchmark_params_struct benchmark_params; bool invalid_param = false; std::string arg; for (int i = 1; i < argc; i++) { arg = argv[i]; if (arg == "-t" || arg == "--threads") { if (++i >= argc) { invalid_param = true; break; } benchmark_params.n_threads = std::stoi(argv[i]); } else if (arg == "-i" || arg == "--iter") { if (++i >= argc) { invalid_param = true; break; } benchmark_params.n_iterations = std::stoi(argv[i]); } else if (arg == "-h" || arg == "--help") { print_usage(argc, argv, benchmark_params); exit(0); } } if (invalid_param) { fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); print_usage(argc, argv, benchmark_params); exit(1); } print_build_info(); printf("Starting Test\n"); // create the ggml context struct ggml_context * ctx; //const int sizex = 4096; //const int sizey = 11008; #undef VERBOSE_DEBUGGING #ifndef VERBOSE_DEBUGGING const int sizey = 4096; const int sizex = 11008; const int sizez = 128; #else /* Working - let's increase size */ const int sizey = 1; const int sizex = (8*32); const int sizez = 1; /*const int sizey = 1; const int sizex = 3*(8*32); const int sizez = 1;*/ #endif //printf("Memsize required = %i\n", sizex*sizex); // TODO: perform the bench for all types or for a user specified type const ggml_type qtype = GGML_TYPE_Q4_1; size_t ctx_size = 0; ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizey); ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizey); ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizez); ctx_size += ggml_row_size(qtype, sizex*sizey); ctx_size += ggml_row_size(qtype, sizex*sizey); ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizey); // BLAS ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizey); // BLAS ctx_size += 1024*1024*16; printf("Allocating Memory of size %zi bytes, %zi MB\n",ctx_size, (ctx_size/1024/1024)); struct ggml_init_params params = { /*.mem_size =*/ ctx_size, /*.mem_buffer =*/ NULL, /* no_alloc =*/ 0 }; int main_gpu = 0; ggml_backend_t backend = ggml_backend_sycl_init(main_gpu); if (!ctx) { fprintf(stderr, "%s: ggml_init() failed\n", __func__); return 1; } printf("Creating new tensors\n"); // printf("Creating new tensor m1\n"); struct ggml_tensor * m11 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizey); ggml_set_f32(m11, 1.0f); // printf("Creating new tensor m1\n"); struct ggml_tensor * m12 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizey); ggml_set_f32(m12, 1.5f); // printf("Creating new tensor m2\n"); struct ggml_tensor * m2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizez); ggml_set_f32(m2, 2.0f); printf("\n------ Test 1 - Matrix Mult via F32 code\n"); // printf("Creating new tensor m11xm2\n"); struct ggml_tensor * m11xm2 = ggml_mul_mat(ctx, m11, m2); // printf("Creating compute graph\n"); struct ggml_cgraph * gf = ggml_new_graph(ctx); ggml_build_forward_expand(gf, m11xm2); printf("n_threads=%i\n", benchmark_params.n_threads); TENSOR_DUMP(m11); TENSOR_DUMP(m2); std::vector work_buffer; ggml_graph_compute_helper(work_buffer, gf, benchmark_params.n_threads); TENSOR_DUMP(gf->nodes[0]); printf("\n------ Test 2 - Matrix Mult via %s code\n", ggml_type_name(qtype)); int32_t nelements = sizex*sizey; // Set up a the benchmark matrices // printf("Creating new tensor q11 & Running quantize\n"); struct ggml_tensor * q11 = ggml_new_tensor_2d(ctx, qtype, sizex, sizey); ggml_quantize_chunk(qtype, (const float *) m11->data, q11->data, 0, nelements/m11->ne[0], m11->ne[0], nullptr); // Set up a the compute graph // printf("Creating new tensor q31\n"); struct ggml_tensor * q31 = ggml_mul_mat(ctx, q11, m2); // printf("Creating compute graph\n"); struct ggml_cgraph * gf31 = ggml_new_graph(ctx); ggml_build_forward_expand(gf31, q31); // Set up a second graph computation to make sure we override the CPU cache lines // printf("Creating new tensor q12 & Running quantize\n"); struct ggml_tensor * q12 = ggml_new_tensor_2d(ctx, qtype, sizex, sizey); ggml_quantize_chunk(qtype, (const float *) m12->data, q12->data, 0, nelements/m12->ne[0], m12->ne[0], nullptr); // printf("Creating new tensor q32\n"); struct ggml_tensor * q32 = ggml_mul_mat(ctx, q12, m2); //printf("Creating compute graph\n"); struct ggml_cgraph * gf32 = ggml_new_graph(ctx); ggml_build_forward_expand(gf32, q32); printf("n_threads=%i\n", benchmark_params.n_threads); const int dimx = sizex; const int dimy = sizey; const int dimz = sizez; long long int flops_per_dot_product = dimy + dimy; long long int flops_per_matrix = flops_per_dot_product * dimx * dimz; ; printf("Matrix Multiplication of (%i,%i,%i) x (%i,%i,%i) - about %6.2f gFLOPS\n\n", sizex, sizey, 1, sizex, sizez, 1, 1.0f*flops_per_matrix / 1000 / 1000 / 1000); // Let's use the F32 result from above as a reference for the quantized multiplication float sum_of_F32_reference = tensor_sum_elements(gf->nodes[0]); printf("Iteration;NThreads; SizeX; SizeY; SizeZ; Required_FLOPS; Elapsed_u_Seconds; gigaFLOPS\n"); printf("=====================================================================================\n"); double gflops_sum = 0; for (int i=0;inodes[0]); float delta = std::abs(sum_of_Q4_result - sum_of_F32_reference); float allowed_delta = (sum_of_F32_reference) / 1000 / 1000; // Let's accept an epsilon of 10^-6 if (delta > allowed_delta) { printf("\nABORT - ERROR in Matrix Multiplication result - expected %6.2f, got %6.2f (delta %6.2f > allowed_delta %6.2f)\n", sum_of_F32_reference, sum_of_Q4_result, delta, allowed_delta ); exit(0); } // Running a different graph computation to make sure we override the CPU cache lines ggml_graph_compute_helper(work_buffer, gf32, benchmark_params.n_threads); } printf("\n"); printf("Average%78.2f\n",gflops_sum/((double)benchmark_params.n_iterations)); printf("=====================================================================================\n"); }