#include "ggml.h" #include "llama.h" #include "common.h" #include "ngram-cache.h" #include #include #include #include #include #include #include int main(int argc, char ** argv){ gpt_params params; if (!gpt_params_parse(argc, argv, params)) { gpt_params_print_usage(argc, argv, params); return 1; } // max. number of additional tokens to draft if match is found const int n_draft = params.n_draft; const bool dump_kv_cache = params.dump_kv_cache; #ifndef LOG_DISABLE_LOGS log_set_target(log_filename_generator("lookup", "log")); LOG_TEE("Log start\n"); log_dump_cmdline(argc, argv); #endif // LOG_DISABLE_LOGS // init llama.cpp llama_backend_init(); llama_numa_init(params.numa); llama_model * model = NULL; llama_context * ctx = NULL; // load the model std::tie(model, ctx) = llama_init_from_gpt_params(params); GGML_ASSERT(llama_n_vocab(model) < (1 << 16)); // tokenize the prompt std::vector inp; inp = ::llama_tokenize(ctx, params.prompt, true, true); llama_ngram_cache ngram_cache_context; llama_ngram_cache ngram_cache_dynamic; llama_ngram_cache ngram_cache_static; int64_t t_draft_flat_us = 0; int64_t t_draft_us = 0; { // Fill up context ngram cache with tokens from user input: const int64_t t_start_draft_us = ggml_time_us(); llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, inp.size(), false); if (!params.lookup_cache_static.empty()) { try { ngram_cache_static = llama_ngram_cache_load(params.lookup_cache_static); } catch (std::ifstream::failure const &) { fprintf(stderr, "error: failed to open static lookup cache: %s", params.lookup_cache_static.c_str()); exit(1); } } if (!params.lookup_cache_dynamic.empty()) { try { ngram_cache_dynamic = llama_ngram_cache_load(params.lookup_cache_dynamic); } catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program } t_draft_flat_us += ggml_time_us() - t_start_draft_us; } const int max_context_size = llama_n_ctx(ctx); const int max_tokens_list_size = max_context_size - 4; if ((int) inp.size() > max_tokens_list_size) { fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size); return 1; } fprintf(stderr, "\n\n"); for (auto id : inp) { fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str()); } fflush(stderr); const int n_input = inp.size(); const auto t_enc_start = ggml_time_us(); llama_decode(ctx, llama_batch_get_one( inp.data(), n_input - 1, 0, 0)); llama_decode(ctx, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0)); const auto t_enc_end = ggml_time_us(); int n_predict = 0; int n_drafted = 0; int n_accept = 0; int n_past = inp.size(); bool has_eos = false; struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams); std::vector draft; llama_batch batch_tgt = llama_batch_init(params.n_ctx, 0, 1); // debug struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, 1); const auto t_dec_start = ggml_time_us(); while (true) { // debug if (dump_kv_cache) { llama_kv_cache_view_update(ctx, &kvc_view); llama_kv_cache_dump_view_seqs(kvc_view, 40); } // print current draft sequence LOG("drafted %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, draft).c_str()); int i_dft = 0; while (true) { // sample from the target model llama_token id = llama_sampling_sample(ctx_sampling, ctx, NULL, i_dft); llama_sampling_accept(ctx_sampling, ctx, id, true); const std::string token_str = llama_token_to_piece(ctx, id); if (!params.use_color) { printf("%s", token_str.c_str()); } if (llama_token_is_eog(model, id)) { has_eos = true; } ++n_predict; // check if the target token matches the draft if (i_dft < (int) draft.size() && id == draft[i_dft]) { LOG("the sampled target token matches the %dth drafted token (%d, '%s') - accepted\n", i_dft, id, token_str.c_str()); ++n_accept; ++n_past; ++i_dft; inp.push_back(id); { // Update context ngram cache with the newly accepted token: const int64_t t_start_draft_us = ggml_time_us(); llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, 1, false); t_draft_us += ggml_time_us() - t_start_draft_us; } if (params.use_color) { // color accepted draft token printf("\033[34m%s\033[0m", token_str.c_str()); fflush(stdout); } continue; } if (params.use_color) { printf("%s", token_str.c_str()); } fflush(stdout); LOG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", id, token_str.c_str()); draft.clear(); draft.push_back(id); inp.push_back(id); { // Update context ngram cache with the newly accepted token: const int64_t t_start_draft_us = ggml_time_us(); llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, 1, false); t_draft_us += ggml_time_us() - t_start_draft_us; } break; } if ((params.n_predict > 0 && n_predict > params.n_predict) || has_eos) { break; } // KV cache management // clean the cache of draft tokens that weren't accepted // FIXME: recurrent and hybrid models llama_past_seq_rm(ctx, 0, n_past, -1); llama_batch_clear(batch_tgt); llama_batch_add(batch_tgt, draft[0], n_past, { 0 }, true); // Draft already contains a single token sampled from the model: GGML_ASSERT(draft.size() == 1); GGML_ASSERT(draft[0] == inp.back()); const int64_t t_start_draft_us = ggml_time_us(); llama_ngram_cache_draft(inp, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static); for (size_t i = 1; i < draft.size(); ++i) { llama_batch_add(batch_tgt, draft[i], n_past + i, { 0 }, true); } t_draft_us += ggml_time_us() - t_start_draft_us; n_drafted += draft.size() - 1; llama_decode(ctx, batch_tgt); ++n_past; draft.erase(draft.begin()); } auto t_dec_end = ggml_time_us(); // Update dynamic ngram cache with context ngram cache and save it to disk: llama_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context); llama_ngram_cache_save(ngram_cache_dynamic, params.lookup_cache_dynamic); LOG_TEE("\n\n"); LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f)); LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f)); LOG_TEE("\n"); LOG_TEE("n_draft = %d\n", n_draft); LOG_TEE("n_predict = %d\n", n_predict); LOG_TEE("n_drafted = %d\n", n_drafted); LOG_TEE("t_draft_flat = %.2f ms\n", t_draft_flat_us*1e-3); LOG_TEE("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n", t_draft_us*1e-3, 1.0f*t_draft_us/n_drafted, n_drafted/(1e-6*t_draft_us)); LOG_TEE("n_accept = %d\n", n_accept); LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted); LOG_TEE("\ntarget:\n"); llama_print_timings(ctx); llama_sampling_free(ctx_sampling); llama_batch_free(batch_tgt); llama_free(ctx); llama_free_model(model); llama_backend_free(); fprintf(stderr, "\n\n"); return 0; }