#include "unicode.h" #include "unicode-data.h" #include #include #include #include #include #include #include #include #include #include #include #include static std::string unicode_cpts_to_utf8(const std::vector & cps) { std::string result; for (size_t i = 0; i < cps.size(); ++i) { result.append(unicode_cpt_to_utf8(cps[i])); } return result; } static uint32_t unicode_cpt_from_utf8(const std::string & utf8, size_t & offset) { assert(offset < utf8.size()); if (!(utf8[offset + 0] & 0x80)) { auto result = utf8[offset + 0]; offset += 1; return result; } if (!(utf8[offset + 0] & 0x40)) { throw std::invalid_argument("invalid character"); } if (!(utf8[offset + 0] & 0x20)) { if (offset + 1 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80)) { throw std::invalid_argument("invalid character"); } auto result = ((utf8[offset + 0] & 0x1f) << 6) | (utf8[offset + 1] & 0x3f); offset += 2; return result; } if (!(utf8[offset + 0] & 0x10)) { if (offset + 2 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80) || ! ((utf8[offset + 2] & 0xc0) == 0x80)) { throw std::invalid_argument("invalid character"); } auto result = ((utf8[offset + 0] & 0x0f) << 12) | ((utf8[offset + 1] & 0x3f) << 6) | (utf8[offset + 2] & 0x3f); offset += 3; return result; } if (!(utf8[offset + 0] & 0x08)) { if (offset + 3 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80) || ! ((utf8[offset + 2] & 0xc0) == 0x80) || !((utf8[offset + 3] & 0xc0) == 0x80)) { throw std::invalid_argument("invalid character"); } auto result = ((utf8[offset + 0] & 0x07) << 18) | ((utf8[offset + 1] & 0x3f) << 12) | ((utf8[offset + 2] & 0x3f) << 6) | (utf8[offset + 3] & 0x3f); offset += 4; return result; } throw std::invalid_argument("failed to convert utf8 to codepoint"); } //static std::vector unicode_cpt_to_utf16(uint32_t cp) { // std::vector result; // if (/* 0x0000 <= cp && */ cp <= 0xffff) { // result.emplace_back(cp); // return result; // } // if (0x10000 <= cp && cp <= 0x10ffff) { // result.emplace_back(0xd800 | ((cp - 0x10000) >> 10)); // result.emplace_back(0xdc00 | ((cp - 0x10000) & 0x03ff)); // return result; // } // throw std::invalid_argument("failed to convert codepoint to utf16"); //} //static std::vector unicode_cpts_to_utf16(const std::vector & cps) { // std::vector result; // for (size_t i = 0; i < cps.size(); ++i) { // auto temp = unicode_cpt_to_utf16(cps[i]); // result.insert(result.end(), temp.begin(), temp.end()); // } // return result; //} //static uint32_t unicode_cpt_from_utf16(const std::vector & utf16, size_t & offset) { // assert(offset < utf16.size()); // if (((utf16[0] >> 10) << 10) != 0xd800) { // auto result = utf16[offset + 0]; // offset += 1; // return result; // } // // if (offset + 1 >= utf16.size() || !((utf16[1] & 0xdc00) == 0xdc00)) { // throw std::invalid_argument("invalid character"); // } // // auto result = 0x10000 + (((utf16[0] & 0x03ff) << 10) | (utf16[1] & 0x03ff)); // offset += 2; // return result; //} //static std::vector unicode_cpts_from_utf16(const std::vector & utf16) { // std::vector result; // size_t offset = 0; // while (offset < utf16.size()) { // result.push_back(unicode_cpt_from_utf16(utf16, offset)); // } // return result; //} static std::unordered_map unicode_cpt_type_map() { std::unordered_map cpt_types; for (auto p : unicode_ranges_digit) { for (auto i = p.first; i <= p.second; ++ i) { cpt_types[i] = CODEPOINT_TYPE_DIGIT; } } for (auto p : unicode_ranges_letter) { for (auto i = p.first; i <= p.second; ++ i) { cpt_types[i] = CODEPOINT_TYPE_LETTER; } } for (auto p : unicode_ranges_whitespace) { for (auto i = p.first; i <= p.second; ++ i) { cpt_types[i] = CODEPOINT_TYPE_WHITESPACE; } } for (auto p : unicode_ranges_accent_mark) { for (auto i = p.first; i <= p.second; ++ i) { cpt_types[i] = CODEPOINT_TYPE_ACCENT_MARK; } } for (auto p : unicode_ranges_punctuation) { for (auto i = p.first; i <= p.second; ++ i) { cpt_types[i] = CODEPOINT_TYPE_PUNCTUATION; } } for (auto p : unicode_ranges_symbol) { for (auto i = p.first; i <= p.second; ++i) { cpt_types[i] = CODEPOINT_TYPE_SYMBOL; } } for (auto p : unicode_ranges_control) { for (auto i = p.first; i <= p.second; ++ i) { cpt_types[i] = CODEPOINT_TYPE_CONTROL; } } return cpt_types; } static std::unordered_map unicode_byte_to_utf8_map() { std::unordered_map map; for (int ch = u'!'; ch <= u'~'; ++ch) { assert(0 <= ch && ch < 256); map[ch] = unicode_cpt_to_utf8(ch); } for (int ch = u'¡'; ch <= u'¬'; ++ch) { assert(0 <= ch && ch < 256); map[ch] = unicode_cpt_to_utf8(ch); } for (int ch = u'®'; ch <= u'ÿ'; ++ch) { assert(0 <= ch && ch < 256); map[ch] = unicode_cpt_to_utf8(ch); } auto n = 0; for (int ch = 0; ch < 256; ++ch) { if (map.find(ch) == map.end()) { map[ch] = unicode_cpt_to_utf8(256 + n); ++n; } } return map; } static std::unordered_map unicode_utf8_to_byte_map() { std::unordered_map map; for (int ch = u'!'; ch <= u'~'; ++ch) { assert(0 <= ch && ch < 256); map[unicode_cpt_to_utf8(ch)] = ch; } for (int ch = u'¡'; ch <= u'¬'; ++ch) { assert(0 <= ch && ch < 256); map[unicode_cpt_to_utf8(ch)] = ch; } for (int ch = u'®'; ch <= u'ÿ'; ++ch) { assert(0 <= ch && ch < 256); map[unicode_cpt_to_utf8(ch)] = ch; } auto n = 0; for (int ch = 0; ch < 256; ++ch) { if (map.find(unicode_cpt_to_utf8(ch)) == map.end()) { map[unicode_cpt_to_utf8(256 + n)] = ch; ++n; } } return map; } static inline std::wstring unicode_wstring_from_utf8(const std::string & s) { std::wstring_convert> conv; return conv.from_bytes(s); } static std::vector unicode_byte_encoding_process(const std::vector & bpe_words) { std::vector bpe_encoded_words; for (const auto & word : bpe_words) { std::string text_utf; auto utf_word = unicode_cpts_from_utf8(word); for (size_t i = 0; i < utf_word.size(); ++i) { text_utf += unicode_cpt_to_utf8(utf_word[i]); } std::string encoded_token; for (char & c : text_utf) { encoded_token += unicode_byte_to_utf8(c); } bpe_encoded_words.emplace_back(encoded_token); } return bpe_encoded_words; } // GPT2 system regex: 's|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+ static std::vector unicode_regex_split_custom_gpt2(const std::string & text, const std::vector & offsets) { std::vector bpe_offsets; // store the offset of each word bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size size_t start = 0; const auto cpts = unicode_cpts_from_utf8(text); for (auto offset : offsets) { std::string token; bool collecting_numeric = false; bool collecting_letter = false; bool collecting_special = false; bool collecting_whitespace_lookahead = false; bool collecting = false; std::vector text_utf; text_utf.reserve(offset); for (size_t i = start; i < start + offset; ++i) { text_utf.emplace_back(unicode_cpt_to_utf8(cpts[i])); } for (int i = 0; i < (int)text_utf.size(); i++) { const std::string & utf_char = text_utf[i]; bool split_condition = false; int bytes_remain = text_utf.size() - i; // forward backward lookups const std::string & utf_char_next = (i + 1 < (int)text_utf.size()) ? text_utf[i + 1] : ""; const std::string & utf_char_next_next = (i + 2 < (int)text_utf.size()) ? text_utf[i + 2] : ""; // handling contractions if (!split_condition && bytes_remain >= 2) { // 's|'t|'m|'d if (utf_char == "\'" && (utf_char_next == "s" || utf_char_next == "t" || utf_char_next == "m" || utf_char_next == "d")) { split_condition = true; } if (split_condition) { if (token.size()) { bpe_offsets.emplace_back(unicode_cpts_from_utf8(token).size()); } token = utf_char + utf_char_next; bpe_offsets.emplace_back(unicode_cpts_from_utf8(token).size()); token = ""; i++; continue; } } if (!split_condition && bytes_remain >= 3) { // 're|'ve|'ll if (utf_char == "\'" && ( (utf_char_next == "r" && utf_char_next_next == "e") || (utf_char_next == "v" && utf_char_next_next == "e") || (utf_char_next == "l" && utf_char_next_next == "l")) ) { split_condition = true; } if (split_condition) { // current token + next token can be defined if (token.size()) { bpe_offsets.emplace_back(unicode_cpts_from_utf8(token).size()); } token = utf_char; token += utf_char_next; token += utf_char_next_next; bpe_offsets.emplace_back(unicode_cpts_from_utf8(token).size()); token = ""; i += 2; continue; } } if (!split_condition && !collecting) { if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_LETTER || (token.empty() && utf_char == " " && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_LETTER)) { collecting_letter = true; collecting = true; } else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_DIGIT || (token.empty() && utf_char == " " && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) { collecting_numeric = true; collecting = true; } else if ( ((unicode_cpt_type(utf_char) != CODEPOINT_TYPE_LETTER && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_DIGIT) && (unicode_cpt_type(utf_char) != CODEPOINT_TYPE_WHITESPACE)) || (token.empty() && utf_char == " " && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_LETTER && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_DIGIT && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_WHITESPACE) ) { collecting_special = true; collecting = true; } else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_WHITESPACE) { collecting_whitespace_lookahead = true; collecting = true; } else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE) { split_condition = true; } } else if (!split_condition && collecting) { if (collecting_letter && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_LETTER) { split_condition = true; } else if (collecting_numeric && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_DIGIT) { split_condition = true; } else if (collecting_special && (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_LETTER || unicode_cpt_type(utf_char) == CODEPOINT_TYPE_DIGIT || unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE)) { split_condition = true; } else if (collecting_whitespace_lookahead && (unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_LETTER || unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) { split_condition = true; } } if (utf_char_next == "") { split_condition = true; // final token += utf_char; } if (split_condition) { if (token.size()) { bpe_offsets.emplace_back(unicode_cpts_from_utf8(token).size()); } token = utf_char; collecting = false; collecting_letter = false; collecting_numeric = false; collecting_special = false; collecting_whitespace_lookahead = false; } else { token += utf_char; } } start += offset; } return bpe_offsets; } // use std::wregex to split the text static std::vector unicode_regex_split_stl(const std::wstring & wtext, const std::wstring & regex_expr, const std::vector & offsets) { std::wregex expr(regex_expr); std::vector bpe_offsets; // store the offset of each word bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size size_t start = 0; for (auto offset : offsets) { std::wcregex_iterator it(wtext.data() + start, wtext.data() + start + offset, expr); std::wcregex_iterator end; int64_t start_idx = 0; while (it != end) { std::wcmatch match = *it; if (match.position() > start_idx) { bpe_offsets.emplace_back(match.position() - start_idx); } bpe_offsets.emplace_back(match.length()); start_idx = match.position() + match.length(); ++it; } if (start_idx < (int64_t) offset) { bpe_offsets.emplace_back(offset - start_idx); } start += offset; } return bpe_offsets; } // use std::regex to split the text static std::vector unicode_regex_split_stl(const std::string & text, const std::string & regex_expr, const std::vector & offsets) { std::regex expr(regex_expr); std::vector bpe_offsets; // store the offset of each word bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size size_t start = 0; for (auto offset : offsets) { std::cregex_iterator it(text.data() + start, text.data() + start + offset, expr); std::cregex_iterator end; int64_t start_idx = 0; while (it != end) { std::cmatch match = *it; if (match.position() > start_idx) { bpe_offsets.emplace_back(match.position() - start_idx); } bpe_offsets.emplace_back(match.length()); start_idx = match.position() + match.length(); ++it; } if (start_idx < (int64_t) offset) { bpe_offsets.emplace_back(offset - start_idx); } start += offset; } return bpe_offsets; } static std::vector unicode_regex_split_custom(const std::string & text, const std::string & regex_expr, const std::vector & offsets) { std::vector bpe_offsets; (void)(text); (void)(regex_expr); (void)(offsets); // TODO: this implementation is actually wrong, uncomment and run: // make -j && ./bin/test-tokenizer-0 ../models/ggml-vocab-gpt-2.gguf //if (regex_expr == "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)") { // bpe_offsets = unicode_regex_split_custom_gpt2(text, offsets); //} return bpe_offsets; } // // interface // std::string unicode_cpt_to_utf8(uint32_t cp) { std::string result; if (/* 0x00 <= cp && */ cp <= 0x7f) { result.push_back(cp); return result; } if (0x80 <= cp && cp <= 0x7ff) { result.push_back(0xc0 | ((cp >> 6) & 0x1f)); result.push_back(0x80 | (cp & 0x3f)); return result; } if (0x800 <= cp && cp <= 0xffff) { result.push_back(0xe0 | ((cp >> 12) & 0x0f)); result.push_back(0x80 | ((cp >> 6) & 0x3f)); result.push_back(0x80 | (cp & 0x3f)); return result; } if (0x10000 <= cp && cp <= 0x10ffff) { result.push_back(0xf0 | ((cp >> 18) & 0x07)); result.push_back(0x80 | ((cp >> 12) & 0x3f)); result.push_back(0x80 | ((cp >> 6) & 0x3f)); result.push_back(0x80 | (cp & 0x3f)); return result; } throw std::invalid_argument("invalid codepoint"); } std::vector unicode_cpts_normalize_nfd(const std::vector & cpts) { std::vector result; result.reserve(cpts.size()); for (size_t i = 0; i < cpts.size(); ++i) { auto it = unicode_map_nfd.find(cpts[i]); if (it == unicode_map_nfd.end()) { result.push_back(cpts[i]); } else { result.push_back(it->second); } } return result; } std::vector unicode_cpts_from_utf8(const std::string & utf8) { std::vector result; size_t offset = 0; while (offset < utf8.size()) { result.push_back(unicode_cpt_from_utf8(utf8, offset)); } return result; } int unicode_cpt_type(uint32_t cp) { static std::unordered_map cpt_types = unicode_cpt_type_map(); const auto it = cpt_types.find(cp); return it == cpt_types.end() ? CODEPOINT_TYPE_UNIDENTIFIED : it->second; } int unicode_cpt_type(const std::string & utf8) { if (utf8.length() == 0) { return CODEPOINT_TYPE_UNIDENTIFIED; } size_t offset = 0; return unicode_cpt_type(unicode_cpt_from_utf8(utf8, offset)); } std::string unicode_byte_to_utf8(uint8_t byte) { static std::unordered_map map = unicode_byte_to_utf8_map(); return map.at(byte); } uint8_t unicode_utf8_to_byte(const std::string & utf8) { static std::unordered_map map = unicode_utf8_to_byte_map(); return map.at(utf8); } char32_t unicode_tolower(char32_t cp) { auto it = unicode_map_lowercase.find(cp); return it == unicode_map_lowercase.end() ? cp : it->second; } std::vector unicode_regex_split(const std::string & text, const std::vector & regex_exprs) { // unicode categories static const std::map k_ucat_enum = { { "\\p{N}", CODEPOINT_TYPE_DIGIT }, { "\\p{L}", CODEPOINT_TYPE_LETTER }, { "\\p{P}", CODEPOINT_TYPE_PUNCTUATION }, }; static const std::map k_ucat_cpt = { { CODEPOINT_TYPE_DIGIT, 0xD1 }, { CODEPOINT_TYPE_LETTER, 0xD2 }, { CODEPOINT_TYPE_PUNCTUATION, 0xD3 }, }; static const std::map k_ucat_map = { { CODEPOINT_TYPE_DIGIT, "\x30-\x39" }, // 0-9 { CODEPOINT_TYPE_LETTER, "\x41-\x5A\x61-\x7A" }, // A-Za-z { CODEPOINT_TYPE_PUNCTUATION, "\x21-\x23\x25-\x2A\x2C-\x2F\x3A-\x3B\x3F-\x40\\\x5B-\\\x5D\x5F\\\x7B\\\x7D" }, // !-#%-*,-/:-;?-@\[-\]_\{\} }; // compute collapsed codepoints only if needed by at least one regex bool need_collapse = false; for (auto & regex_expr : regex_exprs) { // search for unicode categories for (const auto & ucat : k_ucat_enum) { if (std::string::npos != regex_expr.find(ucat.first)) { need_collapse = true; break; } } } const auto cpts = unicode_cpts_from_utf8(text); // generate a "collapsed" representation of the text, where all codepoints are replaced by a single byte // ref: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2081479935 std::string text_collapsed; if (need_collapse) { // collapse all unicode categories text_collapsed.resize(cpts.size()); for (size_t i = 0; i < cpts.size(); ++i) { // keep single-byte codepoints as is if (cpts[i] < 128) { text_collapsed[i] = cpts[i]; continue; } const int cpt_type = unicode_cpt_type(cpts[i]); if (k_ucat_cpt.find(cpt_type) != k_ucat_cpt.end()) { text_collapsed[i] = k_ucat_cpt.at(cpt_type); } else { text_collapsed[i] = (char) 0xD0; // fallback } } } std::vector bpe_offsets = { cpts.size() }; for (auto & regex_expr : regex_exprs) { // first, see if we have an efficient custom regex implementation auto tmp = unicode_regex_split_custom(text, regex_expr, bpe_offsets); if (!tmp.empty()) { bpe_offsets = std::move(tmp); continue; } // fallback to general-purpose std::regex / std::wregex try { // if a unicode category is used in the regex, we use the collapsed text and replace the unicode category // with the corresponding collapsed representation bool use_collapsed = false; for (auto & ucat : k_ucat_enum) { if (std::string::npos != regex_expr.find(ucat.first)) { use_collapsed = true; break; } } if (use_collapsed) { // sanity-check that the original regex does not contain any non-ASCII characters const auto cpts_regex = unicode_cpts_from_utf8(regex_expr); for (size_t i = 0; i < cpts_regex.size(); ++i) { if (cpts_regex[i] >= 128) { throw std::runtime_error("Regex includes both unicode categories and non-ASCII characters - not supported"); } } // generate a collapsed representation of the regex std::string regex_expr_collapsed; // track if we are inside [], because nested [] are not allowed bool inside = false; for (size_t i = 0; i < regex_expr.size(); ++i) { if (regex_expr[i] == '[' && (i == 0 || regex_expr[i - 1] != '\\')) { regex_expr_collapsed += '['; inside = true; continue; } if (inside && regex_expr[i] == ']' && regex_expr[i - 1] != '\\') { regex_expr_collapsed += ']'; inside = false; continue; } if (regex_expr[i + 0] == '\\' && i + 4 < regex_expr.size() && regex_expr[i + 1] == 'p' && regex_expr[i + 2] == '{' && regex_expr[i + 4] == '}') { const std::string pat = regex_expr.substr(i, 5); if (k_ucat_enum.find(pat) != k_ucat_enum.end()) { if (!inside) { regex_expr_collapsed += '['; } regex_expr_collapsed += k_ucat_cpt.at(k_ucat_enum.at(pat)); regex_expr_collapsed += k_ucat_map.at(k_ucat_enum.at(pat)); if (!inside) { regex_expr_collapsed += ']'; } i += 4; continue; } } regex_expr_collapsed += regex_expr[i]; } //printf("text_collapsed: %s\n", text_collapsed.c_str()); //printf("regex_expr_collapsed: %s\n", regex_expr_collapsed.c_str()); bpe_offsets = unicode_regex_split_stl(text_collapsed, regex_expr_collapsed, bpe_offsets); } else { // no unicode category used, we can use std::wregex directly const std::wstring wtext = unicode_wstring_from_utf8(text); const std::wstring wregex_expr = unicode_wstring_from_utf8(regex_expr); //printf("text: %s\n", text.c_str()); //printf("regex_expr: %s\n", regex_expr.c_str()); bpe_offsets = unicode_regex_split_stl(wtext, wregex_expr, bpe_offsets); } } catch (std::regex_error & e) { fprintf(stderr, "Failed to process regex: '%s'\n", regex_expr.c_str()); fprintf(stderr, "Regex error: %s\n", e.what()); throw std::runtime_error("Failed to process regex"); } } std::vector bpe_words; bpe_words.reserve(bpe_offsets.size()); // reserve memory for the approximate size size_t start = 0; for (size_t & offset : bpe_offsets) { bpe_words.emplace_back(); for (size_t i = start; i < start + offset; ++i) { bpe_words.back() += unicode_cpt_to_utf8(cpts[i]); } start += offset; } return unicode_byte_encoding_process(bpe_words); }