#!/usr/bin/env python3 # -*- coding: utf-8 -*- from __future__ import annotations import logging import argparse import os import sys import types from pathlib import Path from typing import TYPE_CHECKING, Iterable, Iterator import torch if TYPE_CHECKING: from torch import Tensor if 'NO_LOCAL_GGUF' not in os.environ: sys.path.insert(1, str(Path(__file__).parent / 'gguf-py')) import gguf # reuse model definitions from convert_hf_to_gguf.py from convert_hf_to_gguf import Model logger = logging.getLogger("lora-to-gguf") def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser( description="Convert a huggingface PEFT LoRA adapter to a GGML compatible file") parser.add_argument( "--outfile", type=Path, help="path to write to; default: based on input. {ftype} will be replaced by the outtype.", ) parser.add_argument( "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0"], default="f16", help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0", ) parser.add_argument( "--bigendian", action="store_true", help="model is executed on big endian machine", ) parser.add_argument( "--verbose", action="store_true", help="increase output verbosity", ) parser.add_argument( "--base", type=Path, required=True, help="directory containing base model file", ) parser.add_argument( "lora_path", type=Path, help="directory containing LoRA adapter file", ) return parser.parse_args() if __name__ == '__main__': args = parse_args() logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO) ftype_map: dict[str, gguf.LlamaFileType] = { "f32": gguf.LlamaFileType.ALL_F32, "f16": gguf.LlamaFileType.MOSTLY_F16, "bf16": gguf.LlamaFileType.MOSTLY_BF16, "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0, } ftype = ftype_map[args.outtype] dir_base_model = args.base dir_lora = args.lora_path input_json = os.path.join(dir_lora, "adapter_config.json") input_model = os.path.join(dir_lora, "adapter_model.bin") if args.outfile is not None: fname_out = args.outfile else: # output in the same directory as the model by default fname_out = dir_lora / 'ggml-lora-{ftype}.gguf' if os.path.exists(input_model): lora_model = torch.load(input_model, map_location="cpu") else: input_model = os.path.join(dir_lora, "adapter_model.safetensors") # lazy import load_file only if lora is in safetensors format. from safetensors.torch import load_file lora_model = load_file(input_model, device="cpu") # load base model logger.info(f"Loading base model: {dir_base_model.name}") hparams = Model.load_hparams(dir_base_model) with torch.inference_mode(): try: model_class = Model.from_model_architecture(hparams["architectures"][0]) except NotImplementedError: logger.error(f"Model {hparams['architectures'][0]} is not supported") sys.exit(1) model_instance = model_class(dir_base_model, ftype, fname_out, args.bigendian, False, False, None) logger.info("Set model parameters") model_instance.set_gguf_parameters() # adapter_config = json.load(input_json) model_instance.gguf_writer.add_string("training.type", "finetune_lora") map_tensors: dict[str, Tensor] = {} for tensor_name, tensor in lora_model.items(): orig_name = tensor_name.replace("base_model.model.", "") orig_name = orig_name.replace(".lora_A.weight", ".weight") orig_name = orig_name.replace(".lora_B.weight", ".weight") is_lora_a = ".lora_A.weight" in tensor_name is_lora_b = ".lora_B.weight" in tensor_name if not is_lora_a and not is_lora_b: logger.error(f"Unexpected name '{tensor_name}': Not a lora_A or lora_B tensor") sys.exit(1) dest_name = model_instance.map_tensor_name(orig_name) dest_name = f"{dest_name}.lora_a" if is_lora_a else f"{dest_name}.lora_b" # logger.info(f"{orig_name} --> {dest_name}") map_tensors[dest_name] = tensor # overwrite method def get_tensors(self) -> Iterator[tuple[str, Tensor]]: for name, tensor in map_tensors.items(): yield (name, tensor) # overwrite method def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: del bid # unused # TODO: This will not take into account tensor transformations return [(name, data_torch)] # overwrite method def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool: del name, new_name, bid, n_dims # unused return ftype != gguf.LlamaFileType.ALL_F32 model_instance.get_tensors = types.MethodType(get_tensors, model_instance) model_instance.modify_tensors = types.MethodType(modify_tensors, model_instance) model_instance.extra_f16_tensors = types.MethodType(extra_f16_tensors, model_instance) model_instance.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION) logger.info("Exporting model...") model_instance.write() logger.info(f"Model successfully exported to {fname_out}")