#include "ggml-opt.h" #include "ggml.h" #include "ggml-alloc.h" #include "ggml-backend.h" #include "ggml-impl.h" #include #include #include #include #include #include #include struct ggml_opt_dataset { struct ggml_context * ctx; ggml_backend_buffer_t buf; struct ggml_tensor * data; struct ggml_tensor * labels; int64_t ndata; int64_t ndata_shard; size_t nbs_data; size_t nbs_labels; std::vector permutation; }; struct ggml_opt_context { ggml_backend_sched_t backend_sched; ggml_cgraph * allocated_graph; ggml_cgraph * allocated_graph_copy; struct ggml_context * ctx_static; struct ggml_context * ctx_static_cpu; struct ggml_context * ctx_compute; struct ggml_context * ctx_copy; ggml_backend_buffer_t buf_static; ggml_backend_buffer_t buf_static_cpu; std::mt19937 rng; struct ggml_tensor * inputs; struct ggml_tensor * outputs; struct ggml_tensor * labels; struct ggml_tensor * loss; struct ggml_tensor * pred; struct ggml_tensor * ncorrect; struct ggml_cgraph * gf; struct ggml_cgraph * gb_grad; struct ggml_cgraph * gb_opt; int64_t iter; int32_t opt_period; int32_t opt_i; bool loss_per_datapoint; ggml_opt_get_optimizer_params get_opt_pars; void * get_opt_pars_ud; struct ggml_tensor * adamw_params; }; struct ggml_opt_result { int64_t ndata = 0; std::vector loss; std::vector pred; int64_t ncorrect = 0; bool loss_per_datapoint = false; int64_t opt_period = -1; }; // ====== Dataset ====== ggml_opt_dataset_t ggml_opt_dataset_init(int64_t ne_datapoint, int64_t ne_label, int64_t ndata, int64_t ndata_shard) { GGML_ASSERT(ne_datapoint > 0); GGML_ASSERT(ne_label >= 0); GGML_ASSERT(ndata > 0); GGML_ASSERT(ndata_shard > 0); ggml_opt_dataset_t result = new ggml_opt_dataset; result->ndata = ndata; result->ndata_shard = ndata_shard; { struct ggml_init_params params = { /*.mem_size =*/ 2*ggml_tensor_overhead(), /*.mem_buffer =*/ nullptr, /*.no_alloc =*/ true, }; result->ctx = ggml_init(params); } result->data = ggml_new_tensor_2d(result->ctx, GGML_TYPE_F32, ne_datapoint, ndata); result->nbs_data = ggml_nbytes(result->data) * ndata_shard/ndata; if (ne_label > 0) { result->labels = ggml_new_tensor_2d(result->ctx, GGML_TYPE_F32, ne_label, ndata); result->nbs_labels = ggml_nbytes(result->labels) * ndata_shard/ndata; } else { result->labels = nullptr; result->nbs_labels = 0; } result->buf = ggml_backend_alloc_ctx_tensors_from_buft(result->ctx, ggml_backend_cpu_buffer_type()); const int64_t nshards = ndata/ndata_shard; result->permutation.resize(nshards); for (int64_t i = 0; i < nshards; ++i) { result->permutation[i] = i; } return result; } void ggml_opt_dataset_free(ggml_opt_dataset_t dataset) { ggml_backend_buffer_free(dataset->buf); ggml_free(dataset->ctx); delete dataset; } struct ggml_tensor * ggml_opt_dataset_data(ggml_opt_dataset_t dataset) { return dataset->data; } struct ggml_tensor * ggml_opt_dataset_labels(ggml_opt_dataset_t dataset) { return dataset->labels; } void ggml_opt_dataset_shuffle(ggml_opt_context_t opt_ctx, ggml_opt_dataset_t dataset, int64_t idata) { GGML_ASSERT(idata <= dataset->ndata); if (idata < 0) { std::shuffle(dataset->permutation.begin(), dataset->permutation.end(), opt_ctx->rng); return; } GGML_ASSERT(idata % dataset->ndata_shard == 0); const int64_t ishard_max = idata / dataset->ndata_shard; std::shuffle(dataset->permutation.begin(), dataset->permutation.begin() + ishard_max, opt_ctx->rng); } void ggml_opt_dataset_get_batch(ggml_opt_dataset_t dataset, struct ggml_tensor * data_batch, struct ggml_tensor * labels_batch, int64_t ibatch) { GGML_ASSERT( data_batch && ggml_is_contiguous(data_batch)); GGML_ASSERT(!labels_batch || ggml_is_contiguous(labels_batch)); GGML_ASSERT((labels_batch == nullptr) == (dataset->labels == nullptr)); const size_t nb_data_batch = ggml_nbytes(data_batch); GGML_ASSERT(nb_data_batch % dataset->nbs_data == 0); const int64_t shards_per_batch = nb_data_batch / dataset->nbs_data; if (labels_batch) { const size_t nb_labels_batch = ggml_nbytes(labels_batch); GGML_ASSERT(nb_labels_batch == shards_per_batch*dataset->nbs_labels); } GGML_ASSERT((ibatch + 1)*shards_per_batch <= int64_t(dataset->permutation.size())); for (int64_t ishard_batch = 0; ishard_batch < shards_per_batch; ++ishard_batch) { const int64_t ishard = dataset->permutation[ibatch*shards_per_batch + ishard_batch]; const char * ptr_data = (const char *) dataset->data->data + ishard*dataset->nbs_data; ggml_backend_tensor_set(data_batch, ptr_data, ishard_batch*dataset->nbs_data, dataset->nbs_data); if (!labels_batch) { continue; } const char * ptr_labels = (const char *) dataset->labels->data + ishard*dataset->nbs_labels; ggml_backend_tensor_set(labels_batch, ptr_labels, ishard_batch*dataset->nbs_labels, dataset->nbs_labels); } } // ====== Model / Context ====== struct ggml_opt_optimizer_params ggml_opt_get_default_optimizer_params(void * userdata) { GGML_UNUSED(userdata); ggml_opt_optimizer_params result; result.adamw.alpha = 0.001f; result.adamw.beta1 = 0.9f; result.adamw.beta2 = 0.999f; result.adamw.eps = 1e-8f; result.adamw.wd = 0.0f; return result; } struct ggml_opt_params ggml_opt_default_params( ggml_backend_sched_t backend_sched, struct ggml_context * ctx_compute, struct ggml_tensor * inputs, struct ggml_tensor * outputs, enum ggml_opt_loss_type loss_type) { return { /*backend_sched =*/ backend_sched, /*ctx_compute =*/ ctx_compute, /*inputs =*/ inputs, /*logits =*/ outputs, /*loss_type =*/ loss_type, /*build_type =*/ GGML_OPT_BUILD_TYPE_OPT, /*opt_period =*/ 1, /*get_opt_pars =*/ ggml_opt_get_default_optimizer_params, /*get_opt_pars_ud =*/ nullptr, }; } static ggml_tensor * map_tensor(std::map & tensor_map, ggml_context * ctx, ggml_tensor * tensor) { if (!tensor) { return nullptr; } if (tensor_map.find(tensor) != tensor_map.end()) { return tensor_map[tensor]; } ggml_tensor * new_tensor = ggml_dup_tensor(ctx, tensor); tensor_map[tensor] = new_tensor; new_tensor->op = tensor->op; for (int i = 0; i < GGML_MAX_DIMS; i++) { new_tensor->nb[i] = tensor->nb[i]; } new_tensor->flags = tensor->flags; memcpy(new_tensor->op_params, tensor->op_params, sizeof(tensor->op_params)); strcpy(new_tensor->name, tensor->name); new_tensor->data = tensor->data; new_tensor->buffer = tensor->buffer; new_tensor->extra = tensor->extra; new_tensor->view_offs = tensor->view_offs; new_tensor->view_src = map_tensor(tensor_map, ctx, tensor->view_src); for (int i = 0; i < GGML_MAX_SRC; i++) { new_tensor->src[i] = map_tensor(tensor_map, ctx, tensor->src[i]); } return new_tensor; } static ggml_cgraph * dup_graph(ggml_context * ctx, ggml_cgraph * graph) { std::map tensor_map; ggml_cgraph * new_graph = ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, /*grads =*/ true); for (int i = 0; i < graph->n_leafs; i++) { ggml_build_forward_expand(new_graph, map_tensor(tensor_map, ctx, graph->leafs[i])); } for (int i = 0; i < graph->n_nodes; i++) { ggml_build_forward_expand(new_graph, map_tensor(tensor_map, ctx, graph->nodes[i])); } for (int i = 0; i < graph->n_nodes; ++i) { const size_t igrad_src = ggml_hash_find(&graph->visited_hash_set, graph->nodes[i]); const size_t igrad_dst = ggml_hash_find(&new_graph->visited_hash_set, new_graph->nodes[i]); graph->grads[igrad_dst] = new_graph->grads[igrad_src]; graph->grad_accs[igrad_dst] = new_graph->grad_accs[igrad_src]; } return new_graph; } static void ggml_opt_alloc_graph(ggml_opt_context_t opt_ctx, ggml_cgraph * graph) { GGML_ASSERT(graph); if (opt_ctx->allocated_graph == graph) { return; } ggml_backend_sched_reset(opt_ctx->backend_sched); // clear allocation of previous graph { ggml_init_params params = { /*.mem_size =*/ ggml_tensor_overhead() * GGML_DEFAULT_GRAPH_SIZE, /*.mem_buffer =*/ nullptr, /*.no_alloc =*/ true, }; ggml_free(opt_ctx->ctx_copy); opt_ctx->ctx_copy = ggml_init(params); } opt_ctx->allocated_graph_copy = dup_graph(opt_ctx->ctx_copy, graph); ggml_backend_sched_alloc_graph(opt_ctx->backend_sched, opt_ctx->allocated_graph_copy); opt_ctx->allocated_graph = graph; } ggml_opt_context_t ggml_opt_init(struct ggml_opt_params params) { ggml_opt_context_t result = new struct ggml_opt_context; result->backend_sched = params.backend_sched; result->allocated_graph = nullptr; result->allocated_graph_copy = nullptr; result->ctx_compute = params.ctx_compute; result->ctx_copy = nullptr; result->inputs = params.inputs; result->outputs = params.outputs; result->iter = 1; result->opt_period = params.opt_period; result->opt_i = 0; result->get_opt_pars = params.get_opt_pars; result->get_opt_pars_ud = params.get_opt_pars_ud; GGML_ASSERT(result->inputs->data && "the inputs must be allocated statically"); GGML_ASSERT(result->opt_period >= 1); const bool accumulate = params.build_type == GGML_OPT_BUILD_TYPE_GRAD || (params.build_type == GGML_OPT_BUILD_TYPE_OPT && result->opt_period > 1); ggml_set_input(result->inputs); ggml_set_output(result->outputs); result->gf = ggml_new_graph_custom(result->ctx_compute, GGML_DEFAULT_GRAPH_SIZE, /*grads =*/ true); // Forward pass. ggml_build_forward_expand(result->gf, result->outputs); int n_param = 0; for (int i = 0; i < result->gf->n_nodes; ++i) { if (result->gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) { n_param++; } } { // The static context is used for: // - gradients (1 tensor per param if using gradient accumulation) // - optimizer momenta (2 tensors per param) // - labels // - loss + its gradient (up to 5 tensors) // - pred // - ncorrect (2 tensors). const size_t tensors_per_param = (accumulate ? 1 : 0) + (params.build_type == GGML_OPT_BUILD_TYPE_OPT ? 2 : 0); const size_t size_meta = (tensors_per_param*n_param + 9) * ggml_tensor_overhead(); struct ggml_init_params params = { /*.mem_size =*/ size_meta, /*.mem_buffer =*/ nullptr, /*.no_alloc =*/ true, }; result->ctx_static = ggml_init(params); } { // The static cpu context is used for: // - optimizer parameters (1 for the entire context) const size_t size_meta = 1 * ggml_tensor_overhead(); struct ggml_init_params params = { /*.mem_size =*/ size_meta, /*.mem_buffer =*/ nullptr, /*.no_alloc =*/ true, }; result->ctx_static_cpu = ggml_init(params); } switch (params.loss_type) { case GGML_OPT_LOSS_TYPE_MEAN: { result->labels = nullptr; result->loss = ggml_sum(result->ctx_static, result->outputs); ggml_set_name(result->loss, "loss_sum"); const float scale = 1.0f / (result->opt_period * ggml_nelements(result->outputs)); result->loss = ggml_scale(result->ctx_static, result->loss, scale); ggml_set_name(result->loss, "loss_mean"); result->loss_per_datapoint = true; break; } case GGML_OPT_LOSS_TYPE_SUM: { result->labels = nullptr; result->loss = ggml_sum(result->ctx_static, result->outputs); ggml_set_name(result->loss, "loss_sum"); result->loss_per_datapoint = false; break; } case GGML_OPT_LOSS_TYPE_CROSS_ENTROPY: { result->labels = ggml_dup_tensor(result->ctx_static, result->outputs); ggml_set_input(result->labels); ggml_set_name(result->labels, "labels"); result->loss = ggml_cross_entropy_loss(result->ctx_static, result->outputs, result->labels); ggml_set_name(result->loss, "loss_cross_entropy"); if (result->opt_period > 1) { result->loss = ggml_scale(result->ctx_static, result->loss, 1.0f / result->opt_period); ggml_set_name(result->loss, "loss_cross_entropy_scaled"); } result->loss_per_datapoint = true; break; } case GGML_OPT_LOSS_TYPE_MEAN_SQUARED_ERROR: { result->labels = ggml_dup_tensor(result->ctx_static, result->outputs); ggml_set_input(result->labels); ggml_set_name(result->labels, "labels"); result->loss = ggml_sub(result->ctx_static, result->outputs, result->labels); ggml_set_name(result->loss, "loss_error"); result->loss = ggml_sqr(result->ctx_static, result->loss); ggml_set_name(result->loss, "loss_squared_error"); result->loss = ggml_sum(result->ctx_static, result->loss); ggml_set_name(result->loss, "loss_sum_squared_error"); const float scale = 1.0f / (result->opt_period * ggml_nelements(result->outputs)); result->loss = ggml_scale(result->ctx_static, result->loss, scale); ggml_set_name(result->loss, "loss_mean_squared_error"); result->loss_per_datapoint = true; break; } } ggml_set_output(result->loss); ggml_set_loss(result->loss); ggml_build_forward_expand(result->gf, result->loss); result->pred = ggml_argmax(result->ctx_static, result->outputs); ggml_set_name(result->pred, "pred"); ggml_set_output(result->pred); ggml_build_forward_expand(result->gf, result->pred); if (result->labels) { result->ncorrect = ggml_count_equal(result->ctx_static, result->pred, ggml_argmax(result->ctx_static, result->labels)); ggml_set_name(result->ncorrect, "ncorrect"); ggml_set_output(result->ncorrect); ggml_build_forward_expand(result->gf, result->ncorrect); } else { result->ncorrect = nullptr; } if (params.build_type == GGML_OPT_BUILD_TYPE_FORWARD) { result->gb_grad = nullptr; result->gb_opt = nullptr; result->buf_static = ggml_backend_alloc_ctx_tensors(result->ctx_static, ggml_backend_sched_get_backend(result->backend_sched, 0)); result->buf_static_cpu = nullptr; ggml_opt_alloc_graph(result, result->gf); return result; } // gb_grad == graph backward gradients, forward pass, then backward pass to calculate gradients. result->gb_grad = ggml_graph_dup(result->ctx_compute, result->gf); ggml_build_backward_expand(result->ctx_static, result->ctx_compute, result->gb_grad, accumulate); if (params.build_type == GGML_OPT_BUILD_TYPE_GRAD) { result->gb_opt = nullptr; result->buf_static = ggml_backend_alloc_ctx_tensors(result->ctx_static, ggml_backend_sched_get_backend(result->backend_sched, 0)); result->buf_static_cpu = nullptr; ggml_opt_alloc_graph(result, result->gb_grad); ggml_graph_reset(result->gb_grad); return result; } GGML_ASSERT(params.build_type == GGML_OPT_BUILD_TYPE_OPT); // gb_opt == graph backward optimize, forward pass, then backward pass to calculate gradients, then optimizer step. result->gb_opt = ggml_graph_dup(result->ctx_compute, result->gb_grad); result->adamw_params = ggml_new_tensor_1d(result->ctx_static_cpu, GGML_TYPE_F32, 7); ggml_set_input(result->adamw_params); ggml_set_name(result->adamw_params, "adamw_params"); for (int i = result->gf->n_nodes-1; i >= 0; --i) { struct ggml_tensor * node = result->gb_opt->nodes[i]; struct ggml_tensor * grad = ggml_graph_get_grad(result->gb_opt, node); if (node->flags & GGML_TENSOR_FLAG_PARAM) { struct ggml_tensor * m = ggml_dup_tensor(result->ctx_static, node); struct ggml_tensor * v = ggml_dup_tensor(result->ctx_static, node); struct ggml_tensor * opt_step = ggml_opt_step_adamw(result->ctx_compute, node, grad, m, v, result->adamw_params); ggml_build_forward_expand(result->gb_opt, opt_step); } } result->buf_static = ggml_backend_alloc_ctx_tensors( result->ctx_static, ggml_backend_sched_get_backend(result->backend_sched, 0)); result->buf_static_cpu = ggml_backend_alloc_ctx_tensors_from_buft(result->ctx_static_cpu, ggml_backend_cpu_buffer_type()); ggml_opt_alloc_graph(result, result->gb_opt); ggml_graph_reset(result->gb_opt); return result; } void ggml_opt_free(ggml_opt_context_t opt_ctx) { if (opt_ctx == nullptr) { return; } ggml_backend_buffer_free(opt_ctx->buf_static); ggml_backend_buffer_free(opt_ctx->buf_static_cpu); ggml_free(opt_ctx->ctx_static); ggml_free(opt_ctx->ctx_static_cpu); delete opt_ctx; } void ggml_opt_reset(ggml_opt_context_t opt_ctx, bool optimizer) { if (optimizer) { ggml_graph_reset(opt_ctx->gb_opt); opt_ctx->iter = 1; } else { ggml_graph_reset(opt_ctx->gb_grad); } } struct ggml_tensor * ggml_opt_inputs(ggml_opt_context_t opt_ctx) { return opt_ctx->inputs; } struct ggml_tensor * ggml_opt_outputs(ggml_opt_context_t opt_ctx) { return opt_ctx->outputs; } struct ggml_tensor * ggml_opt_labels(ggml_opt_context_t opt_ctx) { return opt_ctx->labels; } struct ggml_tensor * ggml_opt_loss(ggml_opt_context_t opt_ctx) { return opt_ctx->loss; } struct ggml_tensor * ggml_opt_pred(ggml_opt_context_t opt_ctx) { return opt_ctx->pred; } struct ggml_tensor * ggml_opt_ncorrect(ggml_opt_context_t opt_ctx) { return opt_ctx->ncorrect; } struct ggml_tensor * ggml_opt_grad_acc(ggml_opt_context_t opt_ctx, struct ggml_tensor * node) { return ggml_graph_get_grad_acc(opt_ctx->gb_opt, node); } // ====== Optimization Result ====== ggml_opt_result_t ggml_opt_result_init() { return new ggml_opt_result; } void ggml_opt_result_free(ggml_opt_result_t result) { delete result; } void ggml_opt_result_reset(ggml_opt_result_t result) { result->ndata = 0; result->loss.clear(); result->pred.clear(); result->ncorrect = 0; } void ggml_opt_result_ndata(ggml_opt_result_t result, int64_t * ndata) { *ndata = result->ndata; } void ggml_opt_result_loss(ggml_opt_result_t result, double * loss, double * unc) { const int64_t nbatches = result->loss.size(); // Number of physical batches. if (nbatches == 0) { *loss = 0.0; *unc = NAN; return; } double sum = 0.0; double sum_squared = 0.0; for (const float & loss : result->loss) { // If the loss is per datapoint it was scaled by 1.0f/opt_period for each physical batch. const float loss_scaled = result->loss_per_datapoint ? loss*result->opt_period : loss; sum += loss_scaled; sum_squared += loss_scaled*loss_scaled; } const double mean = sum/nbatches; *loss = result->loss_per_datapoint ? mean : sum; if (!unc) { return; } if (nbatches < 2) { *unc = NAN; return; } const double var_sum = sum_squared/nbatches - mean*mean; // variance without Bessel's correction, i.e. nbatches/(nbatches-1) *unc = result->loss_per_datapoint ? sqrt(var_sum / (nbatches - 1)) : sqrt(var_sum * nbatches/(nbatches - 1)); } void ggml_opt_result_pred(ggml_opt_result_t result, int32_t * pred) { for (size_t i = 0; i < result->pred.size(); ++i) { pred[i] = result->pred[i]; } } void ggml_opt_result_accuracy(ggml_opt_result_t result, double * accuracy, double * unc) { *accuracy = result->ncorrect >= 0 ? double(result->ncorrect) / double(result->ndata) : NAN; if (!unc) { return; } *unc = result->ncorrect >= 0 && result->ndata >= 2 ? sqrt((*accuracy) * (1.0 - (*accuracy)) / double(result->ndata - 1)) : NAN; } // ====== Computation ====== static void ggml_opt_eval_graph(ggml_opt_context_t opt_ctx, ggml_cgraph * graph, ggml_opt_result * result) { if (graph != opt_ctx->gf) { struct ggml_opt_optimizer_params opt_pars = opt_ctx->get_opt_pars(opt_ctx->get_opt_pars_ud); GGML_ASSERT(opt_pars.adamw.alpha > 0.0f); GGML_ASSERT(opt_pars.adamw.beta1 >= 0.0f); GGML_ASSERT(opt_pars.adamw.beta1 <= 1.0f); GGML_ASSERT(opt_pars.adamw.beta2 >= 0.0f); GGML_ASSERT(opt_pars.adamw.beta2 <= 1.0f); GGML_ASSERT(opt_pars.adamw.eps >= 0.0f); GGML_ASSERT(opt_pars.adamw.wd >= 0.0f); GGML_ASSERT(opt_pars.adamw.wd <= 1.0f); // beta1, beta2 after applying warmup const float beta1h = 1.0f/(1.0f - powf(opt_pars.adamw.beta1, opt_ctx->iter)); const float beta2h = 1.0f/(1.0f - powf(opt_pars.adamw.beta2, opt_ctx->iter)); float * adamw_par_data = ggml_get_data_f32(opt_ctx->adamw_params); adamw_par_data[0] = opt_pars.adamw.alpha; adamw_par_data[1] = opt_pars.adamw.beta1; adamw_par_data[2] = opt_pars.adamw.beta2; adamw_par_data[3] = opt_pars.adamw.eps; adamw_par_data[4] = opt_pars.adamw.wd; adamw_par_data[5] = beta1h; adamw_par_data[6] = beta2h; } ggml_opt_alloc_graph(opt_ctx, graph); ggml_backend_sched_graph_compute(opt_ctx->backend_sched, opt_ctx->allocated_graph_copy); opt_ctx->iter += opt_ctx->allocated_graph == opt_ctx->gb_opt; if (!result) { return; } if (result->ndata == 0) { result->loss_per_datapoint = opt_ctx->loss_per_datapoint; result->opt_period = opt_ctx->opt_period; } else { GGML_ASSERT(result->loss_per_datapoint == opt_ctx->loss_per_datapoint); GGML_ASSERT(result->opt_period == opt_ctx->opt_period); } const int64_t ndata = opt_ctx->outputs->ne[1]; GGML_ASSERT(result->ndata == ndata*int64_t(result->loss.size()) && "varying batch size not supported"); result->ndata += ndata; GGML_ASSERT(ggml_is_scalar(opt_ctx->loss)); GGML_ASSERT(opt_ctx->loss->type == GGML_TYPE_F32); float loss; ggml_backend_tensor_get(opt_ctx->loss, &loss, 0, ggml_nbytes(opt_ctx->loss)); result->loss.push_back(loss); GGML_ASSERT(opt_ctx->pred->type == GGML_TYPE_I32); std::vector pred(ndata); ggml_backend_tensor_get(opt_ctx->pred, pred.data(), 0, ggml_nbytes(opt_ctx->pred)); result->pred.insert(result->pred.end(), pred.begin(), pred.end()); if (!opt_ctx->labels || result->ncorrect < 0) { result->ncorrect = -1; return; } GGML_ASSERT(ggml_is_scalar(opt_ctx->ncorrect)); GGML_ASSERT(opt_ctx->ncorrect->type == GGML_TYPE_I64); int64_t ncorrect; ggml_backend_tensor_get(opt_ctx->ncorrect, &ncorrect, 0, ggml_nbytes(opt_ctx->ncorrect)); result->ncorrect += ncorrect; } void ggml_opt_forward(ggml_opt_context_t opt_ctx, ggml_opt_result * result) { ggml_opt_eval_graph(opt_ctx, opt_ctx->gf, result); } void ggml_opt_forward_backward(ggml_opt_context_t opt_ctx, ggml_opt_result * result) { if (opt_ctx->opt_period == 1) { ggml_opt_eval_graph(opt_ctx, opt_ctx->gb_opt, result); return; } const int32_t opt_i_next = (opt_ctx->opt_i + 1) % opt_ctx->opt_period; if (opt_i_next == 0) { ggml_opt_eval_graph(opt_ctx, opt_ctx->gb_opt, result); ggml_opt_reset(opt_ctx, /*optimizer =*/ false); } else { ggml_opt_eval_graph(opt_ctx, opt_ctx->gb_grad, result); } opt_ctx->opt_i = opt_i_next; } // ====== High-Level Functions ====== void ggml_opt_epoch( ggml_opt_context_t opt_ctx, ggml_opt_dataset_t dataset, ggml_opt_result_t result_train, ggml_opt_result_t result_eval, int64_t idata_split, ggml_opt_epoch_callback callback_train, ggml_opt_epoch_callback callback_eval) { struct ggml_tensor * inputs = ggml_opt_inputs(opt_ctx); struct ggml_tensor * labels = ggml_opt_labels(opt_ctx); struct ggml_tensor * data = ggml_opt_dataset_data(dataset); GGML_ASSERT(data->ne[0] == inputs->ne[0]); const int64_t ndata = data->ne[1]; const int64_t ndata_batch = inputs->ne[1]; GGML_ASSERT(data->ne[1] % inputs->ne[1] == 0); const int64_t nbatches = ndata/ndata_batch; idata_split = idata_split < 0 ? ndata : idata_split; GGML_ASSERT(idata_split % ndata_batch == 0); const int64_t ibatch_split = idata_split / ndata_batch; int64_t ibatch = 0; int64_t t_loop_start = ggml_time_us(); for (; ibatch < ibatch_split; ++ibatch) { ggml_opt_dataset_get_batch(dataset, inputs, labels, ibatch); ggml_opt_forward_backward(opt_ctx, result_train); if (callback_train) { callback_train(true, opt_ctx, dataset, result_train, ibatch+1, ibatch_split, t_loop_start); } } t_loop_start = ggml_time_us(); for (; ibatch < nbatches; ++ibatch) { ggml_opt_dataset_get_batch(dataset, inputs, labels, ibatch); ggml_opt_forward(opt_ctx, result_eval); if (callback_eval) { callback_eval(false, opt_ctx, dataset, result_eval, ibatch+1-ibatch_split, nbatches-ibatch_split, t_loop_start); } } } void ggml_opt_epoch_callback_progress_bar( bool train, ggml_opt_context_t opt_ctx, ggml_opt_dataset_t dataset, ggml_opt_result_t result, int64_t ibatch, int64_t ibatch_max, int64_t t_start_us) { fprintf(stderr, "%s[", train ? "train: " : "val: "); constexpr int64_t bar_length = 25; for (int64_t j = 0; j < bar_length; ++j) { const int64_t ibatch_j = ibatch_max * j/bar_length; if (ibatch_j < ibatch) { fprintf(stderr, "="); } else if (ibatch_max * (j - 1)/bar_length < ibatch) { fprintf(stderr, ">"); } else { fprintf(stderr, " "); } } const int64_t batch_size = ggml_opt_inputs(opt_ctx)->ne[1]; const int64_t idata = ibatch*batch_size; const int64_t idata_max = ibatch_max*batch_size; double loss; double loss_unc; ggml_opt_result_loss(result, &loss, &loss_unc); double accuracy; double accuracy_unc; ggml_opt_result_accuracy(result, &accuracy, &accuracy_unc); const int64_t t_ibatch_us = ggml_time_us() - t_start_us; int64_t t_ibatch_s = t_ibatch_us / 1000000; const int64_t t_ibatch_h = t_ibatch_s / 3600; t_ibatch_s -= t_ibatch_h * 3600; const int64_t t_ibatch_m = t_ibatch_s / 60; t_ibatch_s -= t_ibatch_m * 60; const int64_t t_eta_us = t_ibatch_us * (ibatch_max - ibatch)/ibatch; int64_t t_eta_s = t_eta_us / 1000000; const int64_t t_eta_h = t_eta_s / 3600; t_eta_s -= t_eta_h * 3600; const int64_t t_eta_m = t_eta_s / 60; t_eta_s -= t_eta_m * 60; fprintf(stderr, "| data=%06" PRId64 "/%06" PRId64 ", loss=%.6lf+-%.6lf, accuracy=%.2lf+-%.2lf%%, " "t=%02" PRId64 ":%02" PRId64 ":%02" PRId64 ", ETA=%02" PRId64 ":%02" PRId64 ":%02" PRId64 "]\r", idata, idata_max, loss, loss_unc, 100.0*accuracy, 100.0*accuracy_unc, t_ibatch_h, t_ibatch_m, t_ibatch_s, t_eta_h, t_eta_m, t_eta_s); if (ibatch == ibatch_max) { fprintf(stderr, "\n"); } fflush(stderr); GGML_UNUSED(dataset); } void ggml_opt_fit( ggml_backend_sched_t backend_sched, ggml_context * ctx_compute, ggml_tensor * inputs, ggml_tensor * outputs, ggml_opt_dataset_t dataset, enum ggml_opt_loss_type loss_type, ggml_opt_get_optimizer_params get_opt_pars, int64_t nepoch, int64_t nbatch_logical, float val_split, bool silent) { ggml_time_init(); const int64_t t_start_us = ggml_time_us(); const int64_t ndata = ggml_opt_dataset_data(dataset)->ne[1]; const int64_t nbatch_physical = inputs->ne[1]; GGML_ASSERT(ndata % nbatch_logical == 0); GGML_ASSERT(nbatch_logical % nbatch_physical == 0); const int64_t opt_period = nbatch_logical / nbatch_physical; const int64_t nbatches_logical = ndata / nbatch_logical; GGML_ASSERT(val_split >= 0.0f); GGML_ASSERT(val_split < 1.0f); const int64_t ibatch_split = int64_t(((1.0f - val_split) * nbatches_logical)) * opt_period; // train <-> val split index (physical) const int64_t idata_split = ibatch_split * nbatch_physical; int64_t epoch = 1; ggml_opt_params params = ggml_opt_default_params(backend_sched, ctx_compute, inputs, outputs, loss_type); params.opt_period = opt_period; params.get_opt_pars = get_opt_pars; params.get_opt_pars_ud = &epoch; ggml_opt_context_t opt_ctx = ggml_opt_init(params); // Shuffling the data is generally useful but there is only a point if not all data is used in a single batch. if (nbatch_logical < ndata) { ggml_opt_dataset_shuffle(opt_ctx, dataset, -1); // Shuffle all data (train + validation). } ggml_opt_result_t result_train = ggml_opt_result_init(); ggml_opt_result_t result_val = ggml_opt_result_init(); ggml_opt_epoch_callback epoch_callback = silent ? nullptr : ggml_opt_epoch_callback_progress_bar; for (; epoch <= nepoch; ++epoch) { if (nbatch_logical < idata_split) { ggml_opt_dataset_shuffle(opt_ctx, dataset, idata_split); } ggml_opt_result_reset(result_train); ggml_opt_result_reset(result_val); if (!silent) { fprintf(stderr, "%s: epoch %04" PRId64 "/%04" PRId64 ":\n", __func__, epoch, nepoch); } ggml_opt_epoch(opt_ctx, dataset, result_train, result_val, idata_split, epoch_callback, epoch_callback); if (!silent) { fprintf(stderr, "\n"); } } if (!silent) { int64_t t_total_s = (ggml_time_us() - t_start_us) / 1000000; const int64_t t_total_h = t_total_s / 3600; t_total_s -= t_total_h * 3600; const int64_t t_total_m = t_total_s / 60; t_total_s -= t_total_m * 60; fprintf(stderr, "%s: training took %02" PRId64 ":%02" PRId64 ":%02" PRId64 "\n", __func__, t_total_h, t_total_m, t_total_s); } ggml_opt_free(opt_ctx); ggml_opt_result_free(result_train); ggml_opt_result_free(result_val); }