#ifdef NDEBUG #undef NDEBUG #endif #define LLAMA_API_INTERNAL #include "ggml.h" #include "llama.h" #include "grammar-parser.h" #include "unicode.h" #include #include #include static llama_grammar* build_grammar(const std::string & grammar_str) { auto parsed_grammar = grammar_parser::parse(grammar_str.c_str()); // Ensure we parsed correctly assert(!parsed_grammar.rules.empty()); // Ensure we have a root node assert(!(parsed_grammar.symbol_ids.find("root") == parsed_grammar.symbol_ids.end())); std::vector grammar_rules(parsed_grammar.c_rules()); llama_grammar* grammar = llama_grammar_init( grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root")); return grammar; } static bool test_build_grammar_fails(const std::string & grammar_str) { fprintf(stderr, "⚫ Testing failure for grammar: %s\n", grammar_str.c_str()); bool grammar_fails = false; try { build_grammar(grammar_str); fprintf(stderr, " ❌ Expected build failure, but succeeded\n"); } catch (const std::exception & err) { grammar_fails = true; fprintf(stdout, " ✅︎\n"); } return grammar_fails; } static bool match_string(const std::string & input, llama_grammar* grammar) { auto decoded = decode_utf8(input, {}); const auto & code_points = decoded.first; for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) { auto prev_stacks = grammar->stacks; llama_grammar_accept(grammar->rules, prev_stacks, *it, grammar->stacks); if (grammar->stacks.empty()) { // no stacks means that the grammar failed to match at this point return false; } } for (const auto & stack : grammar->stacks) { if (stack.empty()) { // An empty stack means that the grammar has been completed return true; } } return false; } static void test_grammar(const std::string & test_desc, const std::string & grammar_str, const std::vector & passing_strings, const std::vector & failing_strings) { fprintf(stderr, "⚫ Testing %s. Grammar: %s\n", test_desc.c_str(), grammar_str.c_str()); fflush(stderr); auto grammar = build_grammar(grammar_str); // Save the original grammar stacks so that we can reset after every new string we want to test auto original_stacks = grammar->stacks; fprintf(stderr, " 🔵 Valid strings:\n"); // Passing strings for (const auto & test_string : passing_strings) { fprintf(stderr, " \"%s\" ", test_string.c_str()); fflush(stderr); bool matched = match_string(test_string, grammar); if (!matched) { fprintf(stderr, "❌ (failed to match)\n"); } else { fprintf(stdout, "✅︎\n"); } assert(matched); // Reset the grammar stacks grammar->stacks = original_stacks; } fprintf(stderr, " 🟠 Invalid strings:\n"); // Failing strings for (const auto & test_string : failing_strings) { fprintf(stderr, " \"%s\" ", test_string.c_str()); fflush(stderr); bool matched = match_string(test_string, grammar); if (matched) { fprintf(stderr, "❌ (incorrectly matched)\n"); } else { fprintf(stdout, "✅︎\n"); } assert(!matched); // Reset the grammar stacks grammar->stacks = original_stacks; } // Clean up allocated memory llama_grammar_free(grammar); } static void test_simple_grammar() { // Test case for a simple grammar test_grammar( "simple grammar", R"""( root ::= expr expr ::= term ("+" term)* term ::= number number ::= [0-9]+)""", // Passing strings { "42", "1+2+3+4+5", "123+456", }, // Failing strings { "+", "/ 3", "1+2+3+4+5+", "12a45", } ); } static void test_complex_grammar() { // Test case for a more complex grammar, with both failure strings and success strings test_grammar( "medium complexity grammar", // Grammar R"""( root ::= expression expression ::= term ws (("+"|"-") ws term)* term ::= factor ws (("*"|"/") ws factor)* factor ::= number | variable | "(" expression ")" | function-call number ::= [0-9]+ variable ::= [a-zA-Z_][a-zA-Z0-9_]* function-call ::= variable ws "(" (expression ("," ws expression)*)? ")" ws ::= [ \t\n\r]?)""", // Passing strings { "42", "1*2*3*4*5", "x", "x+10", "x1+y2", "(a+b)*(c-d)", "func()", "func(x,y+2)", "a*(b+c)-d/e", "f(g(x),h(y,z))", "x + 10", "x1 + y2", "(a + b) * (c - d)", "func()", "func(x, y + 2)", "a * (b + c) - d / e", "f(g(x), h(y, z))", "123+456", "123*456*789-123/456+789*123", "123+456*789-123/456+789*123-456/789+123*456-789/123+456*789-123/456+789*123-456" }, // Failing strings { "+", "/ 3x", "x + + y", "a * / b", "func(,)", "func(x y)", "(a + b", "x + y)", "a + b * (c - d", "42 +", "x +", "x + 10 +", "(a + b) * (c - d", "func(", "func(x, y + 2", "a * (b + c) - d /", "f(g(x), h(y, z)", "123+456*789-123/456+789*123-456/789+123*456-789/123+456*789-123/456+789*123-456/", } ); } static void test_quantifiers() { // A collection of tests to exercise * + and ? quantifiers test_grammar( "* quantifier", // Grammar R"""(root ::= "a"*)""", // Passing strings { "", "a", "aaaaa", "aaaaaaaaaaaaaaaaaa", "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" }, // Failing strings { "b", "ab", "aab", "ba", "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaab" } ); test_grammar( "+ quantifier", // Grammar R"""(root ::= "a"+)""", // Passing strings { "a", "aaaaa", "aaaaaaaaaaaaaaaaaa", "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" }, // Failing strings { "", "b", "ab", "aab", "ba", "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaab" } ); test_grammar( "? quantifier", // Grammar R"""(root ::= "a"?)""", // Passing strings { "", "a" }, // Failing strings { "b", "ab", "aa", "ba", } ); test_grammar( "mixed quantifiers", // Grammar R"""( root ::= cons+ vowel* cons? (vowel cons)* vowel ::= [aeiouy] cons ::= [bcdfghjklmnpqrstvwxyz] )""", // Passing strings { "yes", "no", "noyes", "crwth", "four", "bryyyy", }, // Failing strings { "yess", "yesno", "forty", "catyyy", } ); test_grammar( "simple exact repetition", // Grammar R"""( root ::= [ab]{4} )""", // Passing strings { "aaaa", "bbbb", "abab", }, // Failing strings { "a", "b", "aaaaa", } ); test_grammar( "simple min repetition", // Grammar R"""( root ::= [ab]{4,} )""", // Passing strings { "aaaa", "aaaaab", "bbbb", "ababab", }, // Failing strings { "", "aba", } ); test_grammar( "simple max repetition", // Grammar R"""( root ::= [ab]{0,4} )""", // Passing strings { "", "a", "aa", "aaa", "aaab", }, // Failing strings { "aaaaa", } ); test_grammar( "min / max repetition", // Grammar R"""( root ::= ("0x" [A-F0-9]{2} " "?){3,5} )""", // Passing strings { "0xFF 0x12 0xAB", "0xFF 0x12 0xAB 0x00 0x00", }, // Failing strings { "", "0xFF", "0xFF 0x12", "0xFF 0x12 0xAB 0x00 0x00 0x00", } ); } static void test_failure_missing_root() { fprintf(stderr, "⚫ Testing missing root node:\n"); // Test case for a grammar that is missing a root rule const std::string grammar_str = R"""(rot ::= expr expr ::= term ("+" term)* term ::= number number ::= [0-9]+)"""; grammar_parser::parse_state parsed_grammar = grammar_parser::parse(grammar_str.c_str()); // Ensure we parsed correctly assert(!parsed_grammar.rules.empty()); // Ensure we do NOT have a root node assert(parsed_grammar.symbol_ids.find("root") == parsed_grammar.symbol_ids.end()); fprintf(stderr, " ✅︎ Passed\n"); } static void test_failure_missing_reference() { fprintf(stderr, "⚫ Testing missing reference node:\n"); // Test case for a grammar that is missing a referenced rule const std::string grammar_str = R"""(root ::= expr expr ::= term ("+" term)* term ::= numero number ::= [0-9]+)"""; fprintf(stderr, " Expected error: "); grammar_parser::parse_state parsed_grammar = grammar_parser::parse(grammar_str.c_str()); // Ensure we did NOT parsed correctly assert(parsed_grammar.rules.empty()); fprintf(stderr, " End of expected error.\n"); fprintf(stderr, " ✅︎ Passed\n"); } static void test_failure_left_recursion() { fprintf(stderr, "⚫ Testing left recursion detection:\n"); // Test simple left recursion detection const std::string simple_str = R"""(root ::= "a" | root "a")"""; assert(test_build_grammar_fails(simple_str)); // Test more complicated left recursion detection const std::string medium_str = R"""( root ::= asdf asdf ::= "a" | asdf "a" )"""; assert(test_build_grammar_fails(medium_str)); // Test even more complicated left recursion detection const std::string hard_str = R"""( root ::= asdf asdf ::= "a" | foo "b" foo ::= "c" | asdf "d" | "e")"""; assert(test_build_grammar_fails(hard_str)); // Test yet even more complicated left recursion detection const std::string hardest_str = R"""( root ::= asdf asdf ::= "a" | foo "b" foo ::= "c" | empty asdf "d" | "e" empty ::= "blah" | )"""; assert(test_build_grammar_fails(hardest_str)); fprintf(stderr, " ✅︎ Passed\n"); } int main() { fprintf(stdout, "Running grammar integration tests...\n"); test_simple_grammar(); test_complex_grammar(); test_quantifiers(); test_failure_missing_root(); test_failure_missing_reference(); test_failure_left_recursion(); fprintf(stdout, "All tests passed.\n"); return 0; }