#include "arg.h" #include "common.h" #include "log.h" #include "llama.h" #include #include #include #include static void print_usage(int, char ** argv) { LOG("\nexample usage:\n"); LOG("\n %s -m model.gguf -c 2048 -b 2048 -ub 512 -npp 128,256,512 -ntg 128,256 -npl 1,2,4,8,16,32 [-pps]\n", argv[0]); LOG("\n"); } int main(int argc, char ** argv) { common_params params; if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_BENCH, print_usage)) { return 1; } common_init(); int is_pp_shared = params.is_pp_shared; std::vector n_pp = params.n_pp; std::vector n_tg = params.n_tg; std::vector n_pl = params.n_pl; // init LLM llama_backend_init(); llama_numa_init(params.numa); // initialize the model llama_model_params model_params = common_model_params_to_llama(params); llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params); if (model == NULL) { fprintf(stderr , "%s: error: unable to load model\n" , __func__); return 1; } llama_context_params ctx_params = common_context_params_to_llama(params); // ensure enough sequences are available ctx_params.n_seq_max = n_pl.empty() ? 1 : *std::max_element(n_pl.begin(), n_pl.end()); llama_context * ctx = llama_new_context_with_model(model, ctx_params); if (ctx == NULL) { fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__); return 1; } const int32_t n_kv_max = llama_n_ctx(ctx); llama_batch batch = llama_batch_init(n_kv_max, 0, 1); // decode in batches of ctx_params.n_batch tokens auto decode_helper = [](llama_context * ctx, llama_batch & batch, int32_t n_batch) { for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) { const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i)); llama_batch batch_view = { n_tokens, batch.token + i, nullptr, batch.pos + i, batch.n_seq_id + i, batch.seq_id + i, batch.logits + i, 0, 0, 0, // unused }; const int ret = llama_decode(ctx, batch_view); if (ret != 0) { LOG_ERR("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret); return false; } llama_synchronize(ctx); } return true; }; // warm up { for (int i = 0; i < 16; ++i) { common_batch_add(batch, 0, i, { 0 }, false); } if (!decode_helper(ctx, batch, ctx_params.n_batch)) { LOG_ERR("%s: llama_decode() failed\n", __func__); return 1; } } if (!params.batched_bench_output_jsonl) { LOG("\n"); LOG("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, flash_attn = %d, is_pp_shared = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.is_pp_shared, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch); LOG("\n"); LOG("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s"); LOG("|%6s-|-%6s-|-%4s-|-%6s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|\n", "------", "------", "----", "------", "--------", "--------", "--------", "--------", "--------", "--------"); } for ( int i_pp = 0; i_pp < (int) n_pp.size(); ++i_pp) { for ( int i_tg = 0; i_tg < (int) n_tg.size(); ++i_tg) { for (int i_pl = 0; i_pl < (int) n_pl.size(); ++i_pl) { const int pp = n_pp[i_pp]; const int tg = n_tg[i_tg]; const int pl = n_pl[i_pl]; const int n_ctx_req = is_pp_shared ? pp + pl*tg : pl*(pp + tg); if (n_ctx_req > n_kv_max) { continue; } common_batch_clear(batch); for (int i = 0; i < pp; ++i) { for (int j = 0; j < (is_pp_shared ? 1 : pl); ++j) { common_batch_add(batch, 0, i, { j }, false); } } batch.logits[batch.n_tokens - 1] = true; const auto t_pp_start = ggml_time_us(); llama_kv_cache_clear(ctx); if (!decode_helper(ctx, batch, ctx_params.n_batch)) { LOG_ERR("%s: llama_decode() failed\n", __func__); return 1; } if (is_pp_shared) { for (int32_t i = 1; i < pl; ++i) { llama_kv_cache_seq_cp(ctx, 0, i, -1, -1); } } const auto t_pp_end = ggml_time_us(); const auto t_tg_start = ggml_time_us(); for (int i = 0; i < tg; ++i) { common_batch_clear(batch); for (int j = 0; j < pl; ++j) { common_batch_add(batch, 0, pp + i, { j }, true); } if (!decode_helper(ctx, batch, ctx_params.n_batch)) { LOG_ERR("%s: llama_decode() failed\n", __func__); return 1; } } const auto t_tg_end = ggml_time_us(); const int32_t n_kv = n_ctx_req; const float t_pp = (t_pp_end - t_pp_start) / 1000000.0f; const float t_tg = (t_tg_end - t_tg_start) / 1000000.0f; const float t = t_pp + t_tg; const float speed_pp = is_pp_shared ? pp / t_pp : pl*pp / t_pp; const float speed_tg = pl*tg / t_tg; const float speed = n_kv / t; if(params.batched_bench_output_jsonl) { LOG( "{\"n_kv_max\": %d, \"n_batch\": %d, \"n_ubatch\": %d, \"flash_attn\": %d, \"is_pp_shared\": %d, \"n_gpu_layers\": %d, \"n_threads\": %u, \"n_threads_batch\": %u, " "\"pp\": %d, \"tg\": %d, \"pl\": %d, \"n_kv\": %d, \"t_pp\": %f, \"speed_pp\": %f, \"t_tg\": %f, \"speed_tg\": %f, \"t\": %f, \"speed\": %f}\n", n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.is_pp_shared, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch, pp, tg, pl, n_kv, t_pp, speed_pp, t_tg, speed_tg, t, speed ); } else { LOG("|%6d | %6d | %4d | %6d | %8.3f | %8.2f | %8.3f | %8.2f | %8.3f | %8.2f |\n", pp, tg, pl, n_kv, t_pp, speed_pp, t_tg, speed_tg, t, speed); } } } } LOG("\n"); llama_perf_context_print(ctx); llama_batch_free(batch); llama_free(ctx); llama_free_model(model); llama_backend_free(); LOG("\n\n"); return 0; }