#define LLAMA_API_INTERNAL #include "llama.h" #include "unicode.h" #include "ggml.h" #include "ggml-alloc.h" #ifdef GGML_USE_CUBLAS # include "ggml-cuda.h" #elif defined(GGML_USE_CLBLAST) # include "ggml-opencl.h" #endif #ifdef GGML_USE_METAL # include "ggml-metal.h" #endif #ifdef GGML_USE_MPI # include "ggml-mpi.h" #endif #ifdef GGML_USE_K_QUANTS # ifndef QK_K # ifdef GGML_QKK_64 # define QK_K 64 # else # define QK_K 256 # endif # endif #endif #ifdef __has_include #if __has_include() #include #if defined(_POSIX_MAPPED_FILES) #include #endif #if defined(_POSIX_MEMLOCK_RANGE) #include #endif #endif #endif #if defined(_WIN32) #define WIN32_LEAN_AND_MEAN #ifndef NOMINMAX #define NOMINMAX #endif #include #include #include // for _fseeki64 #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif #ifdef __GNUC__ #ifdef __MINGW32__ #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__))) #else #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__))) #endif #else #define LLAMA_ATTRIBUTE_FORMAT(...) #endif // // logging // LLAMA_ATTRIBUTE_FORMAT(2, 3) static void llama_log_internal (ggml_log_level level, const char* format, ...); static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data); #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__) #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__) #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__) // // helpers // static size_t utf8_len(char src) { const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 }; uint8_t highbits = static_cast(src) >> 4; return lookup[highbits]; } static void replace_all(std::string & s, const std::string & search, const std::string & replace) { std::string result; for (size_t pos = 0; ; pos += search.length()) { auto new_pos = s.find(search, pos); if (new_pos == std::string::npos) { result += s.substr(pos, s.size() - pos); break; } result += s.substr(pos, new_pos - pos) + replace; pos = new_pos; } s = std::move(result); } static bool is_float_close(float a, float b, float abs_tol) { // Check for non-negative tolerance if (abs_tol < 0.0) { throw std::invalid_argument("Tolerance must be non-negative"); } // Exact equality check if (a == b) { return true; } // Check for infinities if (std::isinf(a) || std::isinf(b)) { return false; } // Regular comparison using the provided absolute tolerance return std::fabs(b - a) <= abs_tol; } #ifdef GGML_USE_CPU_HBM #include #endif static void zeros(std::ofstream & file, size_t n) { char zero = 0; for (size_t i = 0; i < n; ++i) { file.write(&zero, 1); } } LLAMA_ATTRIBUTE_FORMAT(1, 2) static std::string format(const char * fmt, ...) { va_list ap; va_list ap2; va_start(ap, fmt); va_copy(ap2, ap); int size = vsnprintf(NULL, 0, fmt, ap); GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT std::vector buf(size + 1); int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2); GGML_ASSERT(size2 == size); va_end(ap2); va_end(ap); return std::string(buf.data(), size); } // // gguf constants (sync with gguf.py) // enum llm_arch { LLM_ARCH_LLAMA, LLM_ARCH_FALCON, LLM_ARCH_BAICHUAN, LLM_ARCH_GPT2, LLM_ARCH_GPTJ, LLM_ARCH_GPTNEOX, LLM_ARCH_MPT, LLM_ARCH_STARCODER, LLM_ARCH_PERSIMMON, LLM_ARCH_REFACT, LLM_ARCH_BLOOM, LLM_ARCH_UNKNOWN, }; static std::map LLM_ARCH_NAMES = { { LLM_ARCH_LLAMA, "llama" }, { LLM_ARCH_FALCON, "falcon" }, { LLM_ARCH_GPT2, "gpt2" }, { LLM_ARCH_GPTJ, "gptj" }, { LLM_ARCH_GPTNEOX, "gptneox" }, { LLM_ARCH_MPT, "mpt" }, { LLM_ARCH_BAICHUAN, "baichuan" }, { LLM_ARCH_STARCODER, "starcoder" }, { LLM_ARCH_PERSIMMON, "persimmon" }, { LLM_ARCH_REFACT, "refact" }, { LLM_ARCH_BLOOM, "bloom" }, }; enum llm_kv { LLM_KV_GENERAL_ARCHITECTURE, LLM_KV_GENERAL_QUANTIZATION_VERSION, LLM_KV_GENERAL_ALIGNMENT, LLM_KV_GENERAL_NAME, LLM_KV_GENERAL_AUTHOR, LLM_KV_GENERAL_URL, LLM_KV_GENERAL_DESCRIPTION, LLM_KV_GENERAL_LICENSE, LLM_KV_GENERAL_SOURCE_URL, LLM_KV_GENERAL_SOURCE_HF_REPO, LLM_KV_CONTEXT_LENGTH, LLM_KV_EMBEDDING_LENGTH, LLM_KV_BLOCK_COUNT, LLM_KV_FEED_FORWARD_LENGTH, LLM_KV_USE_PARALLEL_RESIDUAL, LLM_KV_TENSOR_DATA_LAYOUT, LLM_KV_ATTENTION_HEAD_COUNT, LLM_KV_ATTENTION_HEAD_COUNT_KV, LLM_KV_ATTENTION_MAX_ALIBI_BIAS, LLM_KV_ATTENTION_CLAMP_KQV, LLM_KV_ATTENTION_LAYERNORM_EPS, LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, LLM_KV_ROPE_DIMENSION_COUNT, LLM_KV_ROPE_FREQ_BASE, LLM_KV_ROPE_SCALE_LINEAR, LLM_KV_TOKENIZER_MODEL, LLM_KV_TOKENIZER_LIST, LLM_KV_TOKENIZER_TOKEN_TYPE, LLM_KV_TOKENIZER_SCORES, LLM_KV_TOKENIZER_MERGES, LLM_KV_TOKENIZER_BOS_ID, LLM_KV_TOKENIZER_EOS_ID, LLM_KV_TOKENIZER_UNK_ID, LLM_KV_TOKENIZER_SEP_ID, LLM_KV_TOKENIZER_PAD_ID, LLM_KV_TOKENIZER_HF_JSON, LLM_KV_TOKENIZER_RWKV, }; static std::map LLM_KV_NAMES = { { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" }, { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" }, { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" }, { LLM_KV_GENERAL_NAME, "general.name" }, { LLM_KV_GENERAL_AUTHOR, "general.author" }, { LLM_KV_GENERAL_URL, "general.url" }, { LLM_KV_GENERAL_DESCRIPTION, "general.description" }, { LLM_KV_GENERAL_LICENSE, "general.license" }, { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" }, { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" }, { LLM_KV_CONTEXT_LENGTH, "%s.context_length" }, { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" }, { LLM_KV_BLOCK_COUNT, "%s.block_count" }, { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" }, { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" }, { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" }, { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" }, { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" }, { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" }, { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" }, { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" }, { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" }, { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" }, { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" }, { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" }, { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" }, { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" }, { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" }, { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" }, { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" }, { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" }, { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" }, { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" }, { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" }, { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" }, { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" }, { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" }, }; struct LLM_KV { LLM_KV(llm_arch arch) : arch(arch) {} llm_arch arch; std::string operator()(llm_kv kv) const { return ::format(LLM_KV_NAMES[kv].c_str(), LLM_ARCH_NAMES[arch].c_str()); } }; enum llm_tensor { LLM_TENSOR_TOKEN_EMBD, LLM_TENSOR_TOKEN_EMBD_NORM, LLM_TENSOR_POS_EMBD, LLM_TENSOR_OUTPUT, LLM_TENSOR_OUTPUT_NORM, LLM_TENSOR_ROPE_FREQS, LLM_TENSOR_ATTN_Q, LLM_TENSOR_ATTN_K, LLM_TENSOR_ATTN_V, LLM_TENSOR_ATTN_QKV, LLM_TENSOR_ATTN_OUT, LLM_TENSOR_ATTN_NORM, LLM_TENSOR_ATTN_NORM_2, LLM_TENSOR_ATTN_ROT_EMBD, LLM_TENSOR_FFN_GATE, LLM_TENSOR_FFN_DOWN, LLM_TENSOR_FFN_UP, LLM_TENSOR_FFN_NORM, LLM_TENSOR_ATTN_Q_NORM, LLM_TENSOR_ATTN_K_NORM, }; static std::map> LLM_TENSOR_NAMES = { { LLM_ARCH_LLAMA, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_BAICHUAN, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_FALCON, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_GPT2, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, }, }, { LLM_ARCH_GPTJ, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, }, }, { LLM_ARCH_GPTNEOX, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_PERSIMMON, { { LLM_TENSOR_TOKEN_EMBD, "token_embd"}, { LLM_TENSOR_OUTPUT_NORM, "output_norm"}, { LLM_TENSOR_OUTPUT, "output"}, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm"}, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv"}, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output"}, { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"}, { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"}, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm"}, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down"}, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up"}, { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd"}, }, }, { LLM_ARCH_MPT, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_STARCODER, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_POS_EMBD, "position_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, }, }, { LLM_ARCH_REFACT, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_BLOOM, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, }, }, { LLM_ARCH_UNKNOWN, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, }, }, }; static llm_arch llm_arch_from_string(const std::string & name) { for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT if (kv.second == name) { return kv.first; } } return LLM_ARCH_UNKNOWN; } // helper to handle gguf constants // usage: // // const auto tn = LLM_TN(LLM_ARCH_LLAMA); // // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output" // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias" // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight" // struct LLM_TN { LLM_TN(llm_arch arch) : arch(arch) {} llm_arch arch; std::string operator()(llm_tensor tensor) const { return LLM_TENSOR_NAMES[arch].at(tensor); } std::string operator()(llm_tensor tensor, const std::string & suffix) const { return LLM_TENSOR_NAMES[arch].at(tensor) + "." + suffix; } std::string operator()(llm_tensor tensor, int bid) const { return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid); } std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const { return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid) + "." + suffix; } }; // // gguf helpers // #define GGUF_GET_KEY(ctx, dst, func, type, req, key) \ do { \ const std::string skey(key); \ const int kid = gguf_find_key(ctx, skey.c_str()); \ if (kid >= 0) { \ enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \ if (ktype != (type)) { \ throw std::runtime_error(format("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype))); \ } \ (dst) = func(ctx, kid); \ } else if (req) { \ throw std::runtime_error(format("key not found in model: %s", skey.c_str())); \ } \ } while (0) // // ggml helpers // static void ggml_graph_compute_helper(std::vector & buf, ggml_cgraph * graph, int n_threads) { struct ggml_cplan plan = ggml_graph_plan(graph, n_threads); if (plan.work_size > 0) { buf.resize(plan.work_size); plan.work_data = buf.data(); } ggml_graph_compute(graph, &plan); } // // llama helpers // #ifdef GGML_USE_CUBLAS # define llama_host_malloc(n) ggml_cuda_host_malloc(n) # define llama_host_free(data) ggml_cuda_host_free(data) #elif GGML_USE_METAL # define llama_host_malloc(n) ggml_metal_host_malloc(n) # define llama_host_free(data) ggml_metal_host_free(data) #elif GGML_USE_CPU_HBM # define llama_host_malloc(n) hbw_malloc(n) # define llama_host_free(data) if (data != NULL) hbw_free(data) #else # define llama_host_malloc(n) malloc(n) # define llama_host_free(data) free(data) #endif #if defined(_WIN32) static std::string llama_format_win_err(DWORD err) { LPSTR buf; size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL); if (!size) { return "FormatMessageA failed"; } std::string ret(buf, size); LocalFree(buf); return ret; } #endif struct llama_buffer { void * data = NULL; size_t size = 0; // fallback to malloc / free // useful in cases where CUDA can try to allocate PINNED memory bool fallback = false; void resize(size_t n) { llama_host_free(data); data = llama_host_malloc(n); if (!data) { fallback = true; data = malloc(n); } else { fallback = false; } GGML_ASSERT(data); size = n; } ~llama_buffer() { if (data) { if (fallback) { // NOLINT free(data); } else { llama_host_free(data); } } data = NULL; } }; struct llama_file { // use FILE * so we don't have to re-open the file to mmap FILE * fp; size_t size; llama_file(const char * fname, const char * mode) { fp = std::fopen(fname, mode); if (fp == NULL) { throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno))); } seek(0, SEEK_END); size = tell(); seek(0, SEEK_SET); } size_t tell() const { #ifdef _WIN32 __int64 ret = _ftelli64(fp); #else long ret = std::ftell(fp); #endif GGML_ASSERT(ret != -1); // this really shouldn't fail return (size_t) ret; } void seek(size_t offset, int whence) const { #ifdef _WIN32 int ret = _fseeki64(fp, (__int64) offset, whence); #else int ret = std::fseek(fp, (long) offset, whence); #endif GGML_ASSERT(ret == 0); // same } void read_raw(void * ptr, size_t len) const { if (len == 0) { return; } errno = 0; std::size_t ret = std::fread(ptr, len, 1, fp); if (ferror(fp)) { throw std::runtime_error(format("read error: %s", strerror(errno))); } if (ret != 1) { throw std::runtime_error(std::string("unexpectedly reached end of file")); } } uint32_t read_u32() const { uint32_t ret; read_raw(&ret, sizeof(ret)); return ret; } void write_raw(const void * ptr, size_t len) const { if (len == 0) { return; } errno = 0; size_t ret = std::fwrite(ptr, len, 1, fp); if (ret != 1) { throw std::runtime_error(format("write error: %s", strerror(errno))); } } void write_u32(std::uint32_t val) const { write_raw(&val, sizeof(val)); } ~llama_file() { if (fp) { std::fclose(fp); } } }; struct llama_mmap { void * addr; size_t size; llama_mmap(const llama_mmap &) = delete; #ifdef _POSIX_MAPPED_FILES static constexpr bool SUPPORTED = true; llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) { size = file->size; int fd = fileno(file->fp); int flags = MAP_SHARED; // prefetch/readahead impairs performance on NUMA systems if (numa) { prefetch = 0; } #ifdef __linux__ if (prefetch) { flags |= MAP_POPULATE; } #endif addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0); if (addr == MAP_FAILED) { throw std::runtime_error(format("mmap failed: %s", strerror(errno))); } if (prefetch > 0) { // Advise the kernel to preload the mapped memory if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) { fprintf(stderr, "warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n", strerror(errno)); } } if (numa) { // advise the kernel not to use readahead // (because the next page might not belong on the same node) if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) { fprintf(stderr, "warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n", strerror(errno)); } } } ~llama_mmap() { munmap(addr, size); } #elif defined(_WIN32) static constexpr bool SUPPORTED = true; llama_mmap(struct llama_file * file, bool prefetch = true, bool numa = false) { (void) numa; size = file->size; HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp)); HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL); DWORD error = GetLastError(); if (hMapping == NULL) { throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str())); } addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0); error = GetLastError(); CloseHandle(hMapping); if (addr == NULL) { throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str())); } if (prefetch) { // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG); HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll"); // may fail on pre-Windows 8 systems pPrefetchVirtualMemory = reinterpret_cast (GetProcAddress(hKernel32, "PrefetchVirtualMemory")); if (pPrefetchVirtualMemory) { // advise the kernel to preload the mapped memory WIN32_MEMORY_RANGE_ENTRY range; range.VirtualAddress = addr; range.NumberOfBytes = (SIZE_T)size; if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) { fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n", llama_format_win_err(GetLastError()).c_str()); } } } } ~llama_mmap() { if (!UnmapViewOfFile(addr)) { fprintf(stderr, "warning: UnmapViewOfFile failed: %s\n", llama_format_win_err(GetLastError()).c_str()); } } #else static constexpr bool SUPPORTED = false; llama_mmap(struct llama_file * file, bool prefetch = true, bool numa = false) { (void) file; (void) prefetch; (void) numa; throw std::runtime_error(std::string("mmap not supported")); } #endif }; // Represents some region of memory being locked using mlock or VirtualLock; // will automatically unlock on destruction. struct llama_mlock { void * addr = NULL; size_t size = 0; bool failed_already = false; llama_mlock() {} llama_mlock(const llama_mlock &) = delete; ~llama_mlock() { if (size) { raw_unlock(addr, size); } } void init(void * ptr) { GGML_ASSERT(addr == NULL && size == 0); // NOLINT addr = ptr; } void grow_to(size_t target_size) { GGML_ASSERT(addr); if (failed_already) { return; } size_t granularity = lock_granularity(); target_size = (target_size + granularity - 1) & ~(granularity - 1); if (target_size > size) { if (raw_lock((uint8_t *) addr + size, target_size - size)) { size = target_size; } else { failed_already = true; } } } #ifdef _POSIX_MEMLOCK_RANGE static constexpr bool SUPPORTED = true; static size_t lock_granularity() { return (size_t) sysconf(_SC_PAGESIZE); } #ifdef __APPLE__ #define MLOCK_SUGGESTION \ "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \ "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l).\n" #else #define MLOCK_SUGGESTION \ "Try increasing RLIMIT_MLOCK ('ulimit -l' as root).\n" #endif bool raw_lock(const void * addr, size_t size) const { if (!mlock(addr, size)) { return true; } char* errmsg = std::strerror(errno); bool suggest = (errno == ENOMEM); // Check if the resource limit is fine after all struct rlimit lock_limit; if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) { suggest = false; } if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) { suggest = false; } fprintf(stderr, "warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s", size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : ""); return false; } #undef MLOCK_SUGGESTION static void raw_unlock(void * addr, size_t size) { if (munlock(addr, size)) { fprintf(stderr, "warning: failed to munlock buffer: %s\n", std::strerror(errno)); } } #elif defined(_WIN32) static constexpr bool SUPPORTED = true; static size_t lock_granularity() { SYSTEM_INFO si; GetSystemInfo(&si); return (size_t) si.dwPageSize; } bool raw_lock(void * ptr, size_t len) const { for (int tries = 1; ; tries++) { if (VirtualLock(ptr, len)) { return true; } if (tries == 2) { fprintf(stderr, "warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n", len, size, llama_format_win_err(GetLastError()).c_str()); return false; } // It failed but this was only the first try; increase the working // set size and try again. SIZE_T min_ws_size, max_ws_size; if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) { fprintf(stderr, "warning: GetProcessWorkingSetSize failed: %s\n", llama_format_win_err(GetLastError()).c_str()); return false; } // Per MSDN: "The maximum number of pages that a process can lock // is equal to the number of pages in its minimum working set minus // a small overhead." // Hopefully a megabyte is enough overhead: size_t increment = len + 1048576; // The minimum must be <= the maximum, so we need to increase both: min_ws_size += increment; max_ws_size += increment; if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) { fprintf(stderr, "warning: SetProcessWorkingSetSize failed: %s\n", llama_format_win_err(GetLastError()).c_str()); return false; } } } static void raw_unlock(void * ptr, size_t len) { if (!VirtualUnlock(ptr, len)) { fprintf(stderr, "warning: failed to VirtualUnlock buffer: %s\n", llama_format_win_err(GetLastError()).c_str()); } } #else static constexpr bool SUPPORTED = false; static size_t lock_granularity() { return (size_t) 65536; } bool raw_lock(const void * addr, size_t len) const { fprintf(stderr, "warning: mlock not supported on this system\n"); return false; } static void raw_unlock(const void * addr, size_t len) {} #endif }; typedef void (*offload_func_t)(struct ggml_tensor * tensor); static void llama_nop(struct ggml_tensor * tensor) { // don't offload by default (void) tensor; } static std::string llama_token_to_str(const struct llama_context * ctx, llama_token token) { std::vector result(8, 0); const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size()); if (n_tokens < 0) { result.resize(-n_tokens); int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size()); GGML_ASSERT(check == -n_tokens); } else { result.resize(n_tokens); } return std::string(result.data(), result.size()); } // // globals // struct llama_state { // We save the log callback globally ggml_log_callback log_callback = llama_log_callback_default; void * log_callback_user_data = nullptr; }; static llama_state g_state; // available llama models enum e_model { MODEL_UNKNOWN, MODEL_1B, MODEL_3B, MODEL_7B, MODEL_8B, MODEL_13B, MODEL_15B, MODEL_30B, MODEL_34B, MODEL_40B, MODEL_65B, MODEL_70B, }; static const size_t kB = 1024; static const size_t MB = 1024*kB; static const size_t GB = 1024*MB; struct llama_hparams { bool vocab_only; uint32_t n_vocab; uint32_t n_ctx_train; // context size the model was trained on uint32_t n_embd; uint32_t n_head; uint32_t n_head_kv; uint32_t n_layer; uint32_t n_rot; uint32_t n_ff; float f_norm_eps; float f_norm_rms_eps; float rope_freq_base_train; float rope_freq_scale_train; float f_clamp_kqv; float f_max_alibi_bias; bool operator!=(const llama_hparams & other) const { if (this->vocab_only != other.vocab_only) return true; if (this->n_vocab != other.n_vocab) return true; if (this->n_ctx_train != other.n_ctx_train) return true; if (this->n_embd != other.n_embd) return true; if (this->n_head != other.n_head) return true; if (this->n_head_kv != other.n_head_kv) return true; if (this->n_layer != other.n_layer) return true; if (this->n_rot != other.n_rot) return true; if (this->n_ff != other.n_ff) return true; const float EPSILON = 1e-9; if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true; if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true; if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true; if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true; return false; } uint32_t n_gqa() const { return n_head/n_head_kv; } uint32_t n_embd_head() const { return n_embd/n_head; } uint32_t n_embd_gqa() const { return n_embd/n_gqa(); } }; struct llama_cparams { uint32_t n_ctx; // context size used during inference uint32_t n_batch; uint32_t n_threads; // number of threads to use for generation uint32_t n_threads_batch; // number of threads to use for batch processing float rope_freq_base; float rope_freq_scale; bool mul_mat_q; }; struct llama_layer { // normalization struct ggml_tensor * attn_norm; struct ggml_tensor * attn_norm_b; struct ggml_tensor * attn_norm_2; struct ggml_tensor * attn_norm_2_b; struct ggml_tensor * attn_q_norm; struct ggml_tensor * attn_q_norm_b; struct ggml_tensor * attn_k_norm; struct ggml_tensor * attn_k_norm_b; // attention struct ggml_tensor * wq; struct ggml_tensor * wk; struct ggml_tensor * wv; struct ggml_tensor * wo; struct ggml_tensor * wqkv; // attention bias struct ggml_tensor * bo; struct ggml_tensor * bqkv; // normalization struct ggml_tensor * ffn_norm; struct ggml_tensor * ffn_norm_b; // ff struct ggml_tensor * w1; // ffn_gate struct ggml_tensor * w2; // ffn_down struct ggml_tensor * w3; // ffn_up // ff bias struct ggml_tensor * b2; // ffn_down struct ggml_tensor * b3; // ffn_up }; struct llama_kv_cell { llama_pos pos = -1; llama_pos delta = 0; std::set seq_id; bool has_seq_id(const llama_seq_id & id) const { return seq_id.find(id) != seq_id.end(); } }; // ring-buffer of cached KV data struct llama_kv_cache { bool has_shift = false; // Note: The value of head isn't only used to optimize searching // for a free KV slot. llama_decode_internal also uses it, so it // cannot be freely changed after a slot has been allocated. uint32_t head = 0; uint32_t size = 0; // computed before each graph build uint32_t n = 0; std::vector cells; struct ggml_tensor * k = NULL; struct ggml_tensor * v = NULL; struct ggml_context * ctx = NULL; llama_buffer buf; ~llama_kv_cache() { if (ctx) { ggml_free(ctx); } #ifdef GGML_USE_CUBLAS ggml_cuda_free_data(k); ggml_cuda_free_data(v); #endif // GGML_USE_CUBLAS } }; struct llama_vocab { using id = int32_t; using token = std::string; using ttype = llama_token_type; struct token_data { token text; float score; ttype type; }; enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM; std::unordered_map token_to_id; std::vector id_to_token; std::unordered_map special_tokens_cache; std::map, int> bpe_ranks; // default LLaMA special tokens id special_bos_id = 1; id special_eos_id = 2; id special_unk_id = 0; id special_sep_id = -1; id special_pad_id = -1; id linefeed_id = 13; id special_prefix_id = 32007; id special_middle_id = 32009; id special_suffix_id = 32008; id special_eot_id = 32010; int find_bpe_rank(std::string token_left, std::string token_right) const { replace_all(token_left, " ", "\u0120"); replace_all(token_left, "\n", "\u010A"); replace_all(token_right, " ", "\u0120"); replace_all(token_right, "\n", "\u010A"); auto it = bpe_ranks.find(std::make_pair(token_left, token_right)); if (it == bpe_ranks.end()) { return -1; } return it->second; } }; struct llama_model { e_model type = MODEL_UNKNOWN; llm_arch arch = LLM_ARCH_UNKNOWN; llama_ftype ftype = LLAMA_FTYPE_ALL_F32; std::string name = "n/a"; llama_hparams hparams = {}; llama_vocab vocab; struct ggml_tensor * tok_embeddings; struct ggml_tensor * pos_embeddings; struct ggml_tensor * tok_norm; struct ggml_tensor * tok_norm_b; struct ggml_tensor * output_norm; struct ggml_tensor * output_norm_b; struct ggml_tensor * output; std::vector layers; int n_gpu_layers; // context struct ggml_context * ctx = NULL; // the model memory buffer llama_buffer buf; // model memory mapped file std::unique_ptr mapping; // objects representing data potentially being locked in memory llama_mlock mlock_buf; llama_mlock mlock_mmap; // for quantize-stats only std::vector> tensors_by_name; int64_t t_load_us = 0; int64_t t_start_us = 0; ~llama_model() { if (ctx) { ggml_free(ctx); } #ifdef GGML_USE_CUBLAS for (size_t i = 0; i < tensors_by_name.size(); ++i) { ggml_cuda_free_data(tensors_by_name[i].second); } ggml_cuda_free_scratch(); #elif defined(GGML_USE_CLBLAST) for (size_t i = 0; i < tensors_by_name.size(); ++i) { ggml_cl_free_data(tensors_by_name[i].second); } #endif } }; struct llama_context { llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {} ~llama_context() { #ifdef GGML_USE_METAL if (ctx_metal) { ggml_metal_free(ctx_metal); } #endif if (alloc) { ggml_allocr_free(alloc); } } llama_cparams cparams; const llama_model & model; // key + value cache for the self attention struct llama_kv_cache kv_self; std::mt19937 rng; bool has_evaluated_once = false; int64_t t_start_us; int64_t t_load_us; int64_t t_sample_us = 0; int64_t t_p_eval_us = 0; int64_t t_eval_us = 0; int32_t n_sample = 0; // number of tokens sampled int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1) int32_t n_eval = 0; // number of eval calls // decode output (2-dimensional array: [n_tokens][n_vocab]) std::vector logits; bool logits_all = false; // input embedding (1-dimensional array: [n_embd]) std::vector embedding; // reusable buffer for `struct ggml_graph_plan.work_data` std::vector work_buffer; // memory buffers used to evaluate the model llama_buffer buf_compute; llama_buffer buf_alloc; ggml_allocr * alloc = NULL; #ifdef GGML_USE_METAL ggml_metal_context * ctx_metal = NULL; #endif #ifdef GGML_USE_MPI ggml_mpi_context * ctx_mpi = NULL; #endif }; // // kv cache helpers // static bool llama_kv_cache_init( const struct llama_hparams & hparams, struct llama_kv_cache & cache, ggml_type wtype, uint32_t n_ctx, int n_gpu_layers) { const uint32_t n_embd = hparams.n_embd_gqa(); const uint32_t n_layer = hparams.n_layer; const int64_t n_mem = n_layer*n_ctx; const int64_t n_elements = n_embd*n_mem; cache.has_shift = false; cache.head = 0; cache.size = n_ctx; cache.cells.clear(); cache.cells.resize(n_ctx); cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*ggml_tensor_overhead()); memset(cache.buf.data, 0, cache.buf.size); struct ggml_init_params params; params.mem_size = cache.buf.size; params.mem_buffer = cache.buf.data; params.no_alloc = false; cache.ctx = ggml_init(params); if (!cache.ctx) { LLAMA_LOG_ERROR("%s: failed to allocate memory for kv cache\n", __func__); return false; } cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements); cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements); ggml_set_name(cache.k, "cache_k"); ggml_set_name(cache.v, "cache_v"); (void) n_gpu_layers; #ifdef GGML_USE_CUBLAS size_t vram_kv_cache = 0; if (n_gpu_layers > (int)n_layer + 1) { ggml_cuda_assign_buffers_no_scratch(cache.v); LLAMA_LOG_INFO("%s: offloading v cache to GPU\n", __func__); vram_kv_cache += ggml_nbytes(cache.v); } if (n_gpu_layers > (int)n_layer + 2) { ggml_cuda_assign_buffers_no_scratch(cache.k); LLAMA_LOG_INFO("%s: offloading k cache to GPU\n", __func__); vram_kv_cache += ggml_nbytes(cache.k); } if (vram_kv_cache > 0) { LLAMA_LOG_INFO("%s: VRAM kv self = %.2f MB\n", __func__, vram_kv_cache / 1024.0 / 1024.0); } #endif // GGML_USE_CUBLAS return true; } // find an empty slot of size "n_tokens" in the cache // updates the cache head // Note: On success, it's important that cache.head points // to the first cell of the slot. static bool llama_kv_cache_find_slot( struct llama_kv_cache & cache, const struct llama_batch & batch) { const uint32_t n_ctx = cache.size; const uint32_t n_tokens = batch.n_tokens; if (n_tokens > n_ctx) { LLAMA_LOG_ERROR("%s: n_tokens=%d > n_ctx=%d\n", __func__, n_tokens, n_ctx); return false; } uint32_t n_tested = 0; while (true) { if (cache.head + n_tokens > n_ctx) { n_tested += n_ctx - cache.head; cache.head = 0; continue; } bool found = true; for (uint32_t i = 0; i < n_tokens; i++) { if (cache.cells[cache.head + i].pos >= 0) { found = false; cache.head += i + 1; n_tested += i + 1; break; } } if (found) { break; } if (n_tested >= n_ctx) { //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens); return false; } } for (uint32_t i = 0; i < n_tokens; i++) { cache.cells[cache.head + i].pos = batch.pos[i]; for (int32_t j = 0; j < batch.n_seq_id[i]; j++) { cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]); } } return true; } // find how many cells are currently in use static int32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) { for (uint32_t i = cache.size - 1; i > 0; --i) { if (cache.cells[i].pos >= 0 && !cache.cells[i].seq_id.empty()) { return i + 1; } } return 0; } static void llama_kv_cache_tokens_rm(struct llama_kv_cache & cache, int32_t c0, int32_t c1) { if (c0 < 0) c0 = 0; if (c1 < 0) c1 = cache.size; for (int32_t i = c0; i < c1; ++i) { cache.cells[i].pos = -1; cache.cells[i].seq_id.clear(); } // Searching for a free slot can start here since we know it will be empty. cache.head = uint32_t(c0); } static void llama_kv_cache_seq_rm( struct llama_kv_cache & cache, llama_seq_id seq_id, llama_pos p0, llama_pos p1) { uint32_t new_head = cache.size; if (p0 < 0) p0 = 0; if (p1 < 0) p1 = std::numeric_limits::max(); for (uint32_t i = 0; i < cache.size; ++i) { if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { cache.cells[i].seq_id.erase(seq_id); if (cache.cells[i].seq_id.empty()) { cache.cells[i].pos = -1; if (new_head == cache.size) new_head = i; } } } // If we freed up a slot, set head to it so searching can start there. if (new_head != cache.size) cache.head = new_head; } static void llama_kv_cache_seq_cp( struct llama_kv_cache & cache, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) { if (p0 < 0) p0 = 0; if (p1 < 0) p1 = std::numeric_limits::max(); cache.head = 0; for (uint32_t i = 0; i < cache.size; ++i) { if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { cache.cells[i].seq_id.insert(seq_id_dst); } } } static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) { uint32_t new_head = cache.size; for (uint32_t i = 0; i < cache.size; ++i) { if (!cache.cells[i].has_seq_id(seq_id)) { cache.cells[i].pos = -1; cache.cells[i].seq_id.clear(); if (new_head == cache.size) new_head = i; } else { cache.cells[i].seq_id.clear(); cache.cells[i].seq_id.insert(seq_id); } } // If we freed up a slot, set head to it so searching can start there. if (new_head != cache.size) cache.head = new_head; } static void llama_kv_cache_seq_shift( struct llama_kv_cache & cache, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) { uint32_t new_head = cache.size; if (p0 < 0) p0 = 0; if (p1 < 0) p1 = std::numeric_limits::max(); for (uint32_t i = 0; i < cache.size; ++i) { if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { cache.cells[i].pos += delta; if (cache.cells[i].pos < 0) { cache.cells[i].pos = -1; cache.cells[i].seq_id.clear(); if (new_head == cache.size) new_head = i; } else { cache.has_shift = true; cache.cells[i].delta = delta; } } } // If we freed up a slot, set head to it so searching can start there. // Otherwise we just start the next search from the beginning. cache.head = new_head != cache.size ? new_head : 0; } // // model loading and saving // enum llama_fver { GGUF_FILE_VERSION_V1 = 1, GGUF_FILE_VERSION_V2 = 2, }; static const char * llama_file_version_name(llama_fver version) { switch (version) { case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)"; case GGUF_FILE_VERSION_V2: return "GGUF V2 (latest)"; } return "unknown"; } static std::string llama_format_tensor_shape(const std::vector & ne) { char buf[256]; snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0)); for (size_t i = 1; i < ne.size(); i++) { snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i)); } return buf; } static std::string llama_format_tensor_shape(const struct ggml_tensor * t) { char buf[256]; snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]); for (int i = 1; i < GGML_MAX_DIMS; i++) { snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]); } return buf; } struct llama_model_loader { int n_kv = 0; int n_tensors = 0; int n_created = 0; int64_t n_elements = 0; size_t n_bytes = 0; bool use_mmap = false; llama_file file; llama_ftype ftype; llama_fver fver; std::unique_ptr mapping; struct gguf_context * ctx_gguf = NULL; struct ggml_context * ctx_meta = NULL; llama_model_loader(const std::string & fname, bool use_mmap) : file(fname.c_str(), "rb") { struct gguf_init_params params = { /*.no_alloc = */ true, /*.ctx = */ &ctx_meta, }; ctx_gguf = gguf_init_from_file(fname.c_str(), params); if (!ctx_gguf) { throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str())); } n_kv = gguf_get_n_kv(ctx_gguf); n_tensors = gguf_get_n_tensors(ctx_gguf); fver = (enum llama_fver ) gguf_get_version(ctx_gguf); for (int i = 0; i < n_tensors; i++) { const char * name = gguf_get_tensor_name(ctx_gguf, i); struct ggml_tensor * t = ggml_get_tensor(ctx_meta, name); n_elements += ggml_nelements(t); n_bytes += ggml_nbytes(t); } LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n", __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver)); // determine file type based on the number of tensors for each quantization and print meta data // TODO: make optional { std::map n_type; uint32_t n_type_max = 0; enum ggml_type type_max = GGML_TYPE_F32; for (int i = 0; i < n_tensors; i++) { const char * name = gguf_get_tensor_name(ctx_gguf, i); struct ggml_tensor * meta = ggml_get_tensor(ctx_meta, name); n_type[meta->type]++; if (n_type_max < n_type[meta->type]) { n_type_max = n_type[meta->type]; type_max = meta->type; } LLAMA_LOG_INFO("%s: - tensor %4d: %32s %-8s [ %s ]\n", __func__, i, name, ggml_type_name(meta->type), llama_format_tensor_shape(meta).c_str()); } switch (type_max) { case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break; case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break; case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break; case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break; case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break; case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break; case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break; case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break; case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break; case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break; case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break; case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break; default: { LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max)); ftype = LLAMA_FTYPE_ALL_F32; } break; } // this is a way to mark that we have "guessed" the file type ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED); { const int kid = gguf_find_key(ctx_gguf, "general.file_type"); if (kid >= 0) { ftype = (llama_ftype) gguf_get_val_u32(ctx_gguf, kid); } } for (int i = 0; i < n_kv; i++) { const char * name = gguf_get_key(ctx_gguf, i); const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i); LLAMA_LOG_INFO("%s: - kv %3d: %42s %-8s\n", __func__, i, name, gguf_type_name(type)); } // print type counts for (auto & kv : n_type) { if (kv.second == 0) { continue; } LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second); } } if (!llama_mmap::SUPPORTED) { LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__); use_mmap = false; } this->use_mmap = use_mmap; } ~llama_model_loader() { if (ctx_gguf) { gguf_free(ctx_gguf); } if (ctx_meta) { ggml_free(ctx_meta); } } std::string get_arch_name() const { const auto kv = LLM_KV(LLM_ARCH_UNKNOWN); std::string arch_name; GGUF_GET_KEY(ctx_gguf, arch_name, gguf_get_val_str, GGUF_TYPE_STRING, false, kv(LLM_KV_GENERAL_ARCHITECTURE)); return arch_name; } enum llm_arch get_arch() const { const std::string arch_name = get_arch_name(); return llm_arch_from_string(arch_name); } const char * get_tensor_name(int i) const { return gguf_get_tensor_name(ctx_gguf, i); } struct ggml_tensor * get_tensor_meta(int i) const { return ggml_get_tensor(ctx_meta, get_tensor_name(i)); } void calc_sizes(size_t & ctx_size_p, size_t & mmapped_size_p) const { ctx_size_p = 0; mmapped_size_p = 0; for (int i = 0; i < n_tensors; i++) { struct ggml_tensor * meta = get_tensor_meta(i); ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE; (use_mmap ? mmapped_size_p : ctx_size_p) += ggml_nbytes_pad(meta); } } struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, struct ggml_tensor * meta, ggml_backend_type backend) { if (backend != GGML_BACKEND_CPU) { ggml_set_no_alloc(ctx, true); } struct ggml_tensor * tensor = ggml_dup_tensor(ctx, meta); tensor->backend = backend; // TODO: ggml_set_backend ggml_set_name(tensor, ggml_get_name(meta)); if (backend != GGML_BACKEND_CPU) { ggml_set_no_alloc(ctx, use_mmap); } n_created++; return tensor; } struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector & ne, ggml_backend_type backend) { struct ggml_tensor * cur = ggml_get_tensor(ctx_meta, name.c_str()); if (cur == NULL) { throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str())); } { bool is_ok = true; for (size_t i = 0; i < ne.size(); ++i) { if (ne[i] != cur->ne[i]) { is_ok = false; break; } } if (!is_ok) { throw std::runtime_error( format("%s: tensor '%s' has wrong shape; expected %s, got %s", __func__, name.c_str(), llama_format_tensor_shape(ne).c_str(), llama_format_tensor_shape(cur).c_str())); } } return create_tensor_for(ctx, cur, backend); } void done_getting_tensors() const { if (n_created != n_tensors) { throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created)); } } size_t file_offset(const char * name) const { const int idx = gguf_find_tensor(ctx_gguf, name); if (idx < 0) { throw std::runtime_error(format("%s: tensor '%s' not found in the file", __func__, name)); } return gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, idx); } void load_data_for(struct ggml_tensor * cur) const { const size_t offs = file_offset(ggml_get_name(cur)); if (use_mmap) { cur->data = (uint8_t *) mapping->addr + offs; } else { file.seek(offs, SEEK_SET); file.read_raw(cur->data, ggml_nbytes(cur)); } } void load_all_data(struct ggml_context * ctx, llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) { size_t size_data = 0; size_t size_lock = 0; size_t size_pref = 0; // prefetch for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) { struct ggml_tensor * cur = ggml_get_tensor(ctx, gguf_get_tensor_name(ctx_gguf, i)); size_data += ggml_nbytes(cur); if (cur->backend == GGML_BACKEND_CPU) { size_pref += ggml_nbytes(cur); } } if (use_mmap) { mapping.reset(new llama_mmap(&file, size_pref, ggml_is_numa())); if (lmlock) { lmlock->init(mapping->addr); } } size_t done_size = 0; for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) { struct ggml_tensor * cur = ggml_get_tensor(ctx, gguf_get_tensor_name(ctx_gguf, i)); GGML_ASSERT(cur); // unused tensors should have been caught by load_data already if (progress_callback) { progress_callback((float) done_size / size_data, progress_callback_user_data); } // allocate temp buffer if not using mmap if (!use_mmap && cur->data == NULL) { GGML_ASSERT(cur->backend != GGML_BACKEND_CPU); #ifdef GGML_USE_CPU_HBM cur->data = (uint8_t*)hbw_malloc(ggml_nbytes(cur)); #else cur->data = (uint8_t*)malloc(ggml_nbytes(cur)); #endif } load_data_for(cur); switch (cur->backend) { case GGML_BACKEND_CPU: if (use_mmap && lmlock) { size_lock += ggml_nbytes(cur); lmlock->grow_to(size_lock); } break; #ifdef GGML_USE_CUBLAS case GGML_BACKEND_GPU: case GGML_BACKEND_GPU_SPLIT: // old code: //ggml_cuda_transform_tensor(lt.data, lt.ggml_tensor); // TODO: test if this works !! ggml_cuda_transform_tensor(cur->data, cur); if (!use_mmap) { free(cur->data); } break; #elif defined(GGML_USE_CLBLAST) case GGML_BACKEND_GPU: ggml_cl_transform_tensor(cur->data, cur); if (!use_mmap) { free(cur->data); } break; #endif default: continue; } done_size += ggml_nbytes(cur); } } }; // // load LLaMA models // static std::string llama_model_arch_name(llm_arch arch) { auto it = LLM_ARCH_NAMES.find(arch); if (it == LLM_ARCH_NAMES.end()) { return "unknown"; } return it->second; } static std::string llama_model_ftype_name(llama_ftype ftype) { if (ftype & LLAMA_FTYPE_GUESSED) { return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)"; } switch (ftype) { case LLAMA_FTYPE_ALL_F32: return "all F32"; case LLAMA_FTYPE_MOSTLY_F16: return "mostly F16"; case LLAMA_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0"; case LLAMA_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1"; case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16: return "mostly Q4_1, some F16"; case LLAMA_FTYPE_MOSTLY_Q5_0: return "mostly Q5_0"; case LLAMA_FTYPE_MOSTLY_Q5_1: return "mostly Q5_1"; case LLAMA_FTYPE_MOSTLY_Q8_0: return "mostly Q8_0"; // K-quants case LLAMA_FTYPE_MOSTLY_Q2_K: return "mostly Q2_K"; case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "mostly Q3_K - Small"; case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "mostly Q3_K - Medium"; case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "mostly Q3_K - Large"; case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "mostly Q4_K - Small"; case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "mostly Q4_K - Medium"; case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "mostly Q5_K - Small"; case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "mostly Q5_K - Medium"; case LLAMA_FTYPE_MOSTLY_Q6_K: return "mostly Q6_K"; default: return "unknown, may not work"; } } static const char * llama_model_type_name(e_model type) { switch (type) { case MODEL_1B: return "1B"; case MODEL_3B: return "3B"; case MODEL_7B: return "7B"; case MODEL_8B: return "8B"; case MODEL_13B: return "13B"; case MODEL_15B: return "15B"; case MODEL_30B: return "30B"; case MODEL_34B: return "34B"; case MODEL_40B: return "40B"; case MODEL_65B: return "65B"; case MODEL_70B: return "70B"; default: return "?B"; } } static void llm_load_arch(llama_model_loader & ml, llama_model & model) { model.arch = ml.get_arch(); if (model.arch == LLM_ARCH_UNKNOWN) { throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'"); } } static void llm_load_hparams( llama_model_loader & ml, llama_model & model) { struct gguf_context * ctx = ml.ctx_gguf; const auto kv = LLM_KV(model.arch); auto & hparams = model.hparams; // get general kv GGUF_GET_KEY(ctx, model.name, gguf_get_val_str, GGUF_TYPE_STRING, false, kv(LLM_KV_GENERAL_NAME)); // get hparams kv GGUF_GET_KEY(ctx, hparams.n_vocab, gguf_get_arr_n, GGUF_TYPE_ARRAY, true, kv(LLM_KV_TOKENIZER_LIST)); GGUF_GET_KEY(ctx, hparams.n_ctx_train, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_CONTEXT_LENGTH)); GGUF_GET_KEY(ctx, hparams.n_embd, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_EMBEDDING_LENGTH)); GGUF_GET_KEY(ctx, hparams.n_ff, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_FEED_FORWARD_LENGTH)); GGUF_GET_KEY(ctx, hparams.n_head, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_ATTENTION_HEAD_COUNT)); GGUF_GET_KEY(ctx, hparams.n_layer, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_BLOCK_COUNT)); // n_head_kv is optional, default to n_head hparams.n_head_kv = hparams.n_head; GGUF_GET_KEY(ctx, hparams.n_head_kv, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV)); // rope_freq_base (optional) hparams.rope_freq_base_train = 10000.0f; GGUF_GET_KEY(ctx, hparams.rope_freq_base_train, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE)); // rope_freq_scale (inverse of the kv) is optional float ropescale = 1.0f; GGUF_GET_KEY(ctx, ropescale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR)); hparams.rope_freq_scale_train = 1.0f/ropescale; // sanity check for n_rot (optional) { hparams.n_rot = hparams.n_embd / hparams.n_head; GGUF_GET_KEY(ctx, hparams.n_rot, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ROPE_DIMENSION_COUNT)); if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) { if (hparams.n_rot != hparams.n_embd / hparams.n_head) { throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head)); } } // gpt-neox n_rot = rotary_pct * (n_embd / n_head) // gpt-j n_rot = rotary_dim } // arch-specific KVs switch (model.arch) { case LLM_ARCH_LLAMA: { GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS)); switch (hparams.n_layer) { case 26: model.type = e_model::MODEL_3B; break; case 32: model.type = e_model::MODEL_7B; break; case 40: model.type = e_model::MODEL_13B; break; case 48: model.type = e_model::MODEL_34B; break; case 60: model.type = e_model::MODEL_30B; break; case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_FALCON: { GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS)); switch (hparams.n_layer) { case 32: model.type = e_model::MODEL_7B; break; case 60: model.type = e_model::MODEL_40B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_BAICHUAN: { GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS)); switch (hparams.n_layer) { case 32: model.type = e_model::MODEL_7B; break; case 40: model.type = e_model::MODEL_13B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_STARCODER: { GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS)); switch (hparams.n_layer) { case 24: model.type = e_model::MODEL_1B; break; case 36: model.type = e_model::MODEL_3B; break; case 42: model.type = e_model::MODEL_7B; break; case 40: model.type = e_model::MODEL_15B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_PERSIMMON: { GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS)); switch (hparams.n_layer) { case 36: model.type = e_model::MODEL_8B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_REFACT: { GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS)); switch (hparams.n_layer) { case 32: model.type = e_model::MODEL_1B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_BLOOM: { GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS)); switch (hparams.n_layer) { case 24: model.type = e_model::MODEL_1B; break; case 30: switch (hparams.n_embd) { case 2560: model.type = e_model::MODEL_3B; break; case 4096: model.type = e_model::MODEL_7B; break; } break; } } break; case LLM_ARCH_MPT: { hparams.f_clamp_kqv = 0.0f; GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS)); GGUF_GET_KEY(ctx, hparams.f_clamp_kqv, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ATTENTION_CLAMP_KQV)); GGUF_GET_KEY(ctx, hparams.f_max_alibi_bias, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_MAX_ALIBI_BIAS)); switch (hparams.n_layer) { case 32: model.type = e_model::MODEL_7B; break; case 48: model.type = e_model::MODEL_30B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; default: (void)0; } model.ftype = ml.ftype; } // TODO: This should probably be in llama.h static std::vector llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos, bool special = false); static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch); static void llm_load_vocab( llama_model_loader & ml, llama_model & model) { auto & vocab = model.vocab; struct gguf_context * ctx = ml.ctx_gguf; const auto kv = LLM_KV(model.arch); const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str()); if (token_idx == -1) { throw std::runtime_error("cannot find tokenizer vocab in model file\n"); } const float * scores = nullptr; const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str()); if (score_idx != -1) { scores = (const float * ) gguf_get_arr_data(ctx, score_idx); } const int * toktypes = nullptr; const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str()); if (toktype_idx != -1) { toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx); } // determine vocab type { std::string tokenizer_name; GGUF_GET_KEY(ctx, tokenizer_name, gguf_get_val_str, GGUF_TYPE_STRING, true, kv(LLM_KV_TOKENIZER_MODEL)); if (tokenizer_name == "llama") { vocab.type = LLAMA_VOCAB_TYPE_SPM; // default special tokens vocab.special_bos_id = 1; vocab.special_eos_id = 2; vocab.special_unk_id = 0; vocab.special_sep_id = -1; vocab.special_pad_id = -1; } else if (tokenizer_name == "gpt2") { vocab.type = LLAMA_VOCAB_TYPE_BPE; // read bpe merges and populate bpe ranks const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str()); if (merges_keyidx == -1) { throw std::runtime_error("cannot find tokenizer merges in model file\n"); } const int n_merges = gguf_get_arr_n(ctx, merges_keyidx); for (int i = 0; i < n_merges; i++) { const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i); GGML_ASSERT(codepoints_from_utf8(word).size() > 0); std::string first; std::string second; const size_t pos = word.find(' ', 1); if (pos != std::string::npos) { first = word.substr(0, pos); second = word.substr(pos + 1); } vocab.bpe_ranks.emplace(std::make_pair(first, second), i); } // default special tokens vocab.special_bos_id = 11; vocab.special_eos_id = 11; vocab.special_unk_id = -1; vocab.special_sep_id = -1; vocab.special_pad_id = -1; } else { LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str()); LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__); vocab.type = LLAMA_VOCAB_TYPE_SPM; } } const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx); vocab.id_to_token.resize(n_vocab); for (uint32_t i = 0; i < n_vocab; i++) { std::string word = gguf_get_arr_str(ctx, token_idx, i); GGML_ASSERT(codepoints_from_utf8(word).size() > 0); vocab.token_to_id[word] = i; auto & token_data = vocab.id_to_token[i]; token_data.text = std::move(word); token_data.score = scores ? scores[i] : 0.0f; token_data.type = toktypes ? (llama_token_type) toktypes[i] : LLAMA_TOKEN_TYPE_NORMAL; } GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size()); // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n' if (vocab.type == LLAMA_VOCAB_TYPE_SPM) { vocab.linefeed_id = llama_byte_to_token(vocab, '\n'); } else { vocab.linefeed_id = llama_tokenize_internal(vocab, "\u010A", false)[0]; } // special tokens GGUF_GET_KEY(ctx, vocab.special_bos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_BOS_ID)); GGUF_GET_KEY(ctx, vocab.special_eos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_EOS_ID)); GGUF_GET_KEY(ctx, vocab.special_unk_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_UNK_ID)); GGUF_GET_KEY(ctx, vocab.special_sep_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_SEP_ID)); GGUF_GET_KEY(ctx, vocab.special_pad_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_PAD_ID)); // build special tokens cache { // TODO: It is unclear (to me) at this point, whether special tokes are guaranteed to be of a deterministic type, // and will always be correctly labeled in 'added_tokens.json' etc. // The assumption is, since special tokens aren't meant to be exposed to end user, they are designed // to be unmatchable by the tokenizer, therefore tokens from the vocab, which are unmatchable by the tokenizer // are special tokens. // From testing, this appears to corelate 1:1 with special tokens. // // Counting special tokens and verifying in only one direction // is sufficient to detect difference in those two sets. // uint32_t special_tokens_count_by_type = 0; uint32_t special_tokens_count_from_verification = 0; bool special_tokens_definition_mismatch = false; for (const auto & t : vocab.token_to_id) { const auto & token = t.first; const auto & id = t.second; // Count all non-normal tokens in the vocab while iterating if (vocab.id_to_token[id].type != LLAMA_TOKEN_TYPE_NORMAL) { special_tokens_count_by_type++; } // Skip single character tokens if (token.length() > 1) { bool is_tokenizable = false; // Split token string representation in two, in all possible ways // and check if both halves can be matched to a valid token for (unsigned i = 1; i < token.length();) { const auto left = token.substr(0, i); const auto right = token.substr(i); // check if we didnt partition in the middle of a utf sequence auto utf = utf8_len(left.at(left.length() - 1)); if (utf == 1) { if (vocab.token_to_id.find(left) != vocab.token_to_id.end() && vocab.token_to_id.find(right) != vocab.token_to_id.end() ) { is_tokenizable = true; break; } i++; } else { // skip over the rest of multibyte utf sequence i += utf - 1; } } if (!is_tokenizable) { // Some tokens are multibyte, but they are utf sequences with equivalent text length of 1 // it's faster to re-filter them here, since there are way less candidates now // Calculate a total "utf" length of a token string representation size_t utf8_str_len = 0; for (unsigned i = 0; i < token.length();) { utf8_str_len++; i += utf8_len(token.at(i)); } // And skip the ones which are one character if (utf8_str_len > 1) { // At this point what we have left are special tokens only vocab.special_tokens_cache[token] = id; // Count manually found special tokens special_tokens_count_from_verification++; // If this manually found special token is not marked as such, flag a mismatch if (vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL) { special_tokens_definition_mismatch = true; } } } } } if (special_tokens_definition_mismatch || special_tokens_count_from_verification != special_tokens_count_by_type) { LLAMA_LOG_WARN("%s: mismatch in special tokens definition ( %u/%zu vs %u/%zu ).\n", __func__, special_tokens_count_from_verification, vocab.id_to_token.size(), special_tokens_count_by_type, vocab.id_to_token.size() ); } else { LLAMA_LOG_INFO("%s: special tokens definition check successful ( %u/%zu ).\n", __func__, special_tokens_count_from_verification, vocab.id_to_token.size() ); } } } static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) { const auto & hparams = model.hparams; const auto & vocab = model.vocab; // hparams LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver)); LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch).c_str()); LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, vocab.type == LLAMA_VOCAB_TYPE_SPM ? "SPM" : "BPE"); // TODO: fix LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab); LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size()); LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train); LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd); LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head); LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv); LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer); LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot); // a.k.a. n_embd_head, n_head_dim LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa()); LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps); LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps); LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv); LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias); LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff); LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train); LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train); LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type)); LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str()); LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9); if (ml.n_bytes < GB) { LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements); } else { LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements); } // general kv LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str()); // special tokens if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); } if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); } if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); } if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); } if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); } if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); } } static void llm_load_tensors( llama_model_loader & ml, llama_model & model, int n_gpu_layers, int main_gpu, const float * tensor_split, bool use_mlock, llama_progress_callback progress_callback, void * progress_callback_user_data) { model.t_start_us = ggml_time_us(); auto & ctx = model.ctx; auto & hparams = model.hparams; model.n_gpu_layers = n_gpu_layers; size_t ctx_size; size_t mmapped_size; ml.calc_sizes(ctx_size, mmapped_size); LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0); // create the ggml context { model.buf.resize(ctx_size); if (use_mlock) { model.mlock_buf.init (model.buf.data); model.mlock_buf.grow_to(model.buf.size); } struct ggml_init_params params = { /*.mem_size =*/ model.buf.size, /*.mem_buffer =*/ model.buf.data, /*.no_alloc =*/ ml.use_mmap, }; model.ctx = ggml_init(params); if (!model.ctx) { throw std::runtime_error(format("ggml_init() failed")); } } (void) main_gpu; #ifdef GGML_USE_CUBLAS LLAMA_LOG_INFO("%s: using " GGML_CUDA_NAME " for GPU acceleration\n", __func__); ggml_cuda_set_main_device(main_gpu); #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU_SPLIT #elif defined(GGML_USE_CLBLAST) LLAMA_LOG_INFO("%s: using OpenCL for GPU acceleration\n", __func__); #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU #else #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CPU #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_CPU #endif // prepare memory for the weights size_t vram_weights = 0; { const int64_t n_embd = hparams.n_embd; const int64_t n_embd_gqa = hparams.n_embd_gqa(); const int64_t n_layer = hparams.n_layer; const int64_t n_vocab = hparams.n_vocab; const auto tn = LLM_TN(model.arch); switch (model.arch) { case LLM_ARCH_LLAMA: case LLM_ARCH_REFACT: { model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU); // output { ggml_backend_type backend_norm; ggml_backend_type backend_output; if (n_gpu_layers > int(n_layer)) { // norm is not performance relevant on its own but keeping it in VRAM reduces data copying // on Windows however this is detrimental unless everything is on the GPU #ifndef _WIN32 backend_norm = LLAMA_BACKEND_OFFLOAD; #else backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; #endif // _WIN32 backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; } else { backend_norm = GGML_BACKEND_CPU; backend_output = GGML_BACKEND_CPU; } model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm); model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); if (backend_norm == GGML_BACKEND_GPU) { vram_weights += ggml_nbytes(model.output_norm); } if (backend_output == GGML_BACKEND_GPU_SPLIT) { vram_weights += ggml_nbytes(model.output); } } const uint32_t n_ff = hparams.n_ff; const int i_gpu_start = n_layer - n_gpu_layers; model.layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT auto & layer = model.layers[i]; layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend); layer.wq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, backend_split); layer.wk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, backend_split); layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split); layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split); layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend); layer.w1 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split); layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split); layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split); if (backend == GGML_BACKEND_GPU) { vram_weights += ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) + ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) + ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3); } } } break; case LLM_ARCH_BAICHUAN: { model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU); { ggml_backend_type backend_norm; ggml_backend_type backend_output; if (n_gpu_layers > int(n_layer)) { // norm is not performance relevant on its own but keeping it in VRAM reduces data copying // on Windows however this is detrimental unless everything is on the GPU #ifndef _WIN32 backend_norm = LLAMA_BACKEND_OFFLOAD; #else backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; #endif // _WIN32 backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; } else { backend_norm = GGML_BACKEND_CPU; backend_output = GGML_BACKEND_CPU; } model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm); model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); if (backend_norm == GGML_BACKEND_GPU) { vram_weights += ggml_nbytes(model.output_norm); } if (backend_output == GGML_BACKEND_GPU_SPLIT) { vram_weights += ggml_nbytes(model.output); } } const uint32_t n_ff = hparams.n_ff; const int i_gpu_start = n_layer - n_gpu_layers; model.layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT auto & layer = model.layers[i]; layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend); layer.wq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, backend_split); layer.wk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, backend_split); layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split); layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split); layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend); layer.w1 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split); layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split); layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split); if (backend == GGML_BACKEND_GPU) { vram_weights += ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) + ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) + ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3); } } } break; case LLM_ARCH_FALCON: { // TODO: CPU-only for now model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU); // output { ggml_backend_type backend_norm; ggml_backend_type backend_output; if (n_gpu_layers > int(n_layer)) { // norm is not performance relevant on its own but keeping it in VRAM reduces data copying // on Windows however this is detrimental unless everything is on the GPU #ifndef _WIN32 backend_norm = LLAMA_BACKEND_OFFLOAD; #else backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; #endif // _WIN32 backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; } else { backend_norm = GGML_BACKEND_CPU; backend_output = GGML_BACKEND_CPU; } model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm); model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm); model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); if (backend_norm == GGML_BACKEND_GPU) { vram_weights += ggml_nbytes(model.output_norm); vram_weights += ggml_nbytes(model.output_norm_b); } if (backend_output == GGML_BACKEND_GPU_SPLIT) { vram_weights += ggml_nbytes(model.output); } } const uint32_t n_ff = hparams.n_ff; const int i_gpu_start = n_layer - n_gpu_layers; model.layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT auto & layer = model.layers[i]; layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend); layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend); if (gguf_find_tensor(ml.ctx_gguf, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i).c_str()) >= 0) { layer.attn_norm_2 = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, backend); layer.attn_norm_2_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, backend); if (backend == GGML_BACKEND_GPU) { vram_weights += ggml_nbytes(layer.attn_norm_2); vram_weights += ggml_nbytes(layer.attn_norm_2_b); } } layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split); layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split); layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split); layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split); if (backend == GGML_BACKEND_GPU) { vram_weights += ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) + ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3); } } } break; case LLM_ARCH_STARCODER: { model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU); model.pos_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, GGML_BACKEND_CPU); // output { ggml_backend_type backend_norm; ggml_backend_type backend_output; if (n_gpu_layers > int(n_layer)) { // norm is not performance relevant on its own but keeping it in VRAM reduces data copying // on Windows however this is detrimental unless everything is on the GPU #ifndef _WIN32 backend_norm = LLAMA_BACKEND_OFFLOAD; #else backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; #endif // _WIN32 backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; } else { backend_norm = GGML_BACKEND_CPU; backend_output = GGML_BACKEND_CPU; } model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm); model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm); model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); if (backend_norm == GGML_BACKEND_GPU) { vram_weights += ggml_nbytes(model.output_norm); vram_weights += ggml_nbytes(model.output_norm_b); } if (backend_output == GGML_BACKEND_GPU_SPLIT) { vram_weights += ggml_nbytes(model.output); } } const uint32_t n_ff = hparams.n_ff; const int i_gpu_start = n_layer - n_gpu_layers; model.layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT auto & layer = model.layers[i]; layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend); layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend); layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split); layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, backend_split); layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split); layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend_split); layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend); layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend); layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split); layer.b2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend_split); layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split); layer.b3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend_split); if (backend == GGML_BACKEND_GPU) { vram_weights += ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) + ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.bqkv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.bo) + ggml_nbytes(layer.ffn_norm) + ggml_nbytes(layer.ffn_norm_b) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.b2) + ggml_nbytes(layer.w3) + ggml_nbytes(layer.b3); } } } break; case LLM_ARCH_PERSIMMON: { model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU); { ggml_backend_type backend_norm; ggml_backend_type backend_output; if (n_gpu_layers > int(n_layer)) { // norm is not performance relevant on its own but keeping it in VRAM reduces data copying // on Windows however this is detrimental unless everything is on the GPU #ifndef _WIN32 backend_norm = LLAMA_BACKEND_OFFLOAD; #else backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; #endif // _WIN32 backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; } else { backend_norm = GGML_BACKEND_CPU; backend_output = GGML_BACKEND_CPU; } model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm); model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm); model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); if (backend_norm == GGML_BACKEND_GPU) { vram_weights += ggml_nbytes(model.output_norm); vram_weights += ggml_nbytes(model.output_norm_b); } if (backend_output == GGML_BACKEND_GPU_SPLIT) { vram_weights += ggml_nbytes(model.output); } } const uint32_t n_ff = hparams.n_ff; const int i_gpu_start = n_layer - n_gpu_layers; model.layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; auto & layer = model.layers[i]; layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend); layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend); layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split); layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, backend_split); layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split); layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend_split); layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split); layer.b2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend_split); layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split); layer.b3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend_split); layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend); layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend); layer.attn_q_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {64}, backend); layer.attn_q_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {64}, backend); layer.attn_k_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {64}, backend); layer.attn_k_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {64}, backend); } } break; case LLM_ARCH_BLOOM: { // TODO: CPU-only for now model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU); model.tok_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, GGML_BACKEND_CPU); model.tok_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, GGML_BACKEND_CPU); // output { ggml_backend_type backend_norm; ggml_backend_type backend_output; if (n_gpu_layers > int(n_layer)) { // norm is not performance relevant on its own but keeping it in VRAM reduces data copying // on Windows however this is detrimental unless everything is on the GPU #ifndef _WIN32 backend_norm = LLAMA_BACKEND_OFFLOAD; #else backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; #endif // _WIN32 backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; } else { backend_norm = GGML_BACKEND_CPU; backend_output = GGML_BACKEND_CPU; } model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm); model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm); model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); if (backend_norm == GGML_BACKEND_GPU) { vram_weights += ggml_nbytes(model.output_norm); vram_weights += ggml_nbytes(model.output_norm_b); } if (backend_output == GGML_BACKEND_GPU_SPLIT) { vram_weights += ggml_nbytes(model.output); } } const uint32_t n_ff = hparams.n_ff; const int i_gpu_start = n_layer - n_gpu_layers; model.layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT auto & layer = model.layers[i]; layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend); layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend); layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split); layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, backend_split); layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split); layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend_split); layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend); layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend); layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split); layer.b2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend_split); layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split); layer.b3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend_split); if (backend == GGML_BACKEND_GPU) { vram_weights += ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) + ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.bqkv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.bo) + ggml_nbytes(layer.ffn_norm) + ggml_nbytes(layer.ffn_norm_b) + ggml_nbytes(layer.w3) + ggml_nbytes(layer.b3) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.b2); } } } break; case LLM_ARCH_MPT: { model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU); // output { ggml_backend_type backend_norm; ggml_backend_type backend_output; if (n_gpu_layers > int(n_layer)) { // norm is not performance relevant on its own but keeping it in VRAM reduces data copying // on Windows however this is detrimental unless everything is on the GPU #ifndef _WIN32 backend_norm = LLAMA_BACKEND_OFFLOAD; #else backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; #endif // _WIN32 backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; } else { backend_norm = GGML_BACKEND_CPU; backend_output = GGML_BACKEND_CPU; } model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm); model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); if (backend_norm == GGML_BACKEND_GPU) { vram_weights += ggml_nbytes(model.output_norm); } if (backend_output == GGML_BACKEND_GPU_SPLIT) { vram_weights += ggml_nbytes(model.output); } } const uint32_t n_ff = hparams.n_ff; const int i_gpu_start = n_layer - n_gpu_layers; model.layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT auto & layer = model.layers[i]; layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend); layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split); layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split); layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend); layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split); layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split); if (backend == GGML_BACKEND_GPU) { vram_weights += ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3); } } } break; default: throw std::runtime_error("unknown architecture"); } } ml.done_getting_tensors(); // print memory requirements { // this is the total memory required to run the inference size_t mem_required = ctx_size + mmapped_size - vram_weights; // weights in VRAM not in memory LLAMA_LOG_INFO("%s: mem required = %7.2f MB\n", __func__, mem_required / 1024.0 / 1024.0); #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer)); LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu); if (n_gpu_layers > (int) hparams.n_layer) { LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__); } #ifdef GGML_USE_CUBLAS const int max_backend_supported_layers = hparams.n_layer + 3; const int max_offloadable_layers = hparams.n_layer + 3; #elif defined(GGML_USE_CLBLAST) const int max_backend_supported_layers = hparams.n_layer + 1; const int max_offloadable_layers = hparams.n_layer + 1; #endif // GGML_USE_CUBLAS LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers); LLAMA_LOG_INFO("%s: VRAM used: %.2f MB\n", __func__, vram_weights / 1024.0 / 1024.0); #else (void) n_gpu_layers; #endif // defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) } // populate `tensors_by_name` for (int i = 0; i < ml.n_tensors; ++i) { struct ggml_tensor * cur = ggml_get_tensor(ctx, ml.get_tensor_name(i)); model.tensors_by_name.emplace_back(ggml_get_name(cur), cur); } (void) tensor_split; #ifdef GGML_USE_CUBLAS { ggml_cuda_set_tensor_split(tensor_split); } #endif ml.load_all_data(ctx, progress_callback, progress_callback_user_data, use_mlock ? &model.mlock_mmap : NULL); if (progress_callback) { progress_callback(1.0f, progress_callback_user_data); } model.mapping = std::move(ml.mapping); // loading time will be recalculate after the first eval, so // we take page faults deferred by mmap() into consideration model.t_load_us = ggml_time_us() - model.t_start_us; } static bool llama_model_load( const std::string & fname, llama_model & model, int n_gpu_layers, int main_gpu, const float * tensor_split, bool use_mmap, bool use_mlock, bool vocab_only, llama_progress_callback progress_callback, void *progress_callback_user_data) { try { llama_model_loader ml(fname, use_mmap); model.hparams.vocab_only = vocab_only; llm_load_arch (ml, model); llm_load_hparams(ml, model); llm_load_vocab (ml, model); llm_load_print_meta(ml, model); if (model.hparams.n_vocab != model.vocab.id_to_token.size()) { throw std::runtime_error("vocab size mismatch"); } if (vocab_only) { LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__); return true; } llm_load_tensors( ml, model, n_gpu_layers, main_gpu, tensor_split, use_mlock, progress_callback, progress_callback_user_data); } catch (const std::exception & err) { LLAMA_LOG_ERROR("error loading model: %s\n", err.what()); return false; } return true; } static struct ggml_cgraph * llm_build_llama( llama_context & lctx, const llama_batch & batch) { const auto & model = lctx.model; const auto & hparams = model.hparams; const auto & cparams = lctx.cparams; const auto & kv_self = lctx.kv_self; GGML_ASSERT(!!kv_self.ctx); const int64_t n_embd = hparams.n_embd; const int64_t n_layer = hparams.n_layer; const int64_t n_ctx = cparams.n_ctx; const int64_t n_head = hparams.n_head; const int64_t n_head_kv = hparams.n_head_kv; const int64_t n_embd_head = hparams.n_embd_head(); const int64_t n_embd_gqa = hparams.n_embd_gqa(); GGML_ASSERT(n_embd_head == hparams.n_rot); const float freq_base = cparams.rope_freq_base; const float freq_scale = cparams.rope_freq_scale; const float norm_rms_eps = hparams.f_norm_rms_eps; const int n_gpu_layers = model.n_gpu_layers; const int32_t n_tokens = batch.n_tokens; const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n; const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head; const bool do_rope_shift = ggml_allocr_is_measure(lctx.alloc) || kv_self.has_shift; //printf("n_kv = %d\n", n_kv); auto & buf_compute = lctx.buf_compute; struct ggml_init_params params = { /*.mem_size =*/ buf_compute.size, /*.mem_buffer =*/ buf_compute.data, /*.no_alloc =*/ true, }; struct ggml_context * ctx0 = ggml_init(params); ggml_cgraph * gf = ggml_new_graph(ctx0); struct ggml_tensor * cur; struct ggml_tensor * inpL; if (batch.token) { struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); ggml_allocr_alloc(lctx.alloc, inp_tokens); if (!ggml_allocr_is_measure(lctx.alloc)) { memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens)); } ggml_set_name(inp_tokens, "inp_tokens"); inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens); } else { #ifdef GGML_USE_MPI GGML_ASSERT(false && "not implemented"); #endif inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens); ggml_allocr_alloc(lctx.alloc, inpL); if (!ggml_allocr_is_measure(lctx.alloc)) { memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL)); } } const int i_gpu_start = n_layer - n_gpu_layers; (void) i_gpu_start; // offload functions set the tensor output backend to GPU // tensors are GPU-accelerated if any input or the output has been offloaded offload_func_t offload_func_nr = llama_nop; // nr = non-repeating offload_func_t offload_func_kq = llama_nop; offload_func_t offload_func_v = llama_nop; #ifdef GGML_USE_CUBLAS if (n_gpu_layers > n_layer) { offload_func_nr = ggml_cuda_assign_buffers_no_alloc; } if (n_gpu_layers > n_layer + 1) { offload_func_v = ggml_cuda_assign_buffers_no_alloc; } if (n_gpu_layers > n_layer + 2) { offload_func_kq = ggml_cuda_assign_buffers_no_alloc; } #endif // GGML_USE_CUBLAS // KQ_scale struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)"); ggml_allocr_alloc(lctx.alloc, KQ_scale); if (!ggml_allocr_is_measure(lctx.alloc)) { ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd_head))); } // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); offload_func_kq(KQ_mask); ggml_set_name(KQ_mask, "KQ_mask"); ggml_allocr_alloc(lctx.alloc, KQ_mask); if (!ggml_allocr_is_measure(lctx.alloc)) { float * data = (float *) KQ_mask->data; memset(data, 0, ggml_nbytes(KQ_mask)); for (int h = 0; h < 1; ++h) { for (int j = 0; j < n_tokens; ++j) { const llama_pos pos = batch.pos[j]; const llama_seq_id seq_id = batch.seq_id[j][0]; for (int i = 0; i < n_kv; ++i) { if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) { data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY; } } } } } // KQ_pos - contains the positions struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); offload_func_kq(KQ_pos); ggml_set_name(KQ_pos, "KQ_pos"); ggml_allocr_alloc(lctx.alloc, KQ_pos); if (!ggml_allocr_is_measure(lctx.alloc)) { int * data = (int *) KQ_pos->data; for (int i = 0; i < n_tokens; ++i) { data[i] = batch.pos[i]; } } // shift the entire K-cache if needed if (do_rope_shift) { struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx); offload_func_kq(K_shift); ggml_set_name(K_shift, "K_shift"); ggml_allocr_alloc(lctx.alloc, K_shift); if (!ggml_allocr_is_measure(lctx.alloc)) { int * data = (int *) K_shift->data; for (int i = 0; i < n_ctx; ++i) { data[i] = kv_self.cells[i].delta; } } for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * tmp = ggml_rope_custom_inplace(ctx0, ggml_view_3d(ctx0, kv_self.k, n_embd_head, n_head_kv, n_ctx, ggml_element_size(kv_self.k)*n_embd_head, ggml_element_size(kv_self.k)*n_embd_gqa, ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il), K_shift, n_embd_head, 0, 0, freq_base, freq_scale); offload_func_kq(tmp); ggml_build_forward_expand(gf, tmp); } } for (int il = 0; il < n_layer; ++il) { ggml_format_name(inpL, "layer_inp_%d", il); offload_func_t offload_func = llama_nop; #ifdef GGML_USE_CUBLAS if (il >= i_gpu_start) { offload_func = ggml_cuda_assign_buffers_no_alloc; } #endif // GGML_USE_CUBLAS struct ggml_tensor * inpSA = inpL; // norm { cur = ggml_rms_norm(ctx0, inpL, norm_rms_eps); offload_func(cur); ggml_set_name(cur, "rms_norm_0"); // cur = cur*attn_norm(broadcasted) cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm); offload_func(cur); ggml_set_name(cur, "attention_norm_0"); } // self-attention { // compute Q and K and RoPE them struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur); offload_func_kq(tmpk); ggml_set_name(tmpk, "tmpk"); struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur); offload_func_kq(tmpq); ggml_set_name(tmpq, "tmpq"); struct ggml_tensor * Kcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), KQ_pos, n_embd_head, 0, 0, freq_base, freq_scale); offload_func_kq(Kcur); ggml_set_name(Kcur, "Kcur"); struct ggml_tensor * Qcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), KQ_pos, n_embd_head, 0, 0, freq_base, freq_scale); offload_func_kq(Qcur); ggml_set_name(Qcur, "Qcur"); // store key and value to memory { // compute the transposed [n_tokens, n_embd] V matrix struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur); offload_func_v(tmpv); ggml_set_name(tmpv, "tmpv"); struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, n_tokens)); offload_func_v(Vcur); ggml_set_name(Vcur, "Vcur"); struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head)); offload_func_kq(k); ggml_set_name(k, "k"); struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa, ( n_ctx)*ggml_element_size(kv_self.v), (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v)); offload_func_v(v); ggml_set_name(v, "v"); // important: storing RoPE-ed version of K in the KV cache! ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); } struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); offload_func_kq(Q); ggml_set_name(Q, "Q"); struct ggml_tensor * K = ggml_view_3d(ctx0, kv_self.k, n_embd_head, n_kv, n_head_kv, ggml_element_size(kv_self.k)*n_embd_gqa, ggml_element_size(kv_self.k)*n_embd_head, ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il); offload_func_kq(K); ggml_set_name(K, "K"); // K * Q struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); offload_func_kq(KQ); ggml_set_name(KQ, "KQ"); // KQ_scaled = KQ / sqrt(n_embd_head) // KQ_scaled shape [n_kv, n_tokens, n_head, 1] struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale); offload_func_kq(KQ_scaled); ggml_set_name(KQ_scaled, "KQ_scaled"); // KQ_masked = mask_past(KQ_scaled) struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask); offload_func_kq(KQ_masked); ggml_set_name(KQ_masked, "KQ_masked"); // KQ = soft_max(KQ_masked) struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); offload_func_v(KQ_soft_max); ggml_set_name(KQ_soft_max, "KQ_soft_max"); // split cached V into n_head heads struct ggml_tensor * V = ggml_view_3d(ctx0, kv_self.v, n_kv, n_embd_head, n_head_kv, ggml_element_size(kv_self.v)*n_ctx, ggml_element_size(kv_self.v)*n_ctx*n_embd_head, ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il); offload_func_v(V); ggml_set_name(V, "V"); #if 1 struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); offload_func_v(KQV); ggml_set_name(KQV, "KQV"); #else // make V contiguous in memory to speed up the matmul, however we waste time on the copy // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation // is there a better way? struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_ctx, n_embd_head, n_head)); struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max); #endif // KQV_merged = KQV.permute(0, 2, 1, 3) struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); offload_func_v(KQV_merged); ggml_set_name(KQV_merged, "KQV_merged"); // cur = KQV_merged.contiguous().view(n_embd, n_tokens) cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens); offload_func_v(cur); ggml_set_name(cur, "KQV_merged_contiguous"); // projection (no bias) cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur); offload_func(cur); ggml_set_name(cur, "result_wo"); } struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA); offload_func(inpFF); ggml_set_name(inpFF, "inpFF"); // feed-forward network { // norm { cur = ggml_rms_norm(ctx0, inpFF, norm_rms_eps); offload_func(cur); ggml_set_name(cur, "rms_norm_1"); // cur = cur*ffn_norm(broadcasted) cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm); offload_func(cur); ggml_set_name(cur, "ffn_norm"); } struct ggml_tensor * tmp = ggml_mul_mat(ctx0, model.layers[il].w3, cur); offload_func(tmp); ggml_set_name(tmp, "result_w3"); cur = ggml_mul_mat(ctx0, model.layers[il].w1, cur); offload_func(cur); ggml_set_name(cur, "result_w1"); // SILU activation cur = ggml_silu(ctx0, cur); offload_func(cur); ggml_set_name(cur, "silu"); cur = ggml_mul(ctx0, cur, tmp); offload_func(cur); ggml_set_name(cur, "silu_x_result_w3"); cur = ggml_mul_mat(ctx0, model.layers[il].w2, cur); offload_func(cur); ggml_set_name(cur, "result_w2"); } cur = ggml_add(ctx0, cur, inpFF); offload_func(cur); ggml_set_name(cur, "inpFF_+_result_w2"); // input for next layer inpL = cur; } cur = inpL; // norm { cur = ggml_rms_norm(ctx0, cur, norm_rms_eps); offload_func_nr(cur); ggml_set_name(cur, "rms_norm_2"); // cur = cur*norm(broadcasted) cur = ggml_mul(ctx0, cur, model.output_norm); // offload_func_nr(cur); // TODO CPU + GPU mirrored backend ggml_set_name(cur, "result_norm"); } // lm_head cur = ggml_mul_mat(ctx0, model.output, cur); ggml_set_name(cur, "result_output"); ggml_build_forward_expand(gf, cur); ggml_free(ctx0); return gf; } static struct ggml_cgraph * llm_build_baichaun( llama_context & lctx, const llama_batch & batch) { const auto & model = lctx.model; const auto & hparams = model.hparams; const auto & cparams = lctx.cparams; const auto & kv_self = lctx.kv_self; GGML_ASSERT(!!kv_self.ctx); const int64_t n_embd = hparams.n_embd; const int64_t n_layer = hparams.n_layer; const int64_t n_ctx = cparams.n_ctx; const int64_t n_head = hparams.n_head; const int64_t n_head_kv = hparams.n_head_kv; const int64_t n_embd_head = hparams.n_embd_head(); const int64_t n_embd_gqa = hparams.n_embd_gqa(); GGML_ASSERT(n_embd_head == hparams.n_rot); const float freq_base = cparams.rope_freq_base; const float freq_scale = cparams.rope_freq_scale; const float norm_rms_eps = hparams.f_norm_rms_eps; const int n_gpu_layers = model.n_gpu_layers; const int32_t n_tokens = batch.n_tokens; const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n; const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head; const bool do_rope_shift = ggml_allocr_is_measure(lctx.alloc) || kv_self.has_shift; auto & buf_compute = lctx.buf_compute; struct ggml_init_params params = { /*.mem_size =*/ buf_compute.size, /*.mem_buffer =*/ buf_compute.data, /*.no_alloc =*/ true, }; struct ggml_context * ctx0 = ggml_init(params); ggml_cgraph * gf = ggml_new_graph(ctx0); struct ggml_tensor * cur; struct ggml_tensor * inpL; if (batch.token) { struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); ggml_allocr_alloc(lctx.alloc, inp_tokens); if (!ggml_allocr_is_measure(lctx.alloc)) { memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens)); } ggml_set_name(inp_tokens, "inp_tokens"); inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens); } else { #ifdef GGML_USE_MPI GGML_ASSERT(false && "not implemented"); #endif inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens); ggml_allocr_alloc(lctx.alloc, inpL); if (!ggml_allocr_is_measure(lctx.alloc)) { memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL)); } } const int i_gpu_start = n_layer - n_gpu_layers; (void) i_gpu_start; // offload functions set the tensor output backend to GPU // tensors are GPU-accelerated if any input or the output has been offloaded offload_func_t offload_func_nr = llama_nop; // nr = non-repeating offload_func_t offload_func_kq = llama_nop; offload_func_t offload_func_v = llama_nop; #ifdef GGML_USE_CUBLAS if (n_gpu_layers > n_layer) { offload_func_nr = ggml_cuda_assign_buffers_no_alloc; } if (n_gpu_layers > n_layer + 1) { offload_func_v = ggml_cuda_assign_buffers_no_alloc; } if (n_gpu_layers > n_layer + 2) { offload_func_kq = ggml_cuda_assign_buffers_no_alloc; } #endif // GGML_USE_CUBLAS // KQ_scale struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)"); ggml_allocr_alloc(lctx.alloc, KQ_scale); if (!ggml_allocr_is_measure(lctx.alloc)) { ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head)); } // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); offload_func_kq(KQ_mask); ggml_set_name(KQ_mask, "KQ_mask"); ggml_allocr_alloc(lctx.alloc, KQ_mask); if (!ggml_allocr_is_measure(lctx.alloc)) { float * data = (float *) KQ_mask->data; memset(data, 0, ggml_nbytes(KQ_mask)); for (int h = 0; h < 1; ++h) { for (int j = 0; j < n_tokens; ++j) { const llama_pos pos = batch.pos[j]; const llama_seq_id seq_id = batch.seq_id[j][0]; for (int i = 0; i < n_kv; ++i) { if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) { data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY; } } } } } // KQ_pos - contains the positions struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); offload_func_kq(KQ_pos); ggml_set_name(KQ_pos, "KQ_pos"); ggml_allocr_alloc(lctx.alloc, KQ_pos); if (!ggml_allocr_is_measure(lctx.alloc)) { int * data = (int *) KQ_pos->data; for (int i = 0; i < n_tokens; ++i) { data[i] = batch.pos[i]; } } // shift the entire K-cache if needed if (do_rope_shift) { struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx); offload_func_kq(K_shift); ggml_set_name(K_shift, "K_shift"); ggml_allocr_alloc(lctx.alloc, K_shift); if (!ggml_allocr_is_measure(lctx.alloc)) { int * data = (int *) K_shift->data; for (int i = 0; i < n_ctx; ++i) { data[i] = kv_self.cells[i].delta; } } for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * tmp = ggml_rope_custom_inplace(ctx0, ggml_view_3d(ctx0, kv_self.k, n_embd_head, n_head_kv, n_ctx, ggml_element_size(kv_self.k)*n_embd_head, ggml_element_size(kv_self.k)*n_embd_gqa, ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il), K_shift, n_embd_head, 0, 0, freq_base, freq_scale); offload_func_kq(tmp); ggml_build_forward_expand(gf, tmp); } } for (int il = 0; il < n_layer; ++il) { ggml_format_name(inpL, "layer_inp_%d", il); offload_func_t offload_func = llama_nop; #ifdef GGML_USE_CUBLAS if (il >= i_gpu_start) { offload_func = ggml_cuda_assign_buffers_no_alloc; } #endif // GGML_USE_CUBLAS struct ggml_tensor * inpSA = inpL; // norm { cur = ggml_rms_norm(ctx0, inpL, norm_rms_eps); offload_func(cur); ggml_set_name(cur, "rms_norm_0"); // cur = cur*attn_norm(broadcasted) cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm); offload_func(cur); ggml_set_name(cur, "attention_norm_0"); } // self-attention { // compute Q and K and RoPE them struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur); offload_func_kq(tmpk); ggml_set_name(tmpk, "tmpk"); struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur); offload_func_kq(tmpq); ggml_set_name(tmpq, "tmpq"); struct ggml_tensor * Kcur; struct ggml_tensor * Qcur; switch (model.type) { case MODEL_7B: Kcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), KQ_pos, n_embd_head, 0, 0, freq_base, freq_scale); Qcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), KQ_pos, n_embd_head, 0, 0, freq_base, freq_scale); break; case MODEL_13B: Kcur = ggml_reshape_3d(ctx0, tmpk, n_embd/n_head, n_head, n_tokens); Qcur = ggml_reshape_3d(ctx0, tmpq, n_embd/n_head, n_head, n_tokens); break; default: GGML_ASSERT(false); } offload_func_kq(Kcur); ggml_set_name(Kcur, "Kcur"); offload_func_kq(Qcur); ggml_set_name(Qcur, "Qcur"); // store key and value to memory { // compute the transposed [n_tokens, n_embd] V matrix struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur); offload_func_v(tmpv); ggml_set_name(tmpv, "tmpv"); struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, n_tokens)); offload_func_v(Vcur); ggml_set_name(Vcur, "Vcur"); struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head)); offload_func_kq(k); ggml_set_name(k, "k"); struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa, ( n_ctx)*ggml_element_size(kv_self.v), (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v)); offload_func_v(v); ggml_set_name(v, "v"); // important: storing RoPE-ed version of K in the KV cache! ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); } struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); offload_func_kq(Q); ggml_set_name(Q, "Q"); struct ggml_tensor * K = ggml_view_3d(ctx0, kv_self.k, n_embd_head, n_kv, n_head_kv, ggml_element_size(kv_self.k)*n_embd_gqa, ggml_element_size(kv_self.k)*n_embd_head, ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il); offload_func_kq(K); ggml_set_name(K, "K"); // K * Q struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); offload_func_kq(KQ); ggml_set_name(KQ, "KQ"); // KQ_scaled = KQ / sqrt(n_embd_head) // KQ_scaled shape [n_past + n_tokens, n_tokens, n_head, 1] struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale); offload_func_kq(KQ_scaled); ggml_set_name(KQ_scaled, "KQ_scaled"); struct ggml_tensor * KQ_masked; struct ggml_tensor * KQ_scaled_alibi; switch (model.type) { case MODEL_7B: KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask); break; case MODEL_13B: // TODO: replace with ggml_add() KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, /*n_past*/ 0, n_head, 8); ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi"); KQ_masked = ggml_add(ctx0, KQ_scaled_alibi, KQ_mask); break; default: GGML_ASSERT(false); } // KQ = soft_max(KQ_masked) struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); offload_func_v(KQ_soft_max); ggml_set_name(KQ_soft_max, "KQ_soft_max"); // split cached V into n_head heads struct ggml_tensor * V = ggml_view_3d(ctx0, kv_self.v, n_kv, n_embd_head, n_head_kv, ggml_element_size(kv_self.v)*n_ctx, ggml_element_size(kv_self.v)*n_ctx*n_embd_head, ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il); offload_func_v(V); ggml_set_name(V, "V"); struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); offload_func_v(KQV); ggml_set_name(KQV, "KQV"); // KQV_merged = KQV.permute(0, 2, 1, 3) struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); offload_func_v(KQV_merged); ggml_set_name(KQV_merged, "KQV_merged"); // cur = KQV_merged.contiguous().view(n_embd, n_tokens) cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens); offload_func_v(cur); ggml_set_name(cur, "KQV_merged_contiguous"); // projection (no bias) cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur); offload_func(cur); ggml_set_name(cur, "result_wo"); } struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA); offload_func(inpFF); ggml_set_name(inpFF, "inpFF"); // feed-forward network { // norm { cur = ggml_rms_norm(ctx0, inpFF, norm_rms_eps); offload_func(cur); ggml_set_name(cur, "rms_norm_1"); // cur = cur*ffn_norm(broadcasted) cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm); offload_func(cur); ggml_set_name(cur, "ffn_norm"); } struct ggml_tensor * tmp = ggml_mul_mat(ctx0, model.layers[il].w3, cur); offload_func(tmp); ggml_set_name(tmp, "result_w3"); cur = ggml_mul_mat(ctx0, model.layers[il].w1, cur); offload_func(cur); ggml_set_name(cur, "result_w1"); // SILU activation cur = ggml_silu(ctx0, cur); offload_func(cur); ggml_set_name(cur, "silu"); cur = ggml_mul(ctx0, cur, tmp); offload_func(cur); ggml_set_name(cur, "silu_x_result_w3"); cur = ggml_mul_mat(ctx0, model.layers[il].w2, cur); offload_func(cur); ggml_set_name(cur, "result_w2"); } cur = ggml_add(ctx0, cur, inpFF); offload_func(cur); ggml_set_name(cur, "inpFF_+_result_w2"); // input for next layer inpL = cur; } cur = inpL; // norm { cur = ggml_rms_norm(ctx0, cur, norm_rms_eps); offload_func_nr(cur); ggml_set_name(cur, "rms_norm_2"); // cur = cur*norm(broadcasted) cur = ggml_mul(ctx0, cur, model.output_norm); // offload_func_nr(cur); // TODO CPU + GPU mirrored backend ggml_set_name(cur, "result_norm"); } // lm_head cur = ggml_mul_mat(ctx0, model.output, cur); ggml_set_name(cur, "result_output"); ggml_build_forward_expand(gf, cur); ggml_free(ctx0); return gf; } static struct ggml_cgraph * llm_build_refact( llama_context & lctx, const llama_batch & batch) { const auto & model = lctx.model; const auto & hparams = model.hparams; const auto & cparams = lctx.cparams; const auto & kv_self = lctx.kv_self; GGML_ASSERT(!!kv_self.ctx); const int64_t n_embd = hparams.n_embd; const int64_t n_layer = hparams.n_layer; const int64_t n_ctx = cparams.n_ctx; const int64_t n_head = hparams.n_head; const int64_t n_head_kv = hparams.n_head_kv; const int64_t n_embd_head = hparams.n_embd_head(); const int64_t n_embd_gqa = hparams.n_embd_gqa(); const float norm_rms_eps = hparams.f_norm_rms_eps; const int n_gpu_layers = model.n_gpu_layers; const int32_t n_tokens = batch.n_tokens; const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n; const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head; // printf("n_kv = %d\n", n_kv); auto & buf_compute = lctx.buf_compute; struct ggml_init_params params = { /*.mem_size =*/ buf_compute.size, /*.mem_buffer =*/ buf_compute.data, /*.no_alloc =*/ true, }; struct ggml_context * ctx0 = ggml_init(params); ggml_cgraph * gf = ggml_new_graph(ctx0); struct ggml_tensor * cur; struct ggml_tensor * inpL; if (batch.token) { struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); ggml_allocr_alloc(lctx.alloc, inp_tokens); if (!ggml_allocr_is_measure(lctx.alloc)) { memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens)); } ggml_set_name(inp_tokens, "inp_tokens"); inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens); } else { #ifdef GGML_USE_MPI GGML_ASSERT(false && "not implemented"); #endif inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens); ggml_allocr_alloc(lctx.alloc, inpL); if (!ggml_allocr_is_measure(lctx.alloc)) { memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL)); } } const int i_gpu_start = n_layer - n_gpu_layers; (void) i_gpu_start; // offload functions set the tensor output backend to GPU // tensors are GPU-accelerated if any input or the output has been offloaded offload_func_t offload_func_nr = llama_nop; // nr = non-repeating offload_func_t offload_func_kq = llama_nop; offload_func_t offload_func_v = llama_nop; #ifdef GGML_USE_CUBLAS if (n_gpu_layers > n_layer) { offload_func_nr = ggml_cuda_assign_buffers_no_alloc; } if (n_gpu_layers > n_layer + 1) { offload_func_v = ggml_cuda_assign_buffers_no_alloc; } if (n_gpu_layers > n_layer + 2) { offload_func_kq = ggml_cuda_assign_buffers_no_alloc; } #endif // GGML_USE_CUBLAS // KQ_scale struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)"); ggml_allocr_alloc(lctx.alloc, KQ_scale); if (!ggml_allocr_is_measure(lctx.alloc)) { ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd_head))); } // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); offload_func_kq(KQ_mask); ggml_set_name(KQ_mask, "KQ_mask"); ggml_allocr_alloc(lctx.alloc, KQ_mask); if (!ggml_allocr_is_measure(lctx.alloc)) { float * data = (float *) KQ_mask->data; memset(data, 0, ggml_nbytes(KQ_mask)); for (int h = 0; h < 1; ++h) { for (int j = 0; j < n_tokens; ++j) { const llama_pos pos = batch.pos[j]; const llama_seq_id seq_id = batch.seq_id[j][0]; for (int i = 0; i < n_kv; ++i) { if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) { data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY; } } } } } for (int il = 0; il < n_layer; ++il) { ggml_format_name(inpL, "layer_inp_%d", il); offload_func_t offload_func = llama_nop; #ifdef GGML_USE_CUBLAS if (il >= i_gpu_start) { offload_func = ggml_cuda_assign_buffers_no_alloc; } #endif // GGML_USE_CUBLAS struct ggml_tensor * inpSA = inpL; // norm { cur = ggml_rms_norm(ctx0, inpL, norm_rms_eps); offload_func(cur); ggml_set_name(cur, "rms_norm_0"); // cur = cur*attn_norm(broadcasted) cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm); offload_func(cur); ggml_set_name(cur, "attention_norm_0"); } // self-attention { // compute Q and K struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur); offload_func_kq(tmpk); ggml_set_name(tmpk, "tmpk"); struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur); offload_func_kq(tmpq); ggml_set_name(tmpq, "tmpq"); struct ggml_tensor * Kcur = ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens); offload_func_kq(Kcur); ggml_set_name(Kcur, "Kcur"); struct ggml_tensor * Qcur = ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens); offload_func_kq(Qcur); ggml_set_name(Qcur, "Qcur"); // store key and value to memory { // compute the transposed [n_tokens, n_embd] V matrix struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur); offload_func_v(tmpv); ggml_set_name(tmpv, "tmpv"); struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, n_tokens)); offload_func_v(Vcur); ggml_set_name(Vcur, "Vcur"); struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head)); offload_func_kq(k); ggml_set_name(k, "k"); struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa, ( n_ctx)*ggml_element_size(kv_self.v), (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v)); offload_func_v(v); ggml_set_name(v, "v"); ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); } struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); offload_func_kq(Q); ggml_set_name(Q, "Q"); struct ggml_tensor * K = ggml_view_3d(ctx0, kv_self.k, n_embd_head, n_kv, n_head_kv, ggml_element_size(kv_self.k)*n_embd_gqa, ggml_element_size(kv_self.k)*n_embd_head, ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il); offload_func_kq(K); ggml_set_name(K, "K"); // K * Q struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); offload_func_kq(KQ); ggml_set_name(KQ, "KQ"); // KQ_scaled = KQ / sqrt(n_embd_head) // KQ_scaled shape [n_kv, n_tokens, n_head, 1] struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale); offload_func_kq(KQ_scaled); ggml_set_name(KQ_scaled, "KQ_scaled"); // KQ_masked = mask_past(KQ_scaled) struct ggml_tensor * KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, /*n_past*/ 0, n_head, 8); ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi"); struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled_alibi, KQ_mask); offload_func_kq(KQ_masked); ggml_set_name(KQ_masked, "KQ_masked"); // KQ = soft_max(KQ_masked) struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); offload_func_v(KQ_soft_max); ggml_set_name(KQ_soft_max, "KQ_soft_max"); // split cached V into n_head heads struct ggml_tensor * V = ggml_view_3d(ctx0, kv_self.v, n_kv, n_embd_head, n_head_kv, ggml_element_size(kv_self.v)*n_ctx, ggml_element_size(kv_self.v)*n_ctx*n_embd_head, ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il); offload_func_v(V); ggml_set_name(V, "V"); #if 1 struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); offload_func_v(KQV); ggml_set_name(KQV, "KQV"); #else // make V contiguous in memory to speed up the matmul, however we waste time on the copy // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation // is there a better way? struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_ctx, n_embd_head, n_head)); struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max); #endif // KQV_merged = KQV.permute(0, 2, 1, 3) struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); offload_func_v(KQV_merged); ggml_set_name(KQV_merged, "KQV_merged"); // cur = KQV_merged.contiguous().view(n_embd, n_tokens) cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens); offload_func_v(cur); ggml_set_name(cur, "KQV_merged_contiguous"); // projection (no bias) cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur); offload_func(cur); ggml_set_name(cur, "result_wo"); } struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA); offload_func(inpFF); ggml_set_name(inpFF, "inpFF"); // feed-forward network { // norm { cur = ggml_rms_norm(ctx0, inpFF, norm_rms_eps); offload_func(cur); ggml_set_name(cur, "rms_norm_1"); // cur = cur*ffn_norm(broadcasted) cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm); offload_func(cur); ggml_set_name(cur, "ffn_norm"); } struct ggml_tensor * tmp = ggml_mul_mat(ctx0, model.layers[il].w3, cur); offload_func(tmp); ggml_set_name(tmp, "result_w3"); cur = ggml_mul_mat(ctx0, model.layers[il].w1, cur); offload_func(cur); ggml_set_name(cur, "result_w1"); // SILU activation cur = ggml_silu(ctx0, cur); offload_func(cur); ggml_set_name(cur, "silu"); cur = ggml_mul(ctx0, cur, tmp); offload_func(cur); ggml_set_name(cur, "silu_x_result_w3"); cur = ggml_mul_mat(ctx0, model.layers[il].w2, cur); offload_func(cur); ggml_set_name(cur, "result_w2"); } cur = ggml_add(ctx0, cur, inpFF); offload_func(cur); ggml_set_name(cur, "inpFF_+_result_w2"); // input for next layer inpL = cur; } cur = inpL; // norm { cur = ggml_rms_norm(ctx0, cur, norm_rms_eps); offload_func_nr(cur); ggml_set_name(cur, "rms_norm_2"); // cur = cur*norm(broadcasted) cur = ggml_mul(ctx0, cur, model.output_norm); // offload_func_nr(cur); // TODO CPU + GPU mirrored backend ggml_set_name(cur, "result_norm"); } // lm_head cur = ggml_mul_mat(ctx0, model.output, cur); ggml_set_name(cur, "result_output"); ggml_build_forward_expand(gf, cur); ggml_free(ctx0); return gf; } static struct ggml_cgraph * llm_build_falcon( llama_context & lctx, const llama_batch & batch) { const auto & model = lctx.model; const auto & hparams = model.hparams; const auto & cparams = lctx.cparams; const auto & kv_self = lctx.kv_self; GGML_ASSERT(!!kv_self.ctx); const int64_t n_embd = hparams.n_embd; const int64_t n_layer = hparams.n_layer; const int64_t n_ctx = cparams.n_ctx; const int64_t n_head = hparams.n_head; const int64_t n_head_kv = hparams.n_head_kv; const int64_t n_embd_head = hparams.n_embd_head(); const int64_t n_embd_gqa = hparams.n_embd_gqa(); GGML_ASSERT(n_embd_head == hparams.n_rot); const float freq_base = cparams.rope_freq_base; const float freq_scale = cparams.rope_freq_scale; const float norm_eps = hparams.f_norm_eps; const int n_gpu_layers = model.n_gpu_layers; const int32_t n_tokens = batch.n_tokens; const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n; const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head; const bool do_rope_shift = ggml_allocr_is_measure(lctx.alloc) || kv_self.has_shift; //printf("kv_head = %d, n_kv = %d, n_tokens = %d, n_ctx = %d, is_measure = %d, has_shift = %d\n", // kv_head, n_kv, n_tokens, n_ctx, ggml_allocr_is_measure(lctx.alloc), kv_self.has_shift); auto & buf_compute = lctx.buf_compute; struct ggml_init_params params = { /*.mem_size =*/ buf_compute.size, /*.mem_buffer =*/ buf_compute.data, /*.no_alloc =*/ true, }; struct ggml_context * ctx0 = ggml_init(params); ggml_cgraph * gf = ggml_new_graph(ctx0); struct ggml_tensor * cur; struct ggml_tensor * inpL; if (batch.token) { struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); ggml_allocr_alloc(lctx.alloc, inp_tokens); if (!ggml_allocr_is_measure(lctx.alloc)) { memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens)); } ggml_set_name(inp_tokens, "inp_tokens"); inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens); } else { #ifdef GGML_USE_MPI GGML_ASSERT(false && "not implemented"); #endif inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens); ggml_allocr_alloc(lctx.alloc, inpL); if (!ggml_allocr_is_measure(lctx.alloc)) { memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL)); } } const int i_gpu_start = n_layer - n_gpu_layers; (void) i_gpu_start; // offload functions set the tensor output backend to GPU // tensors are GPU-accelerated if any input or the output has been offloaded offload_func_t offload_func_nr = llama_nop; // nr = non-repeating offload_func_t offload_func_kq = llama_nop; offload_func_t offload_func_v = llama_nop; #ifdef GGML_USE_CUBLAS if (n_gpu_layers > n_layer) { offload_func_nr = ggml_cuda_assign_buffers_no_alloc; } if (n_gpu_layers > n_layer + 1) { offload_func_v = ggml_cuda_assign_buffers_no_alloc; } if (n_gpu_layers > n_layer + 2) { offload_func_kq = ggml_cuda_assign_buffers_no_alloc; } #endif // GGML_USE_CUBLAS // KQ_scale struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)"); ggml_allocr_alloc(lctx.alloc, KQ_scale); if (!ggml_allocr_is_measure(lctx.alloc)) { ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head)); } // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); offload_func_kq(KQ_mask); ggml_set_name(KQ_mask, "KQ_mask"); ggml_allocr_alloc(lctx.alloc, KQ_mask); if (!ggml_allocr_is_measure(lctx.alloc)) { float * data = (float *) KQ_mask->data; memset(data, 0, ggml_nbytes(KQ_mask)); for (int h = 0; h < 1; ++h) { for (int j = 0; j < n_tokens; ++j) { const llama_pos pos = batch.pos[j]; const llama_seq_id seq_id = batch.seq_id[j][0]; for (int i = 0; i < n_kv; ++i) { if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) { data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY; } } } } } // KQ_pos - contains the positions struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); offload_func_kq(KQ_pos); ggml_set_name(KQ_pos, "KQ_pos"); ggml_allocr_alloc(lctx.alloc, KQ_pos); if (!ggml_allocr_is_measure(lctx.alloc)) { int * data = (int *) KQ_pos->data; for (int i = 0; i < n_tokens; ++i) { data[i] = batch.pos[i]; } } // shift the entire K-cache if needed if (do_rope_shift) { struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx); offload_func_kq(K_shift); ggml_set_name(K_shift, "K_shift"); ggml_allocr_alloc(lctx.alloc, K_shift); if (!ggml_allocr_is_measure(lctx.alloc)) { int * data = (int *) K_shift->data; for (int i = 0; i < n_ctx; ++i) { data[i] = kv_self.cells[i].delta; } } for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * tmp = ggml_rope_custom_inplace(ctx0, ggml_view_3d(ctx0, kv_self.k, n_embd_head, n_head_kv, n_ctx, ggml_element_size(kv_self.k)*n_embd_head, ggml_element_size(kv_self.k)*n_embd_gqa, ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il), K_shift, n_embd_head, 2, 0, freq_base, freq_scale); offload_func_kq(tmp); ggml_build_forward_expand(gf, tmp); } } for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * attn_norm; offload_func_t offload_func = llama_nop; #ifdef GGML_USE_CUBLAS if (il >= i_gpu_start) { offload_func = ggml_cuda_assign_buffers_no_alloc; } #endif // GGML_USE_CUBLAS // self-attention // TODO: refactor into common function (shared with LLaMA) { attn_norm = ggml_norm(ctx0, inpL, norm_eps); offload_func(attn_norm); attn_norm = ggml_add(ctx0, ggml_mul(ctx0, attn_norm, model.layers[il].attn_norm), model.layers[il].attn_norm_b); offload_func(attn_norm->src[0]); offload_func(attn_norm); if (model.layers[il].attn_norm_2) { // Falcon-40B cur = ggml_norm(ctx0, inpL, norm_eps); offload_func(cur); cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].attn_norm_2), model.layers[il].attn_norm_2_b); offload_func(cur->src[0]); offload_func(cur); } else { // Falcon 7B cur = attn_norm; } // compute QKV cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); offload_func_kq(cur); // Note that the strides for Kcur, Vcur are set up so that the // resulting views are misaligned with the tensor's storage // (by applying the K/V offset we shift the tensor's original // view to stick out behind the viewed QKV tensor's allocated // memory, so to say). This is ok because no actual accesses // happen to that out-of-range memory, but it can require some // trickery when trying to accurately dump these views for // debugging. const size_t wsize = ggml_type_size(cur->type); // TODO: these 2 ggml_conts are technically not needed, but we add them until CUDA support for // non-contiguous views is added for the rope operator struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_3d( ctx0, cur, n_embd_head, n_head, n_tokens, wsize * n_embd_head, wsize * n_embd_head * (n_head + 2 * n_head_kv), 0)); offload_func_kq(tmpq); struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_3d( ctx0, cur, n_embd_head, n_head_kv, n_tokens, wsize * n_embd_head, wsize * n_embd_head * (n_head + 2 * n_head_kv), wsize * n_embd_head * n_head)); offload_func_kq(tmpk); struct ggml_tensor * tmpv = ggml_view_3d( ctx0, cur, n_embd_head, n_head_kv, n_tokens, wsize * n_embd_head, wsize * n_embd_head * (n_head + 2 * n_head_kv), wsize * n_embd_head * (n_head + n_head_kv)); offload_func_v(tmpv); // using mode = 2 for neox mode struct ggml_tensor * Qcur = ggml_rope_custom(ctx0, tmpq, KQ_pos, n_embd_head, 2, 0, freq_base, freq_scale); offload_func_kq(Qcur); struct ggml_tensor * Kcur = ggml_rope_custom(ctx0, tmpk, KQ_pos, n_embd_head, 2, 0, freq_base, freq_scale); offload_func_kq(Kcur); { struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, n_tokens)); offload_func_v(Vcur); offload_func_v(Vcur->src[0]->src[0]); ggml_set_name(Vcur, "Vcur"); struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head)); offload_func_kq(k); ggml_set_name(k, "k"); struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa, ( n_ctx)*ggml_element_size(kv_self.v), (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v)); offload_func_v(v); ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); } struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); offload_func_kq(Q); ggml_set_name(Q, "Q"); struct ggml_tensor * K = ggml_view_3d(ctx0, kv_self.k, n_embd_head, n_kv, n_head_kv, ggml_element_size(kv_self.k)*n_embd_gqa, ggml_element_size(kv_self.k)*n_embd_head, ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il); offload_func_kq(K); ggml_set_name(K, "K"); struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); offload_func_kq(KQ); ggml_set_name(KQ, "KQ"); struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale); offload_func_kq(KQ_scaled); ggml_set_name(KQ_scaled, "KQ_scaled"); struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask); offload_func_kq(KQ_masked); ggml_set_name(KQ_masked, "KQ_masked"); struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); offload_func_v(KQ_soft_max); ggml_set_name(KQ_soft_max, "KQ_soft_max"); struct ggml_tensor * V = ggml_view_3d(ctx0, kv_self.v, n_kv, n_embd_head, n_head_kv, ggml_element_size(kv_self.v)*n_ctx, ggml_element_size(kv_self.v)*n_ctx*n_embd_head, ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il); offload_func_v(V); ggml_set_name(V, "V"); struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); offload_func_v(KQV); ggml_set_name(KQV, "KQV"); struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); offload_func_v(KQV_merged); ggml_set_name(KQV_merged, "KQV_merged"); cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens); offload_func_v(cur); ggml_set_name(cur, "KQV_merged_contiguous"); cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur); offload_func(cur); ggml_set_name(cur, "result_wo"); } struct ggml_tensor * attn_out = cur; // feed forward { struct ggml_tensor * inpFF = attn_norm; cur = ggml_mul_mat(ctx0, model.layers[il].w3, inpFF); offload_func(cur); cur = ggml_gelu(ctx0, cur); offload_func(cur); cur = ggml_mul_mat(ctx0, model.layers[il].w2, cur); offload_func(cur); } cur = ggml_add(ctx0, cur, attn_out); offload_func(cur); cur = ggml_add(ctx0, cur, inpL); offload_func(cur); // input for next layer inpL = cur; } cur = inpL; // norm { cur = ggml_norm(ctx0, cur, norm_eps); offload_func_nr(cur); cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.output_norm), model.output_norm_b); ggml_set_name(cur, "result_norm"); } cur = ggml_mul_mat(ctx0, model.output, cur); ggml_set_name(cur, "result_output"); ggml_build_forward_expand(gf, cur); ggml_free(ctx0); return gf; } static struct ggml_cgraph * llm_build_starcoder( llama_context & lctx, const llama_batch & batch) { const auto & model = lctx.model; const auto & hparams = model.hparams; const auto & cparams = lctx.cparams; const auto & kv_self = lctx.kv_self; GGML_ASSERT(!!kv_self.ctx); const int64_t n_embd = hparams.n_embd; const int64_t n_layer = hparams.n_layer; const int64_t n_ctx = cparams.n_ctx; const int64_t n_head = hparams.n_head; const int64_t n_head_kv = hparams.n_head_kv; const int64_t n_embd_head = hparams.n_embd_head(); const int64_t n_embd_gqa = hparams.n_embd_gqa(); GGML_ASSERT(n_embd_head == hparams.n_rot); const float norm_eps = hparams.f_norm_eps; const int32_t n_tokens = batch.n_tokens; const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n; const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head; auto & buf_compute = lctx.buf_compute; struct ggml_init_params params = { /*.mem_size =*/ buf_compute.size, /*.mem_buffer =*/ buf_compute.data, /*.no_alloc =*/ true, }; struct ggml_context * ctx0 = ggml_init(params); ggml_cgraph * gf = ggml_new_graph(ctx0); struct ggml_tensor * cur; struct ggml_tensor * token; struct ggml_tensor * position; struct ggml_tensor * inpL; if (batch.token) { struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); ggml_allocr_alloc(lctx.alloc, inp_tokens); if (!ggml_allocr_is_measure(lctx.alloc)) { memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens)); } ggml_set_name(inp_tokens, "inp_tokens"); token = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens); } else { #ifdef GGML_USE_MPI GGML_ASSERT(false && "not implemented"); #endif token = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens); ggml_allocr_alloc(lctx.alloc, token); if (!ggml_allocr_is_measure(lctx.alloc)) { memcpy(token->data, batch.embd, n_tokens * n_embd * ggml_element_size(token)); } } { // Compute position embeddings. struct ggml_tensor * inp_positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); ggml_allocr_alloc(lctx.alloc, inp_positions); if (!ggml_allocr_is_measure(lctx.alloc)) { for (int i = 0; i < n_tokens; ++i) { ((int32_t *) inp_positions->data)[i] = batch.pos[i]; } } ggml_set_name(inp_positions, "inp_positions"); position = ggml_get_rows(ctx0, model.pos_embeddings, inp_positions); } // KQ_scale struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)"); ggml_allocr_alloc(lctx.alloc, KQ_scale); if (!ggml_allocr_is_measure(lctx.alloc)) { ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head)); } // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); ggml_set_name(KQ_mask, "KQ_mask"); ggml_allocr_alloc(lctx.alloc, KQ_mask); if (!ggml_allocr_is_measure(lctx.alloc)) { float * data = (float *) KQ_mask->data; memset(data, 0, ggml_nbytes(KQ_mask)); for (int h = 0; h < 1; ++h) { for (int j = 0; j < n_tokens; ++j) { const llama_pos pos = batch.pos[j]; const llama_seq_id seq_id = batch.seq_id[j][0]; for (int i = 0; i < n_kv; ++i) { if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) { data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY; } } } } } inpL = ggml_add(ctx0, token, position); ggml_set_name(inpL, "inpL"); for (int il = 0; il < n_layer; ++il) { { // Norm cur = ggml_norm(ctx0, inpL, norm_eps); cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].attn_norm), model.layers[il].attn_norm_b); } { // Self Attention cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wqkv, cur), model.layers[il].bqkv); struct ggml_tensor * tmpq = ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*n_embd); struct ggml_tensor * tmpk = ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], sizeof(float)*n_embd); struct ggml_tensor * tmpv = ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], sizeof(float)*(n_embd + n_embd_gqa)); struct ggml_tensor * Qcur = tmpq; struct ggml_tensor * Kcur = tmpk; { struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, n_tokens)); ggml_set_name(Vcur, "Vcur"); struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head)); ggml_set_name(k, "k"); struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa, ( n_ctx)*ggml_element_size(kv_self.v), (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v)); ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); } struct ggml_tensor * Q = ggml_permute(ctx0, ggml_cpy(ctx0, Qcur, ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd_head, n_head, n_tokens)), 0, 2, 1, 3); ggml_set_name(Q, "Q"); struct ggml_tensor * K = ggml_view_3d(ctx0, kv_self.k, n_embd_head, n_kv, n_head_kv, ggml_element_size(kv_self.k)*n_embd_gqa, ggml_element_size(kv_self.k)*n_embd_head, ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il); ggml_set_name(K, "K"); // K * Q struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); ggml_set_name(KQ, "KQ"); // KQ_scaled = KQ / sqrt(n_embd_head) // KQ_scaled shape [n_past + n_tokens, n_tokens, n_head, 1] struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale); ggml_set_name(KQ_scaled, "KQ_scaled"); // KQ_masked = mask_past(KQ_scaled) struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask); ggml_set_name(KQ_masked, "KQ_masked"); // KQ = soft_max(KQ_masked) struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked); ggml_set_name(KQ_soft_max, "KQ_soft_max"); // split cached V into n_head heads struct ggml_tensor * V = ggml_view_3d(ctx0, kv_self.v, n_kv, n_embd_head, n_head_kv, ggml_element_size(kv_self.v)*n_ctx, ggml_element_size(kv_self.v)*n_ctx*n_embd_head, ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il); ggml_set_name(V, "V"); struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); ggml_set_name(KQV, "KQV"); // KQV_merged = KQV.permute(0, 2, 1, 3) struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); ggml_set_name(KQV_merged, "KQV_merged"); // cur = KQV_merged.contiguous().view(n_embd, n_tokens) cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens); ggml_set_name(cur, "KQV_merged_contiguous"); } // Projection cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wo, cur), model.layers[il].bo); // Add the input cur = ggml_add(ctx0, cur, inpL); struct ggml_tensor * inpFF = cur; // FF { // Norm { cur = ggml_norm(ctx0, inpFF, norm_eps); cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ffn_norm), model.layers[il].ffn_norm_b); } cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w3, cur), model.layers[il].b3); // GELU activation cur = ggml_gelu(ctx0, cur); // Projection cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w2, cur), model.layers[il].b2); } inpL = ggml_add(ctx0, cur, inpFF); } // Output Norm { cur = ggml_norm(ctx0, inpL, norm_eps); cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.output_norm), model.output_norm_b); } ggml_set_name(cur, "result_norm"); cur = ggml_mul_mat(ctx0, model.output, cur); ggml_set_name(cur, "result_output"); ggml_build_forward_expand(gf, cur); ggml_free(ctx0); return gf; } static struct ggml_cgraph * llm_build_persimmon( llama_context & lctx, const llama_batch & batch) { const auto & model = lctx.model; const auto & hparams = model.hparams; const auto & kv_self = lctx.kv_self; GGML_ASSERT(!!kv_self.ctx); const auto & cparams = lctx.cparams; const int64_t n_embd = hparams.n_embd; const int64_t n_layer = hparams.n_layer; const int64_t n_ctx = cparams.n_ctx; const int64_t n_head_kv = hparams.n_head_kv; const int64_t n_head = hparams.n_head; const int64_t n_embd_head = hparams.n_embd_head(); const int64_t n_embd_gqa = hparams.n_embd_gqa(); const size_t n_rot = n_embd_head / 2; const float freq_base = cparams.rope_freq_base; const float freq_scale = cparams.rope_freq_scale; const float norm_eps = hparams.f_norm_eps; const int n_gpu_layers = model.n_gpu_layers; const int32_t n_tokens = batch.n_tokens; const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n; const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head; const bool do_rope_shift = ggml_allocr_is_measure(lctx.alloc) || kv_self.has_shift; auto & buf_compute = lctx.buf_compute; struct ggml_init_params params = { /*.mem_size =*/ buf_compute.size, /*.mem_buffer =*/ buf_compute.data, /*.no_alloc =*/ true, }; struct ggml_context * ctx0 = ggml_init(params); ggml_cgraph * gf = ggml_new_graph(ctx0); struct ggml_tensor * cur; struct ggml_tensor * inpL; if (batch.token) { struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); ggml_allocr_alloc(lctx.alloc, inp_tokens); if (!ggml_allocr_is_measure(lctx.alloc)) { memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens)); } ggml_set_name(inp_tokens, "inp_tokens"); inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens); } else { inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens); ggml_allocr_alloc(lctx.alloc, inpL); if (!ggml_allocr_is_measure(lctx.alloc)) { memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL)); } } const int i_gpu_start = n_layer - n_gpu_layers; (void) i_gpu_start; offload_func_t offload_func_nr = llama_nop; // nr = non-repeating offload_func_t offload_func_kq = llama_nop; offload_func_t offload_func_v = llama_nop; // KQ_scale struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); ggml_allocr_alloc(lctx.alloc, KQ_scale); if (!ggml_allocr_is_measure(lctx.alloc)) { ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd_head))); } ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)"); struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); offload_func_kq(KQ_mask); ggml_set_name(KQ_mask, "KQ_mask"); ggml_allocr_alloc(lctx.alloc, KQ_mask); if (!ggml_allocr_is_measure(lctx.alloc)) { float * data = (float *) KQ_mask->data; memset(data, 0, ggml_nbytes(KQ_mask)); for (int h = 0; h < 1; ++h) { for (int j = 0; j < n_tokens; ++j) { const llama_pos pos = batch.pos[j]; const llama_seq_id seq_id = batch.seq_id[j][0]; for (int i = 0; i < n_kv; ++i) { if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) { data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY; } } } } } struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); offload_func_kq(KQ_pos); ggml_set_name(KQ_pos, "KQ_pos"); ggml_allocr_alloc(lctx.alloc, KQ_pos); if (!ggml_allocr_is_measure(lctx.alloc)) { int * data = (int *) KQ_pos->data; for (int i = 0; i < n_tokens; ++i) { data[i] = batch.pos[i]; } } if (do_rope_shift) { struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx); offload_func_kq(K_shift); ggml_set_name(K_shift, "K_shift"); ggml_allocr_alloc(lctx.alloc, K_shift); if (!ggml_allocr_is_measure(lctx.alloc)) { int * data = (int *) K_shift->data; for (int i = 0; i < n_ctx; ++i) { data[i] = kv_self.cells[i].delta; } } for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * tmp = // we rotate only the first n_rot dimensions. ggml_rope_custom_inplace(ctx0, ggml_view_3d(ctx0, kv_self.k, n_rot, n_head, n_ctx, ggml_element_size(kv_self.k)*n_embd_gqa, ggml_element_size(kv_self.k)*n_embd_head, ggml_element_size(kv_self.k)*(n_embd_head*n_ctx*il) ), K_shift, n_rot, 2, 0, freq_base, freq_scale); offload_func_kq(tmp); ggml_build_forward_expand(gf, tmp); } } for (int il=0; il < n_layer; ++il) { struct ggml_tensor * residual = inpL; offload_func_t offload_func = llama_nop; { cur = ggml_norm(ctx0, inpL, norm_eps); offload_func(cur); cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm); offload_func(cur); cur = ggml_add(ctx0, cur, model.layers[il].attn_norm_b); offload_func(cur); ggml_format_name(cur, "input_layernorm_%d", il); } // self attention { cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); offload_func_kq(cur); cur = ggml_add(ctx0, cur, model.layers[il].bqkv); offload_func_kq(cur); // split qkv GGML_ASSERT(n_head_kv == n_head); ggml_set_name(cur, format("qkv_%d", il).c_str()); struct ggml_tensor * tmpqkv = ggml_reshape_4d(ctx0, cur, n_embd_head, 3, n_head, n_tokens); offload_func_kq(tmpqkv); struct ggml_tensor * tmpqkv_perm = ggml_cont(ctx0, ggml_permute(ctx0, tmpqkv, 0, 3, 1, 2)); offload_func_kq(tmpqkv_perm); ggml_format_name(tmpqkv_perm, "tmpqkv_perm_%d", il); struct ggml_tensor * tmpq = ggml_view_3d( ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens, ggml_element_size(tmpqkv_perm) * n_embd_head, ggml_element_size(tmpqkv_perm) * n_embd_head * n_head, 0 ); offload_func_kq(tmpq); struct ggml_tensor * tmpk = ggml_view_3d( ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens, ggml_element_size(tmpqkv_perm) * n_embd_head, ggml_element_size(tmpqkv_perm) * n_embd_head * n_head, ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens ); offload_func_kq(tmpk); // Q/K Layernorm tmpq = ggml_norm(ctx0, tmpq, norm_eps); offload_func_kq(tmpq); tmpq = ggml_mul(ctx0, tmpq, model.layers[il].attn_q_norm); offload_func_kq(tmpq); tmpq = ggml_add(ctx0, tmpq, model.layers[il].attn_q_norm_b); offload_func_kq(tmpq); tmpk = ggml_norm(ctx0, tmpk, norm_eps); offload_func_v(tmpk); tmpk = ggml_mul(ctx0, tmpk, model.layers[il].attn_k_norm); offload_func_v(tmpk); tmpk = ggml_add(ctx0, tmpk, model.layers[il].attn_k_norm_b); offload_func_v(tmpk); // RoPE the first n_rot of q/k, pass the other half, and concat. struct ggml_tensor * qrot = ggml_view_3d( ctx0, tmpq, n_rot, n_head, n_tokens, ggml_element_size(tmpq) * n_embd_head, ggml_element_size(tmpq) * n_embd_head * n_head, 0 ); offload_func_kq(qrot); ggml_format_name(qrot, "qrot_%d", il); struct ggml_tensor * krot = ggml_view_3d( ctx0, tmpk, n_rot, n_head, n_tokens, ggml_element_size(tmpk) * n_embd_head, ggml_element_size(tmpk) * n_embd_head * n_head, 0 ); offload_func_kq(krot); ggml_format_name(krot, "krot_%d", il); // get the second half of tmpq, e.g tmpq[n_rot:, :, :] struct ggml_tensor * qpass = ggml_view_3d( ctx0, tmpq, n_rot, n_head, n_tokens, ggml_element_size(tmpq) * n_embd_head, ggml_element_size(tmpq) * n_embd_head * n_head, ggml_element_size(tmpq) * n_rot ); offload_func_kq(qpass); ggml_format_name(qpass, "qpass_%d", il); struct ggml_tensor * kpass = ggml_view_3d( ctx0, tmpk, n_rot, n_head, n_tokens, ggml_element_size(tmpk) * n_embd_head, ggml_element_size(tmpk) * n_embd_head * n_head, ggml_element_size(tmpk) * n_rot ); offload_func_kq(kpass); ggml_format_name(kpass, "kpass_%d", il); struct ggml_tensor * qrotated = ggml_rope_custom( ctx0, qrot, KQ_pos, n_rot, 2, 0, freq_base, freq_scale ); offload_func_kq(qrotated); struct ggml_tensor * krotated = ggml_rope_custom( ctx0, krot, KQ_pos, n_rot, 2, 0, freq_base, freq_scale ); offload_func_kq(krotated); // ggml currently only supports concatenation on dim=2 // so we need to permute qrot, qpass, concat, then permute back. qrotated = ggml_cont(ctx0, ggml_permute(ctx0, qrotated, 2, 1, 0, 3)); offload_func_kq(qrotated); krotated = ggml_cont(ctx0, ggml_permute(ctx0, krotated, 2, 1, 0, 3)); offload_func_kq(krotated); qpass = ggml_cont(ctx0, ggml_permute(ctx0, qpass, 2, 1, 0, 3)); offload_func_kq(qpass); kpass = ggml_cont(ctx0, ggml_permute(ctx0, kpass, 2, 1, 0, 3)); offload_func_kq(kpass); struct ggml_tensor * Qcur = ggml_concat(ctx0, qrotated, qpass); offload_func_kq(Qcur); struct ggml_tensor * Kcur = ggml_concat(ctx0, krotated, kpass); offload_func_kq(Kcur); struct ggml_tensor * Q = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 1, 2, 0, 3)); offload_func_kq(Q); Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 2, 1, 0, 3)); offload_func_kq(Kcur); { struct ggml_tensor * tmpv = ggml_view_3d( ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens, ggml_element_size(tmpqkv_perm) * n_embd_head, ggml_element_size(tmpqkv_perm) * n_embd_head * n_head, ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens * 2 ); offload_func_v(tmpv); // store K, V in cache struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, n_tokens)); offload_func_v(Vcur); ggml_set_name(Vcur, "Vcur"); struct ggml_tensor * k = ggml_view_1d( ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head) ); offload_func_kq(k); ggml_set_name(k, "k"); struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa, ( n_ctx)*ggml_element_size(kv_self.v), (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v)); offload_func_v(v); ggml_set_name(v, "v"); // important: storing RoPE-ed version of K in the KV cache! ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); } struct ggml_tensor * K = ggml_view_3d(ctx0, kv_self.k, n_embd_head, n_kv, n_head_kv, ggml_element_size(kv_self.k)*n_embd_gqa, ggml_element_size(kv_self.k)*n_embd_head, ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il); offload_func_kq(K); ggml_format_name(K, "K_%d", il); struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); offload_func_kq(KQ); ggml_set_name(KQ, "KQ"); struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale); offload_func_kq(KQ_scaled); ggml_set_name(KQ_scaled, "KQ_scaled"); struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask); offload_func_kq(KQ_masked); ggml_set_name(KQ_masked, "KQ_masked"); struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked); offload_func_kq(KQ_soft_max); ggml_set_name(KQ_soft_max, "KQ_soft_max"); struct ggml_tensor * V = ggml_view_3d(ctx0, kv_self.v, n_kv, n_embd_head, n_head_kv, ggml_element_size(kv_self.v)*n_ctx, ggml_element_size(kv_self.v)*n_ctx*n_embd_head, ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il); offload_func_v(V); ggml_set_name(V, "V"); struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); offload_func_v(KQV); ggml_set_name(KQV, "KQV"); struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); offload_func_v(KQV_merged); ggml_set_name(KQV_merged, "KQV_merged"); cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens); offload_func_v(cur); ggml_set_name(cur, "KQV_merged_contiguous"); cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur); offload_func(cur); cur = ggml_add(ctx0, cur, model.layers[il].bo); offload_func(cur); ggml_set_name(cur, "result_wo"); } struct ggml_tensor * inpFF = ggml_add(ctx0, residual, cur); offload_func(inpFF); ggml_set_name(inpFF, "inpFF"); { // MLP { // Norm cur = ggml_norm(ctx0, inpFF, norm_eps); offload_func(cur); cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ffn_norm), model.layers[il].ffn_norm_b ); ggml_set_name(cur, "ffn_norm"); offload_func(cur); } cur = ggml_mul_mat(ctx0, model.layers[il].w3, cur); offload_func(cur); cur = ggml_add(ctx0, cur, model.layers[il].b3); offload_func(cur); ggml_set_name(cur, "result_ffn_up"); cur = ggml_sqr(ctx0, ggml_relu(ctx0, cur)); ggml_set_name(cur, "result_ffn_act"); offload_func(cur); offload_func(cur->src[0]); cur = ggml_mul_mat(ctx0, model.layers[il].w2, cur); offload_func(cur); cur = ggml_add(ctx0, cur, model.layers[il].b2); offload_func(cur); ggml_set_name(cur, "outFF"); } cur = ggml_add(ctx0, cur, inpFF); offload_func(cur); ggml_set_name(cur, "inpFF_+_outFF"); inpL = cur; } cur = inpL; { cur = ggml_norm(ctx0, cur, norm_eps); offload_func_nr(cur); cur = ggml_mul(ctx0, cur, model.output_norm); offload_func_nr(cur); cur = ggml_add(ctx0, cur, model.output_norm_b); // offload_func_nr(cur); ggml_set_name(cur, "result_norm"); } cur = ggml_mul_mat(ctx0, model.output, cur); ggml_set_name(cur, "result_output"); ggml_build_forward_expand(gf, cur); ggml_free(ctx0); return gf; } static struct ggml_cgraph * llm_build_bloom( llama_context & lctx, const llama_batch & batch) { const auto & model = lctx.model; const auto & hparams = model.hparams; const auto & cparams = lctx.cparams; const auto & kv_self = lctx.kv_self; GGML_ASSERT(!!kv_self.ctx); const int64_t n_embd = hparams.n_embd; const int64_t n_layer = hparams.n_layer; const int64_t n_ctx = cparams.n_ctx; const int64_t n_head = hparams.n_head; const int64_t n_head_kv = hparams.n_head_kv; const int64_t n_embd_head = hparams.n_embd_head(); const int64_t n_embd_gqa = hparams.n_embd_gqa(); GGML_ASSERT(n_embd_head == hparams.n_rot); const float norm_eps = hparams.f_norm_eps; const int32_t n_tokens = batch.n_tokens; const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n; const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head; auto & buf_compute = lctx.buf_compute; struct ggml_init_params params = { /*.mem_size =*/ buf_compute.size, /*.mem_buffer =*/ buf_compute.data, /*.no_alloc =*/ false, }; params.no_alloc = true; struct ggml_context * ctx0 = ggml_init(params); ggml_cgraph * gf = ggml_new_graph(ctx0); struct ggml_tensor * cur; struct ggml_tensor * token; struct ggml_tensor * inpL; if (batch.token) { struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); ggml_allocr_alloc(lctx.alloc, inp_tokens); if (!ggml_allocr_is_measure(lctx.alloc)) { memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens)); } ggml_set_name(inp_tokens, "inp_tokens"); token = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens); } else { #ifdef GGML_USE_MPI GGML_ASSERT(false && "not implemented"); #endif token = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens); ggml_allocr_alloc(lctx.alloc, token); if (!ggml_allocr_is_measure(lctx.alloc)) { memcpy(token->data, batch.embd, n_tokens * n_embd * ggml_element_size(token)); } } // KQ_scale struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)"); ggml_allocr_alloc(lctx.alloc, KQ_scale); if (!ggml_allocr_is_measure(lctx.alloc)) { ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head)); } // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); ggml_set_name(KQ_mask, "KQ_mask"); ggml_allocr_alloc(lctx.alloc, KQ_mask); if (!ggml_allocr_is_measure(lctx.alloc)) { float * data = (float *) KQ_mask->data; memset(data, 0, ggml_nbytes(KQ_mask)); for (int h = 0; h < 1; ++h) { for (int j = 0; j < n_tokens; ++j) { const llama_pos pos = batch.pos[j]; const llama_seq_id seq_id = batch.seq_id[j][0]; for (int i = 0; i < n_kv; ++i) { if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) { data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY; } } } } } // norm { inpL = ggml_norm(ctx0, token, norm_eps); inpL = ggml_add(ctx0, ggml_mul(ctx0, inpL, model.tok_norm), model.tok_norm_b); } ggml_set_name(inpL, "inpL"); for (int il = 0; il < n_layer; ++il) { { // Norm cur = ggml_norm(ctx0, inpL, norm_eps); cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].attn_norm), model.layers[il].attn_norm_b); } { // Self Attention cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wqkv, cur), model.layers[il].bqkv); struct ggml_tensor * tmpq = ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*n_embd); struct ggml_tensor * tmpk = ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], sizeof(float)*n_embd); struct ggml_tensor * tmpv = ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], sizeof(float)*(n_embd + n_embd_gqa)); struct ggml_tensor * Qcur = tmpq; struct ggml_tensor * Kcur = tmpk; // store key and value to memory { struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, n_tokens)); ggml_set_name(Vcur, "Vcur"); struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head)); ggml_set_name(k, "k"); struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa, ( n_ctx)*ggml_element_size(kv_self.v), (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v)); ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); } struct ggml_tensor * Q = ggml_permute(ctx0, ggml_cpy(ctx0, Qcur, ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd_head, n_head, n_tokens)), 0, 2, 1, 3); ggml_set_name(Q, "Q"); struct ggml_tensor * K = ggml_view_3d(ctx0, kv_self.k, n_embd_head, n_kv, n_head_kv, ggml_element_size(kv_self.k)*n_embd_gqa, ggml_element_size(kv_self.k)*n_embd_head, ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il); ggml_set_name(K, "K"); // K * Q struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); ggml_set_name(KQ, "KQ"); // KQ_scaled = KQ / sqrt(n_embd_head) // KQ_scaled shape [n_past + n_tokens, n_tokens, n_head, 1] struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale); ggml_set_name(KQ_scaled, "KQ_scaled"); struct ggml_tensor * KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, /*n_past*/ kv_head, n_head, 8); ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi"); // KQ_masked = mask_past(KQ_scaled) struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled_alibi, KQ_mask); ggml_set_name(KQ_masked, "KQ_masked"); // KQ = soft_max(KQ_masked) struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked); ggml_set_name(KQ_soft_max, "KQ_soft_max"); // split cached V into n_head heads struct ggml_tensor * V = ggml_view_3d(ctx0, kv_self.v, n_kv, n_embd_head, n_head_kv, ggml_element_size(kv_self.v)*n_ctx, ggml_element_size(kv_self.v)*n_ctx*n_embd_head, ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il); ggml_set_name(V, "V"); struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); ggml_set_name(KQV, "KQV"); // KQV_merged = KQV.permute(0, 2, 1, 3) struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); ggml_set_name(KQV_merged, "KQV_merged"); // cur = KQV_merged.contiguous().view(n_embd, n_tokens) cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens); ggml_set_name(cur, "KQV_merged_contiguous"); } // Projection cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wo, cur), model.layers[il].bo); // Add the input cur = ggml_add(ctx0, cur, inpL); struct ggml_tensor * inpFF = cur; // FF { // Norm { cur = ggml_norm(ctx0, inpFF, norm_eps); cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ffn_norm), model.layers[il].ffn_norm_b); } cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w3, cur), model.layers[il].b3); // GELU activation cur = ggml_gelu(ctx0, cur); // Projection cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w2, cur), model.layers[il].b2); } inpL = ggml_add(ctx0, cur, inpFF); } // Output Norm { cur = ggml_norm(ctx0, inpL, norm_eps); cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.output_norm), model.output_norm_b); } ggml_set_name(cur, "result_norm"); cur = ggml_mul_mat(ctx0, model.output, cur); ggml_set_name(cur, "result_output"); ggml_build_forward_expand(gf, cur); ggml_free(ctx0); return gf; } static struct ggml_cgraph * llm_build_mpt( llama_context & lctx, const llama_batch & batch) { const auto & model = lctx.model; const auto & hparams = model.hparams; const auto & cparams = lctx.cparams; const auto & kv_self = lctx.kv_self; GGML_ASSERT(!!kv_self.ctx); const int64_t n_embd = hparams.n_embd; const int64_t n_layer = hparams.n_layer; const int64_t n_ctx = cparams.n_ctx; const int64_t n_head = hparams.n_head; const int64_t n_head_kv = hparams.n_head_kv; const int64_t n_embd_head = hparams.n_embd_head(); const int64_t n_embd_gqa = hparams.n_embd_gqa(); const float norm_eps = hparams.f_norm_eps; const float clamp_kqv = hparams.f_clamp_kqv; const float max_alibi_bias = hparams.f_max_alibi_bias; const int n_gpu_layers = model.n_gpu_layers; const int32_t n_tokens = batch.n_tokens; const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n; const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head; auto & buf_compute = lctx.buf_compute; struct ggml_init_params params = { /*.mem_size =*/ buf_compute.size, /*.mem_buffer =*/ buf_compute.data, /*.no_alloc =*/ false, }; params.no_alloc = true; struct ggml_context * ctx0 = ggml_init(params); ggml_cgraph * gf = ggml_new_graph(ctx0); struct ggml_tensor * cur; struct ggml_tensor * inpL; //int warmup = 0; if (batch.token) { struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); ggml_allocr_alloc(lctx.alloc, inp_tokens); if (!ggml_allocr_is_measure(lctx.alloc)) { memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens)); //warmup = ((uint32_t*) inp_tokens->data)[0] == 0; } ggml_set_name(inp_tokens, "inp_tokens"); inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens); } else { #ifdef GGML_USE_MPI GGML_ASSERT(false && "not implemented"); #endif inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens); ggml_allocr_alloc(lctx.alloc, inpL); if (!ggml_allocr_is_measure(lctx.alloc)) { memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL)); } } const int i_gpu_start = n_layer - n_gpu_layers; (void) i_gpu_start; // offload functions set the tensor output backend to GPU // tensors are GPU-accelerated if any input or the output has been offloaded offload_func_t offload_func_nr = llama_nop; // nr = non-repeating offload_func_t offload_func_kq = llama_nop; offload_func_t offload_func_v = llama_nop; #ifdef GGML_USE_CUBLAS if (n_gpu_layers > n_layer) { offload_func_nr = ggml_cuda_assign_buffers_no_alloc; } if (n_gpu_layers > n_layer + 1) { offload_func_v = ggml_cuda_assign_buffers_no_alloc; } if (n_gpu_layers > n_layer + 2) { offload_func_kq = ggml_cuda_assign_buffers_no_alloc; } #endif // GGML_USE_CUBLAS // KQ_scale struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)"); ggml_allocr_alloc(lctx.alloc, KQ_scale); if (!ggml_allocr_is_measure(lctx.alloc)) { ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head)); } // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); offload_func_kq(KQ_mask); ggml_set_name(KQ_mask, "KQ_mask"); ggml_allocr_alloc(lctx.alloc, KQ_mask); if (!ggml_allocr_is_measure(lctx.alloc)) { float * data = (float *) KQ_mask->data; memset(data, 0, ggml_nbytes(KQ_mask)); for (int h = 0; h < 1; ++h) { for (int j = 0; j < n_tokens; ++j) { const llama_pos pos = batch.pos[j]; const llama_seq_id seq_id = batch.seq_id[j][0]; for (int i = 0; i < n_kv; ++i) { if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) { data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY; } } } } } for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * attn_norm; offload_func_t offload_func = llama_nop; #ifdef GGML_USE_CUBLAS if (il >= i_gpu_start) { offload_func = ggml_cuda_assign_buffers_no_alloc; } #endif // GGML_USE_CUBLAS // self-attention // TODO: refactor into common function (shared with LLaMA) { attn_norm = ggml_norm(ctx0, inpL, norm_eps); offload_func(attn_norm); attn_norm = ggml_mul(ctx0, attn_norm, model.layers[il].attn_norm); offload_func(attn_norm); if (1) { cur = attn_norm; } // compute QKV cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); offload_func_kq(cur); if (clamp_kqv > 0.0f) { cur = ggml_clamp(ctx0, cur, -clamp_kqv, clamp_kqv); offload_func_kq(cur); } const size_t wsize = ggml_type_size(cur->type); struct ggml_tensor * Qcur = ggml_view_3d( ctx0, cur, n_embd_head, n_head, n_tokens, wsize * n_embd_head, wsize * n_embd_head * (n_head + 2 * n_head_kv), 0); offload_func_kq(Qcur); struct ggml_tensor * Kcur = ggml_view_3d( ctx0, cur, n_embd_head, n_head_kv, n_tokens, wsize * n_embd_head, wsize * n_embd_head * (n_head + 2 * n_head_kv), wsize * n_embd_head * n_head); offload_func_kq(Kcur); struct ggml_tensor * tmpv = ggml_view_3d( ctx0, cur, n_embd_head, n_head_kv, n_tokens, wsize * n_embd_head, wsize * n_embd_head * (n_head + 2 * n_head_kv), wsize * n_embd_head * (n_head + n_head_kv)); offload_func_kq(Kcur); ggml_set_name(Qcur, "Qcur"); ggml_set_name(Kcur, "Kcur"); { struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, n_tokens)); offload_func_v(Vcur); offload_func_v(Vcur->src[0]->src[0]); ggml_set_name(Vcur, "Vcur"); struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head)); offload_func_kq(k); ggml_set_name(k, "k"); struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa, ( n_ctx)*ggml_element_size(kv_self.v), (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v)); offload_func_v(v); ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); } struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); offload_func_kq(Q); ggml_set_name(Q, "Q"); struct ggml_tensor * K = ggml_view_3d(ctx0, kv_self.k, n_embd_head, n_kv, n_head_kv, ggml_element_size(kv_self.k)*n_embd_gqa, ggml_element_size(kv_self.k)*n_embd_head, ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il); offload_func_kq(K); ggml_set_name(K, "K"); struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); offload_func_kq(KQ); ggml_set_name(KQ, "KQ"); struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale); offload_func_kq(KQ_scaled); ggml_set_name(KQ_scaled, "KQ_scaled"); // TODO: replace with ggml_add() struct ggml_tensor * KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, 0, n_head, max_alibi_bias); offload_func_kq(KQ_scaled_alibi); ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi"); struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled_alibi, KQ_mask); offload_func_kq(KQ_masked); ggml_set_name(KQ_masked, "KQ_masked"); struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); offload_func_v(KQ_soft_max); ggml_set_name(KQ_soft_max, "KQ_soft_max"); struct ggml_tensor * V = ggml_view_3d(ctx0, kv_self.v, n_kv, n_embd_head, n_head_kv, ggml_element_size(kv_self.v)*n_ctx, ggml_element_size(kv_self.v)*n_ctx*n_embd_head, ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il); offload_func_v(V); ggml_set_name(V, "V"); struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); offload_func_v(KQV); ggml_set_name(KQV, "KQV"); struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); offload_func_v(KQV_merged); ggml_set_name(KQV_merged, "KQV_merged"); cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens); offload_func_v(cur); ggml_set_name(cur, "KQV_merged_contiguous"); cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur); offload_func(cur); ggml_set_name(cur, "result_wo"); } // Add the input cur = ggml_add(ctx0, cur, inpL); offload_func(cur); struct ggml_tensor * attn_out = cur; // feed forward { // Norm { cur = ggml_norm(ctx0, attn_out, norm_eps); offload_func(cur); cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm); offload_func(cur); } cur = ggml_mul_mat(ctx0, model.layers[il].w3, cur); offload_func(cur); cur = ggml_gelu(ctx0, cur); offload_func(cur); cur = ggml_mul_mat(ctx0, model.layers[il].w2, cur); offload_func(cur); } cur = ggml_add(ctx0, cur, attn_out); offload_func(cur); // input for next layer inpL = cur; } cur = inpL; // norm { cur = ggml_norm(ctx0, cur, norm_eps); offload_func_nr(cur); cur = ggml_mul(ctx0, cur, model.output_norm); ggml_set_name(cur, "result_norm"); } cur = ggml_mul_mat(ctx0, model.output, cur); ggml_set_name(cur, "result_output"); ggml_build_forward_expand(gf, cur); ggml_free(ctx0); return gf; } static struct ggml_cgraph * llama_build_graph( llama_context & lctx, const llama_batch & batch) { const auto & model = lctx.model; struct ggml_cgraph * result = NULL; switch (model.arch) { case LLM_ARCH_LLAMA: { result = llm_build_llama(lctx, batch); } break; case LLM_ARCH_BAICHUAN: { result = llm_build_baichaun(lctx, batch); } break; case LLM_ARCH_FALCON: { result = llm_build_falcon(lctx, batch); } break; case LLM_ARCH_STARCODER: { result = llm_build_starcoder(lctx, batch); } break; case LLM_ARCH_PERSIMMON: { result = llm_build_persimmon(lctx, batch); } break; case LLM_ARCH_REFACT: { result = llm_build_refact(lctx, batch); } break; case LLM_ARCH_BLOOM: { result = llm_build_bloom(lctx, batch); } break; case LLM_ARCH_MPT: { result = llm_build_mpt(lctx, batch); } break; default: GGML_ASSERT(false); } return result; } // decode a batch of tokens by evaluating the transformer // // - lctx: llama context // - batch: batch to evaluate // // return 0 on success // return positive int on warning // return negative int on error // static int llama_decode_internal( llama_context & lctx, llama_batch batch) { const uint32_t n_tokens = batch.n_tokens; if (n_tokens == 0) { LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__); return -1; } const auto & model = lctx.model; const auto & hparams = model.hparams; const auto & cparams = lctx.cparams; const auto n_batch = cparams.n_batch; GGML_ASSERT(n_tokens <= n_batch); int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch; GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT const int64_t t_start_us = ggml_time_us(); #ifdef GGML_USE_MPI // TODO: needs fix after #3228 GGML_ASSERT(false && "not implemented"); //ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads); #endif GGML_ASSERT(n_threads > 0); auto & kv_self = lctx.kv_self; GGML_ASSERT(!!kv_self.ctx); const int64_t n_embd = hparams.n_embd; const int64_t n_vocab = hparams.n_vocab; // helpers for smoother batch API transistion // after deprecating the llama_eval calls, these will be removed std::vector pos; std::vector n_seq_id; std::vector seq_id_arr; std::vector> seq_id; if (batch.pos == nullptr) { pos.resize(n_tokens); for (uint32_t i = 0; i < n_tokens; i++) { pos[i] = batch.all_pos_0 + i*batch.all_pos_1; } batch.pos = pos.data(); } if (batch.seq_id == nullptr) { n_seq_id.resize(n_tokens); seq_id.resize(n_tokens); seq_id_arr.resize(n_tokens); for (uint32_t i = 0; i < n_tokens; i++) { n_seq_id[i] = 1; seq_id[i].resize(1); seq_id[i][0] = batch.all_seq_id; seq_id_arr[i] = seq_id[i].data(); } batch.n_seq_id = n_seq_id.data(); batch.seq_id = seq_id_arr.data(); } if (!llama_kv_cache_find_slot(kv_self, batch)) { return 1; } // a heuristic, to avoid attending the full cache if it is not yet utilized // after enough generations, the benefit from this heuristic disappears // if we start defragmenting the cache, the benefit from this will be more important //kv_self.n = std::max(32, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32)); // TODO: this might be better for CUDA? kv_self.n = std::min((int32_t) cparams.n_ctx, std::max(32, llama_kv_cache_cell_max(kv_self))); //printf("kv_self.n = %d\n", kv_self.n); ggml_allocr_reset(lctx.alloc); ggml_cgraph * gf = llama_build_graph(lctx, batch); ggml_allocr_alloc_graph(lctx.alloc, gf); struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1]; struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 2]; GGML_ASSERT(strcmp(res->name, "result_output") == 0); GGML_ASSERT(strcmp(embeddings->name, "result_norm") == 0); #ifdef GGML_USE_CUBLAS for (int i = 0; i < gf->n_leafs; i++) { ggml_tensor * node = gf->leafs[i]; if (node->backend == GGML_BACKEND_GPU && node->extra == NULL) { ggml_cuda_assign_scratch_offset(node, (char*)node->data - (char *) lctx.buf_alloc.data); ggml_cuda_copy_to_device(node); } } for (int i = 0; i < gf->n_nodes; i++) { ggml_tensor * node = gf->nodes[i]; if (node->backend == GGML_BACKEND_GPU && node->extra == NULL) { ggml_cuda_assign_scratch_offset(node, (char*)node->data - (char *) lctx.buf_alloc.data); } } ggml_cuda_set_mul_mat_q(cparams.mul_mat_q); // HACK: ggml-alloc may change the tensor backend when reusing a parent, so force output to be on the CPU here if needed if (!lctx.embedding.empty()) { embeddings->backend = GGML_BACKEND_CPU; } res->backend = GGML_BACKEND_CPU; #endif // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs); // for big prompts, if BLAS is enabled, it is better to use only one thread // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well // we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering // with the BLAS calls. need a better solution if (n_tokens >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) { n_threads = std::min(4, n_threads); } // If all tensors can be run on the GPU then using more than 1 thread is detrimental. const bool full_offload_supported = model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_BAICHUAN || model.arch == LLM_ARCH_FALCON || model.arch == LLM_ARCH_REFACT || model.arch == LLM_ARCH_MPT; const bool fully_offloaded = model.n_gpu_layers >= (int) hparams.n_layer + 3; if (ggml_cpu_has_cublas() && full_offload_supported && fully_offloaded) { n_threads = 1; } #if GGML_USE_MPI const int64_t n_layer = hparams.n_layer; ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer); #endif #ifdef GGML_USE_METAL if (lctx.ctx_metal) { ggml_metal_set_n_cb (lctx.ctx_metal, n_threads); ggml_metal_graph_compute(lctx.ctx_metal, gf); } else { ggml_graph_compute_helper(lctx.work_buffer, gf, n_threads); } #else ggml_graph_compute_helper(lctx.work_buffer, gf, n_threads); #endif #if GGML_USE_MPI ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer); #endif // update the kv ring buffer lctx.kv_self.has_shift = false; lctx.kv_self.head += n_tokens; // Ensure kv cache head points to a valid index. if (lctx.kv_self.head >= lctx.kv_self.size) { lctx.kv_self.head = 0; } #ifdef GGML_PERF // print timing information per ggml operation (for debugging purposes) // requires GGML_PERF to be defined ggml_graph_print(gf); #endif // plot the computation graph in dot format (for debugging purposes) //if (n_past%100 == 0) { // ggml_graph_dump_dot(gf, NULL, "llama.dot"); //} // extract logits { auto & logits_out = lctx.logits; if (batch.logits) { logits_out.resize(n_vocab * n_tokens); for (uint32_t i = 0; i < n_tokens; i++) { if (batch.logits[i] == 0) { continue; } memcpy(logits_out.data() + (n_vocab*i), (float *) ggml_get_data(res) + (n_vocab*i), sizeof(float)*n_vocab); } } else if (lctx.logits_all) { logits_out.resize(n_vocab * n_tokens); memcpy(logits_out.data(), (float *) ggml_get_data(res), sizeof(float)*n_vocab*n_tokens); } else { logits_out.resize(n_vocab); memcpy(logits_out.data(), (float *) ggml_get_data(res) + (n_vocab*(n_tokens - 1)), sizeof(float)*n_vocab); } } // extract embeddings if (!lctx.embedding.empty()) { auto & embedding_out = lctx.embedding; embedding_out.resize(n_embd); memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(n_tokens - 1)), sizeof(float)*n_embd); } // measure the performance only for the single-token evals if (n_tokens == 1) { lctx.t_eval_us += ggml_time_us() - t_start_us; lctx.n_eval++; } else if (n_tokens > 1) { lctx.t_p_eval_us += ggml_time_us() - t_start_us; lctx.n_p_eval += n_tokens; } // get a more accurate load time, upon first eval // TODO: fix this if (!lctx.has_evaluated_once) { lctx.t_load_us = ggml_time_us() - lctx.t_start_us; lctx.has_evaluated_once = true; } return 0; } // // tokenizer // static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) { return vocab.type; } static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) { return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL; } static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) { return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNKNOWN; } static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) { return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL; } static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) { return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE; } static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) { return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED; } static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) { GGML_ASSERT(llama_is_byte_token(vocab, id)); const auto& token_data = vocab.id_to_token.at(id); switch (llama_vocab_get_type(vocab)) { case LLAMA_VOCAB_TYPE_SPM: { auto buf = token_data.text.substr(3, 2); return strtol(buf.c_str(), NULL, 16); } case LLAMA_VOCAB_TYPE_BPE: { GGML_ASSERT(false); return unicode_to_bytes_bpe(token_data.text); } default: GGML_ASSERT(false); } } static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) { switch (llama_vocab_get_type(vocab)) { case LLAMA_VOCAB_TYPE_SPM: { char buf[7]; int result = snprintf(buf, sizeof(buf), "<0x%02X>", ch); GGML_ASSERT(0 <= result && result < 7); return vocab.token_to_id.at(buf); } case LLAMA_VOCAB_TYPE_BPE: { return vocab.token_to_id.at(bytes_to_unicode_bpe(ch)); } default: GGML_ASSERT(false); } } static void llama_escape_whitespace(std::string & text) { replace_all(text, " ", "\xe2\x96\x81"); } static void llama_unescape_whitespace(std::string & word) { replace_all(word, "\xe2\x96\x81", " "); } struct llm_symbol { using index = int; index prev; index next; const char * text; size_t n; }; static_assert(std::is_trivially_copyable::value, "llm_symbol is not trivially copyable"); // SPM tokenizer // original implementation: // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4 struct llm_bigram_spm { struct comparator { bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) { return (l.score < r.score) || (l.score == r.score && l.left > r.left); } }; using queue_storage = std::vector; using queue = std::priority_queue; llm_symbol::index left; llm_symbol::index right; float score; size_t size; }; struct llm_tokenizer_spm { llm_tokenizer_spm(const llama_vocab & vocab): vocab(vocab) {} void tokenize(const std::string & text, std::vector & output) { // split string into utf8 chars int index = 0; size_t offs = 0; while (offs < text.size()) { llm_symbol sym; size_t len = utf8_len(text[offs]); sym.text = text.c_str() + offs; sym.n = std::min(len, text.size() - offs); offs += sym.n; sym.prev = index - 1; sym.next = offs == text.size() ? -1 : index + 1; index++; symbols.emplace_back(sym); } // seed the work queue with all possible 2-character tokens. for (size_t i = 1; i < symbols.size(); ++i) { try_add_bigram(i - 1, i); } // keep substituting the highest frequency pairs for as long as we can. while (!work_queue.empty()) { auto bigram = work_queue.top(); work_queue.pop(); auto & left_sym = symbols[bigram.left]; auto & right_sym = symbols[bigram.right]; // if one of the symbols already got merged, skip it. if (left_sym.n == 0 || right_sym.n == 0 || left_sym.n + right_sym.n != bigram.size) { continue; } // merge the right sym into the left one left_sym.n += right_sym.n; right_sym.n = 0; //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size); // remove the right sym from the chain left_sym.next = right_sym.next; if (right_sym.next >= 0) { symbols[right_sym.next].prev = bigram.left; } // find more substitutions try_add_bigram(left_sym.prev, bigram.left); try_add_bigram(bigram.left, left_sym.next); } for (int i = 0; i != -1; i = symbols[i].next) { auto & symbol = symbols[i]; resegment(symbol, output); } } private: void resegment(llm_symbol & symbol, std::vector & output) { auto text = std::string(symbol.text, symbol.n); auto token = vocab.token_to_id.find(text); // Do we need to support is_unused? if (token != vocab.token_to_id.end()) { output.push_back((*token).second); return; } const auto p = rev_merge.find(text); if (p == rev_merge.end()) { // output any symbols that did not form tokens as bytes. for (int j = 0; j < (int)symbol.n; ++j) { llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]); output.push_back(token_id); } return; } resegment(symbols[p->second.first], output); resegment(symbols[p->second.second], output); } void try_add_bigram(int left, int right) { if (left == -1 || right == -1) { return; } const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n); auto token = vocab.token_to_id.find(text); if (token == vocab.token_to_id.end()) { return; } if (static_cast((*token).second) >= vocab.id_to_token.size()) { return; } const auto & tok_data = vocab.id_to_token[(*token).second]; llm_bigram_spm bigram; bigram.left = left; bigram.right = right; bigram.score = tok_data.score; bigram.size = text.size(); work_queue.push(bigram); // Do we need to support is_unused? rev_merge[text] = std::make_pair(left, right); } const llama_vocab & vocab; std::vector symbols; llm_bigram_spm::queue work_queue; std::map> rev_merge; }; // BPE tokenizer // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License] // tried to simplify unicode stuff, so most likely does not work 100% correctly! // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused struct llm_bigram_bpe { struct comparator { bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const { return l.rank > r.rank || (l.rank == r.rank && l.left > r.left); } }; using queue_storage = std::vector; using queue = std::priority_queue; llm_symbol::index left; llm_symbol::index right; std::string text; int rank; size_t size; }; struct llm_tokenizer_bpe { llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {} void tokenize(const std::string & text, std::vector & output) { int final_prev_index = -1; auto word_collection = bpe_gpt2_preprocess(text); symbols_final.clear(); for (auto & word : word_collection) { work_queue = llm_bigram_bpe::queue(); symbols.clear(); int index = 0; size_t offset = 0; while (offset < word.size()) { llm_symbol sym; size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset])); sym.text = word.c_str() + offset; sym.n = char_len; offset += sym.n; sym.prev = index - 1; sym.next = offset == word.size() ? -1 : index + 1; index++; symbols.emplace_back(sym); } for (size_t i = 1; i < symbols.size(); ++i) { add_new_bigram(i - 1, i); } // build token(s) while (!work_queue.empty()) { auto bigram = work_queue.top(); work_queue.pop(); auto & left_symbol = symbols[bigram.left]; auto & right_symbol = symbols[bigram.right]; if (left_symbol.n == 0 || right_symbol.n == 0) { continue; } std::string left_token = std::string(left_symbol.text, left_symbol.n); std::string right_token = std::string(right_symbol.text, right_symbol.n); if (left_token + right_token != bigram.text) { continue; // Skip this bigram if it's outdated } // merge the right sym into the left one left_symbol.n += right_symbol.n; right_symbol.n = 0; // remove the right sym from the chain left_symbol.next = right_symbol.next; if (right_symbol.next >= 0) { symbols[right_symbol.next].prev = bigram.left; } add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol } // add the fnished tokens to the final list keeping correct order for next and prev for (auto & sym : symbols) { if (sym.n > 0) { sym.prev = final_prev_index; sym.next = -1; if (final_prev_index != -1) { symbols_final[final_prev_index].next = symbols_final.size(); } symbols_final.emplace_back(sym); final_prev_index = symbols_final.size() - 1; } } } symbols = symbols_final; if (!symbols.empty()) { for (int i = 0; i != -1; i = symbols[i].next) { auto & symbol = symbols[i]; if (symbol.n == 0) { continue; } const std::string str = std::string(symbol.text, symbol.n); const auto token = vocab.token_to_id.find(str); if (token == vocab.token_to_id.end()) { for (auto j = str.begin(); j != str.end(); ++j) { std::string byte_str(1, *j); auto token_multibyte = vocab.token_to_id.find(byte_str); if (token_multibyte == vocab.token_to_id.end()) { throw std::runtime_error("ERROR: byte not found in vocab"); } output.push_back((*token_multibyte).second); } } else { output.push_back((*token).second); } } } } private: void add_new_bigram(int left, int right) { if (left == -1 || right == -1) { return; } std::string left_token = std::string(symbols[left].text, symbols[left].n); std::string right_token = std::string(symbols[right].text, symbols[right].n); int rank_found = -1; rank_found = vocab.find_bpe_rank(left_token, right_token); if (rank_found < 0) { return; } llm_bigram_bpe bigram; bigram.left = left; bigram.right = right; bigram.text = left_token + right_token; bigram.size = left_token.size() + right_token.size(); bigram.rank = rank_found; work_queue.push(bigram); } std::vector bpe_gpt2_preprocess(const std::string & text) { std::vector bpe_words; std::vector bpe_encoded_words; std::string token = ""; // GPT2 system regex: 's|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+ bool collecting_numeric = false; bool collecting_letter = false; bool collecting_special = false; bool collecting_whitespace_lookahead = false; bool collecting = false; std::vector text_utf; text_utf.reserve(text.size()); bpe_words.reserve(text.size()); bpe_encoded_words.reserve(text.size()); auto cps = codepoints_from_utf8(text); for (size_t i = 0; i < cps.size(); ++i) text_utf.emplace_back(codepoint_to_utf8(cps[i])); for (int i = 0; i < (int)text_utf.size(); i++) { const std::string & utf_char = text_utf[i]; bool split_condition = false; int bytes_remain = text_utf.size() - i; // forward backward lookups const std::string & utf_char_next = (i + 1 < (int)text_utf.size()) ? text_utf[i + 1] : ""; const std::string & utf_char_next_next = (i + 2 < (int)text_utf.size()) ? text_utf[i + 2] : ""; // handling contractions if (!split_condition && bytes_remain >= 2) { // 's|'t|'m|'d if (utf_char == "\'" && (utf_char_next == "s" || utf_char_next == "t" || utf_char_next == "m" || utf_char_next == "d")) { split_condition = true; } if (split_condition) { if (token.size()) { bpe_words.emplace_back(token); // push previous content as token } token = utf_char + utf_char_next; bpe_words.emplace_back(token); token = ""; i++; continue; } } if (!split_condition && bytes_remain >= 3) { // 're|'ve|'ll if (utf_char == "\'" && ( (utf_char_next == "r" && utf_char_next_next == "e") || (utf_char_next == "v" && utf_char_next_next == "e") || (utf_char_next == "l" && utf_char_next_next == "l")) ) { split_condition = true; } if (split_condition) { // current token + next token can be defined if (token.size()) { bpe_words.emplace_back(token); // push previous content as token } token = utf_char + utf_char_next + utf_char_next_next; bpe_words.emplace_back(token); // the contraction token = ""; i += 2; continue; } } if (!split_condition && !collecting) { if (codepoint_type(utf_char) == CODEPOINT_TYPE_LETTER || (!token.size() && utf_char == " " && codepoint_type(utf_char_next) == CODEPOINT_TYPE_LETTER)) { collecting_letter = true; collecting = true; } else if (codepoint_type(utf_char) == CODEPOINT_TYPE_DIGIT || (!token.size() && utf_char == " " && codepoint_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) { collecting_numeric = true; collecting = true; } else if ( ((codepoint_type(utf_char) != CODEPOINT_TYPE_LETTER && codepoint_type(utf_char) != CODEPOINT_TYPE_DIGIT) && (codepoint_type(utf_char) != CODEPOINT_TYPE_WHITESPACE)) || (!token.size() && utf_char == " " && codepoint_type(utf_char_next) != CODEPOINT_TYPE_LETTER && codepoint_type(utf_char_next) != CODEPOINT_TYPE_DIGIT && codepoint_type(utf_char_next) != CODEPOINT_TYPE_WHITESPACE) ) { collecting_special = true; collecting = true; } else if (codepoint_type(utf_char) == CODEPOINT_TYPE_WHITESPACE && codepoint_type(utf_char_next) == CODEPOINT_TYPE_WHITESPACE) { collecting_whitespace_lookahead = true; collecting = true; } else if (codepoint_type(utf_char) == CODEPOINT_TYPE_WHITESPACE) { split_condition = true; } } else if (!split_condition && collecting) { if (collecting_letter && codepoint_type(utf_char) != CODEPOINT_TYPE_LETTER) { split_condition = true; } else if (collecting_numeric && codepoint_type(utf_char) != CODEPOINT_TYPE_DIGIT) { split_condition = true; } else if (collecting_special && (codepoint_type(utf_char) == CODEPOINT_TYPE_LETTER || codepoint_type(utf_char) == CODEPOINT_TYPE_DIGIT || codepoint_type(utf_char) == CODEPOINT_TYPE_WHITESPACE)) { split_condition = true; } else if (collecting_whitespace_lookahead && (codepoint_type(utf_char_next) == CODEPOINT_TYPE_LETTER || codepoint_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) { split_condition = true; } } if (utf_char_next == "") { split_condition = true; // final token += utf_char; } if (split_condition) { if (token.size()) { bpe_words.emplace_back(token); } token = utf_char; collecting = false; collecting_letter = false; collecting_numeric = false; collecting_special = false; collecting_whitespace_lookahead = false; } else { token += utf_char; } } for (std::string & word : bpe_words) { std::string encoded_token = ""; for (char & c : word) { encoded_token += bytes_to_unicode_bpe(c); } bpe_encoded_words.emplace_back(encoded_token); } return bpe_encoded_words; } const llama_vocab & vocab; std::vector symbols; std::vector symbols_final; llm_bigram_bpe::queue work_queue; }; typedef enum FRAGMENT_BUFFER_VARIANT_TYPE{ FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN, FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT } FRAGMENT_BUFFER_VARIANT_TYPE; struct fragment_buffer_variant{ fragment_buffer_variant(llama_vocab::id _token) : type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN), token(_token), raw_text(_dummy), offset(0), length(0){} fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length) : type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT), token((llama_vocab::id)-1), raw_text(_raw_text), offset(_offset), length(_length){ GGML_ASSERT( _offset >= 0 ); GGML_ASSERT( _length >= 1 ); GGML_ASSERT( offset + length <= raw_text.length() ); } const FRAGMENT_BUFFER_VARIANT_TYPE type; const llama_vocab::id token; const std::string _dummy; const std::string & raw_text; const uint64_t offset; const uint64_t length; }; // #define PRETOKENIZERDEBUG static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list & buffer) { // for each special token for (const auto & st: vocab.special_tokens_cache) { const auto & special_token = st.first; const auto & special_id = st.second; // for each text fragment std::forward_list::iterator it = buffer.begin(); while (it != buffer.end()) { auto & fragment = (*it); // if a fragment is text ( not yet processed ) if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { auto * raw_text = &(fragment.raw_text); auto raw_text_base_offset = fragment.offset; auto raw_text_base_length = fragment.length; // loop over the text while (true) { // find the first occurence of a given special token in this fragment // passing offset argument only limit the "search area" but match coordinates // are still relative to the source full raw_text auto match = raw_text->find(special_token, raw_text_base_offset); // no occurences found, stop processing this fragment for a given special token if (match == std::string::npos) break; // check if match is within bounds of offset <-> length if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break; #ifdef PRETOKENIZERDEBUG fprintf(stderr, "FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str()); #endif auto source = std::distance(buffer.begin(), it); // if match is further than base offset // then we have some text to the left of it if (match > raw_text_base_offset) { // left const int64_t left_reminder_offset = raw_text_base_offset + 0; const int64_t left_reminder_length = match - raw_text_base_offset; buffer.emplace_after(it, (*raw_text), left_reminder_offset, left_reminder_length); #ifdef PRETOKENIZERDEBUG fprintf(stderr, "FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str()); #endif it++; } // special token buffer.emplace_after(it, special_id); it++; // right if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) { const int64_t right_reminder_offset = match + special_token.length(); const int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length()); buffer.emplace_after(it, (*raw_text), right_reminder_offset, right_reminder_length); #ifdef PRETOKENIZERDEBUG fprintf(stderr, "FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str()); #endif it++; if (source == 0) { buffer.erase_after(buffer.before_begin()); } else { buffer.erase_after(std::next(buffer.begin(), (source-1))); } // repeat for the right side raw_text_base_offset = right_reminder_offset; raw_text_base_length = right_reminder_length; #ifdef PRETOKENIZERDEBUG fprintf(stderr, "RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str()); #endif } else { if (source == 0) { buffer.erase_after(buffer.before_begin()); } else { buffer.erase_after(std::next(buffer.begin(), (source-1))); } break; } } } it++; } } } static std::vector llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos, bool special) { std::vector output; // OG tokenizer behavior: // // tokenizer.encode('', add_bos=True) returns [1] // tokenizer.encode('', add_bos=False) returns [] if (bos && vocab.special_bos_id != -1) { output.push_back(vocab.special_bos_id); } if (raw_text.empty()) { return output; } std::forward_list fragment_buffer; fragment_buffer.emplace_front( raw_text, 0, raw_text.length() ); if (special) tokenizer_st_partition( vocab, fragment_buffer ); switch (vocab.type) { case LLAMA_VOCAB_TYPE_SPM: { for (const auto & fragment: fragment_buffer) { if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { // without adding this leading whitespace, we do not get the same results as the original tokenizer // TODO: It's likely possible to get rid of this string copy entirely // by modifying llm_tokenizer_x to operate with string offsets like pre-tokenizer // and passing 'add space prefix' as bool argument // auto raw_text = (special ? "" : " ") + fragment.raw_text.substr(fragment.offset, fragment.length); #ifdef PRETOKENIZERDEBUG fprintf(stderr,"TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); #endif llm_tokenizer_spm tokenizer(vocab); llama_escape_whitespace(raw_text); tokenizer.tokenize(raw_text, output); } else // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN) { output.push_back(fragment.token); } } } break; case LLAMA_VOCAB_TYPE_BPE: { for (const auto & fragment: fragment_buffer) { if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length); #ifdef PRETOKENIZERDEBUG fprintf(stderr,"TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); #endif llm_tokenizer_bpe tokenizer(vocab); tokenizer.tokenize(raw_text, output); } else // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN) { output.push_back(fragment.token); } } } break; } return output; } // // grammar - internal // struct llama_partial_utf8 { uint32_t value; // bit value so far (unshifted) int n_remain; // num bytes remaining; -1 indicates invalid sequence }; struct llama_grammar { const std::vector> rules; std::vector> stacks; // buffer for partially generated UTF-8 sequence from accepted tokens llama_partial_utf8 partial_utf8; }; struct llama_grammar_candidate { size_t index; const uint32_t * code_points; llama_partial_utf8 partial_utf8; }; // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`. static std::pair, llama_partial_utf8> decode_utf8( const char * src, llama_partial_utf8 partial_start) { static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 }; const char * pos = src; std::vector code_points; uint32_t value = partial_start.value; int n_remain = partial_start.n_remain; // continue previous decode, if applicable while (*pos != 0 && n_remain > 0) { uint8_t next_byte = static_cast(*pos); if ((next_byte >> 6) != 2) { // invalid sequence, abort code_points.push_back(0); return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 }); } value = (value << 6) + (next_byte & 0x3F); ++pos; --n_remain; } if (partial_start.n_remain > 0 && n_remain == 0) { code_points.push_back(value); } // decode any subsequent utf-8 sequences, which may end in an incomplete one while (*pos != 0) { uint8_t first_byte = static_cast(*pos); uint8_t highbits = first_byte >> 4; n_remain = lookup[highbits] - 1; if (n_remain < 0) { // invalid sequence, abort code_points.clear(); code_points.push_back(0); return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain }); } uint8_t mask = (1 << (7 - n_remain)) - 1; value = first_byte & mask; ++pos; while (*pos != 0 && n_remain > 0) { value = (value << 6) + (static_cast(*pos) & 0x3F); ++pos; --n_remain; } if (n_remain == 0) { code_points.push_back(value); } } code_points.push_back(0); return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain }); } // returns true iff pos points to the end of one of the definitions of a rule static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) { switch (pos->type) { case LLAMA_GRETYPE_END: return true; // NOLINT case LLAMA_GRETYPE_ALT: return true; // NOLINT default: return false; } } // returns true iff chr satisfies the char range at pos (regular or inverse range) // asserts that pos is pointing to a char range element static std::pair llama_grammar_match_char( const llama_grammar_element * pos, const uint32_t chr) { bool found = false; bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR; GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT do { if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) { // inclusive range, e.g. [a-z] found = found || (pos->value <= chr && chr <= pos[1].value); pos += 2; } else { // exact char match, e.g. [a] or "a" found = found || pos->value == chr; pos += 1; } } while (pos->type == LLAMA_GRETYPE_CHAR_ALT); return std::make_pair(found == is_positive_char, pos); } // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char // range at pos (regular or inverse range) // asserts that pos is pointing to a char range element static bool llama_grammar_match_partial_char( const llama_grammar_element * pos, const llama_partial_utf8 partial_utf8) { bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR; GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); uint32_t partial_value = partial_utf8.value; int n_remain = partial_utf8.n_remain; // invalid sequence or 7-bit char split across 2 bytes (overlong) if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) { return false; } // range of possible code points this partial UTF-8 sequence could complete to uint32_t low = partial_value << (n_remain * 6); uint32_t high = low | ((1 << (n_remain * 6)) - 1); if (low == 0) { if (n_remain == 2) { low = 1 << 11; } else if (n_remain == 3) { low = 1 << 16; } } do { if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) { // inclusive range, e.g. [a-z] if (pos->value <= high && low <= pos[1].value) { return is_positive_char; } pos += 2; } else { // exact char match, e.g. [a] or "a" if (low <= pos->value && pos->value <= high) { return is_positive_char; } pos += 1; } } while (pos->type == LLAMA_GRETYPE_CHAR_ALT); return !is_positive_char; } // transforms a grammar pushdown stack into N possible stacks, all ending // at a character range (terminal element) static void llama_grammar_advance_stack( const std::vector> & rules, const std::vector & stack, std::vector> & new_stacks) { if (stack.empty()) { new_stacks.emplace_back(stack); return; } const llama_grammar_element * pos = stack.back(); switch (pos->type) { case LLAMA_GRETYPE_RULE_REF: { const size_t rule_id = static_cast(pos->value); const llama_grammar_element * subpos = rules[rule_id].data(); do { // init new stack without the top (pos) std::vector new_stack(stack.begin(), stack.end() - 1); if (!llama_grammar_is_end_of_sequence(pos + 1)) { // if this rule ref is followed by another element, add that to stack new_stack.push_back(pos + 1); } if (!llama_grammar_is_end_of_sequence(subpos)) { // if alternate is nonempty, add to stack new_stack.push_back(subpos); } llama_grammar_advance_stack(rules, new_stack, new_stacks); while (!llama_grammar_is_end_of_sequence(subpos)) { // scan to end of alternate def subpos++; } if (subpos->type == LLAMA_GRETYPE_ALT) { // there's another alternate def of this rule to process subpos++; } else { break; } } while (true); break; } case LLAMA_GRETYPE_CHAR: case LLAMA_GRETYPE_CHAR_NOT: new_stacks.emplace_back(stack); break; default: // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on // those GGML_ASSERT(false); } } // takes a set of possible pushdown stacks on a grammar, which are required to // be positioned at a character range (see `llama_grammar_advance_stack`), and // produces the N possible stacks if the given char is accepted at those // positions static std::vector> llama_grammar_accept( const std::vector> & rules, const std::vector> & stacks, const uint32_t chr) { std::vector> new_stacks; for (const auto & stack : stacks) { if (stack.empty()) { continue; } auto match = llama_grammar_match_char(stack.back(), chr); if (match.first) { const llama_grammar_element * pos = match.second; // update top of stack to next element, if any std::vector new_stack(stack.begin(), stack.end() - 1); if (!llama_grammar_is_end_of_sequence(pos)) { new_stack.push_back(pos); } llama_grammar_advance_stack(rules, new_stack, new_stacks); } } return new_stacks; } static std::vector llama_grammar_reject_candidates( const std::vector> & rules, const std::vector> & stacks, const std::vector & candidates); static std::vector llama_grammar_reject_candidates_for_stack( const std::vector> & rules, const std::vector & stack, const std::vector & candidates) { std::vector rejects; if (stack.empty()) { for (const auto & tok : candidates) { if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) { rejects.push_back(tok); } } return rejects; } const llama_grammar_element * stack_pos = stack.back(); std::vector next_candidates; for (const auto & tok : candidates) { if (*tok.code_points == 0) { // reached end of full codepoints in token, reject iff it ended in a partial sequence // that cannot satisfy this position in grammar if (tok.partial_utf8.n_remain != 0 && !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) { rejects.push_back(tok); } } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) { next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 }); } else { rejects.push_back(tok); } } const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second; // update top of stack to next element, if any std::vector stack_after(stack.begin(), stack.end() - 1); if (!llama_grammar_is_end_of_sequence(stack_pos_after)) { stack_after.push_back(stack_pos_after); } std::vector> next_stacks; llama_grammar_advance_stack(rules, stack_after, next_stacks); auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates); for (const auto & tok : next_rejects) { rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 }); } return rejects; } static std::vector llama_grammar_reject_candidates( const std::vector> & rules, const std::vector> & stacks, const std::vector & candidates) { GGML_ASSERT(!stacks.empty()); // REVIEW if (candidates.empty()) { return std::vector(); } auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates); for (size_t i = 1, size = stacks.size(); i < size; ++i) { rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects); } return rejects; } // // grammar - external // struct llama_grammar * llama_grammar_init( const llama_grammar_element ** rules, size_t n_rules, size_t start_rule_index) { const llama_grammar_element * pos; // copy rule definitions into vectors std::vector> vec_rules(n_rules); for (size_t i = 0; i < n_rules; i++) { for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) { vec_rules[i].push_back(*pos); } vec_rules[i].push_back({LLAMA_GRETYPE_END, 0}); } // loop over alternates of start rule to build initial stacks std::vector> stacks; pos = rules[start_rule_index]; do { std::vector stack; if (!llama_grammar_is_end_of_sequence(pos)) { // if alternate is nonempty, add to stack stack.push_back(pos); } llama_grammar_advance_stack(vec_rules, stack, stacks); while (!llama_grammar_is_end_of_sequence(pos)) { // scan to end of alternate def pos++; } if (pos->type == LLAMA_GRETYPE_ALT) { // there's another alternate def of this rule to process pos++; } else { break; } } while (true); return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} }; } void llama_grammar_free(struct llama_grammar * grammar) { delete grammar; } struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) { llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 }; // redirect elements in stacks to point to new rules for (size_t is = 0; is < result->stacks.size(); is++) { for (size_t ie = 0; ie < result->stacks[is].size(); ie++) { for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) { for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) { if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) { result->stacks[is][ie] = &result->rules[ir0][ir1]; } } } } } return result; } // // sampling // void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) { if (seed == LLAMA_DEFAULT_SEED) { seed = time(NULL); } ctx->rng.seed(seed); } void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) { GGML_ASSERT(candidates->size > 0); const int64_t t_start_sample_us = ggml_time_us(); // Sort the logits in descending order if (!candidates->sorted) { std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; }); candidates->sorted = true; } float max_l = candidates->data[0].logit; float cum_sum = 0.0f; for (size_t i = 0; i < candidates->size; ++i) { float p = expf(candidates->data[i].logit - max_l); candidates->data[i].p = p; cum_sum += p; } for (size_t i = 0; i < candidates->size; ++i) { candidates->data[i].p /= cum_sum; } if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep) { const int64_t t_start_sample_us = ggml_time_us(); k = std::max(k, (int) min_keep); k = std::min(k, (int) candidates->size); // Sort scores in descending order if (!candidates->sorted) { auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; }; if (k == (int) candidates->size) { std::sort(candidates->data, candidates->data + candidates->size, comp); } else { std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp); } candidates->sorted = true; } candidates->size = k; if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) { if (p >= 1.0f) { return; } llama_sample_softmax(ctx, candidates); const int64_t t_start_sample_us = ggml_time_us(); // Compute the cumulative probabilities float cum_sum = 0.0f; size_t last_idx = candidates->size; for (size_t i = 0; i < candidates->size; ++i) { cum_sum += candidates->data[i].p; // Check if the running sum is at least p or if we have kept at least min_keep tokens // we set the last index to i+1 to indicate that the current iterate should be included in the set if (cum_sum >= p && i + 1 >= min_keep) { last_idx = i + 1; break; } } // Resize the output vector to keep only the top-p tokens candidates->size = last_idx; if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) { if (z >= 1.0f || candidates->size <= 2) { return; } llama_sample_softmax(nullptr, candidates); const int64_t t_start_sample_us = ggml_time_us(); // Compute the first and second derivatives std::vector first_derivatives(candidates->size - 1); std::vector second_derivatives(candidates->size - 2); for (size_t i = 0; i < first_derivatives.size(); ++i) { first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p; } for (size_t i = 0; i < second_derivatives.size(); ++i) { second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1]; } // Calculate absolute value of second derivatives for (size_t i = 0; i < second_derivatives.size(); ++i) { second_derivatives[i] = std::abs(second_derivatives[i]); } // Normalize the second derivatives { const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f); if (second_derivatives_sum > 1e-6f) { for (float & value : second_derivatives) { value /= second_derivatives_sum; } } else { for (float & value : second_derivatives) { value = 1.0f / second_derivatives.size(); } } } float cum_sum = 0.0f; size_t last_idx = candidates->size; for (size_t i = 0; i < second_derivatives.size(); ++i) { cum_sum += second_derivatives[i]; // Check if the running sum is greater than z or if we have kept at least min_keep tokens if (cum_sum > z && i >= min_keep) { last_idx = i; break; } } // Resize the output vector to keep only the tokens above the tail location candidates->size = last_idx; if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) { // Reference implementation: // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr if (p >= 1.0f) { return; } // Compute the softmax of logits and calculate entropy llama_sample_softmax(nullptr, candidates); const int64_t t_start_sample_us = ggml_time_us(); float entropy = 0.0f; for (size_t i = 0; i < candidates->size; ++i) { entropy += -candidates->data[i].p * logf(candidates->data[i].p); } // Compute the absolute difference between negative log probability and entropy for each candidate std::vector shifted_scores; for (size_t i = 0; i < candidates->size; ++i) { float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy); shifted_scores.push_back(shifted_score); } // Sort tokens based on the shifted_scores and their corresponding indices std::vector indices(candidates->size); std::iota(indices.begin(), indices.end(), 0); std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) { return shifted_scores[a] < shifted_scores[b]; }); // Compute the cumulative probabilities float cum_sum = 0.0f; size_t last_idx = indices.size(); for (size_t i = 0; i < indices.size(); ++i) { size_t idx = indices[i]; cum_sum += candidates->data[idx].p; // Check if the running sum is greater than typical or if we have kept at least min_keep tokens if (cum_sum > p && i >= min_keep - 1) { last_idx = i + 1; break; } } // Resize the output vector to keep only the locally typical tokens std::vector new_candidates; for (size_t i = 0; i < last_idx; ++i) { size_t idx = indices[i]; new_candidates.push_back(candidates->data[idx]); } // Replace the data in candidates with the new_candidates data std::copy(new_candidates.begin(), new_candidates.end(), candidates->data); candidates->size = new_candidates.size(); if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) { const int64_t t_start_sample_us = ggml_time_us(); for (size_t i = 0; i < candidates_p->size; ++i) { candidates_p->data[i].logit /= temp; } if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) { llama_sample_temp(ctx, candidates_p, temp); } void llama_sample_repetition_penalties( struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t penalty_last_n, float penalty_repeat, float penalty_freq, float penalty_present) { if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) { return; } const int64_t t_start_sample_us = ggml_time_us(); // Create a frequency map to count occurrences of each token in last_tokens std::unordered_map token_count; for (size_t i = 0; i < penalty_last_n; ++i) { token_count[last_tokens[i]]++; } // Apply frequency and presence penalties to the candidates for (size_t i = 0; i < candidates->size; ++i) { const auto token_iter = token_count.find(candidates->data[i].id); if (token_iter == token_count.end()) { continue; } const int count = token_iter->second; // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong. // This is common fix for this problem, which is to multiply by the penalty instead of dividing. if (candidates->data[i].logit <= 0) { candidates->data[i].logit *= penalty_repeat; } else { candidates->data[i].logit /= penalty_repeat; } candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present; } candidates->sorted = false; if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) { GGML_ASSERT(ctx); const int64_t t_start_sample_us = ggml_time_us(); bool allow_eos = false; for (const auto & stack : grammar->stacks) { if (stack.empty()) { allow_eos = true; break; } } const llama_token eos = llama_token_eos(ctx); std::vector, llama_partial_utf8>> candidates_decoded; std::vector candidates_grammar; for (size_t i = 0; i < candidates->size; ++i) { const llama_token id = candidates->data[i].id; const std::string piece = llama_token_to_str(ctx, id); if (id == eos) { if (!allow_eos) { candidates->data[i].logit = -INFINITY; } } else if (piece.empty() || piece[0] == 0) { candidates->data[i].logit = -INFINITY; } else { candidates_decoded.push_back(decode_utf8(piece.c_str(), grammar->partial_utf8)); candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second }); } } const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar); for (const auto & reject : rejects) { candidates->data[reject.index].logit = -INFINITY; } ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } static void llama_log_softmax(float * array, size_t size) { float max_l = *std::max_element(array, array + size); float sum = 0.f; for (size_t i = 0; i < size; ++i) { float p = expf(array[i] - max_l); sum += p; array[i] = p; } for (size_t i = 0; i < size; ++i) { array[i] = logf(array[i] / sum); } } void llama_sample_classifier_free_guidance( struct llama_context * ctx, llama_token_data_array * candidates, struct llama_context * guidance_ctx, float scale) { int64_t t_start_sample_us = ggml_time_us(); GGML_ASSERT(ctx); auto n_vocab = llama_n_vocab(llama_get_model(ctx)); GGML_ASSERT(n_vocab == (int)candidates->size); GGML_ASSERT(!candidates->sorted); std::vector logits_base; logits_base.reserve(candidates->size); for (size_t i = 0; i < candidates->size; ++i) { logits_base.push_back(candidates->data[i].logit); } llama_log_softmax(logits_base.data(), candidates->size); float* logits_guidance = llama_get_logits(guidance_ctx); llama_log_softmax(logits_guidance, n_vocab); for (int i = 0; i < n_vocab; ++i) { float logit_guidance = logits_guidance[i]; float logit_base = logits_base[i]; candidates->data[i].logit = scale * (logit_base - logit_guidance) + logit_guidance; } if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } } llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu) { GGML_ASSERT(ctx); auto N = float(llama_n_vocab(llama_get_model(ctx))); int64_t t_start_sample_us; t_start_sample_us = ggml_time_us(); llama_sample_softmax(nullptr, candidates); // Estimate s_hat using the most probable m tokens float s_hat = 0.0; float sum_ti_bi = 0.0; float sum_ti_sq = 0.0; for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) { float t_i = logf(float(i + 2) / float(i + 1)); float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p); sum_ti_bi += t_i * b_i; sum_ti_sq += t_i * t_i; } s_hat = sum_ti_bi / sum_ti_sq; // Compute k from the estimated s_hat and target surprise value float epsilon_hat = s_hat - 1; float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat); // Sample the next word X using top-k sampling llama_sample_top_k(nullptr, candidates, int(k), 1); if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } llama_token X = llama_sample_token(ctx, candidates); t_start_sample_us = ggml_time_us(); // Compute error as the difference between observed surprise and target surprise value size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { return candidate.id == X; })); float observed_surprise = -log2f(candidates->data[X_idx].p); float e = observed_surprise - tau; // Update mu using the learning rate and error *mu = *mu - eta * e; if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } return X; } llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) { int64_t t_start_sample_us; t_start_sample_us = ggml_time_us(); llama_sample_softmax(ctx, candidates); // Truncate the words with surprise values greater than mu candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { return -log2f(candidate.p) > *mu; })); if (candidates->size == 0) { candidates->size = 1; } if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } // Normalize the probabilities of the remaining words llama_sample_softmax(ctx, candidates); // Sample the next word X from the remaining words llama_token X = llama_sample_token(ctx, candidates); t_start_sample_us = ggml_time_us(); // Compute error as the difference between observed surprise and target surprise value size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { return candidate.id == X; })); float observed_surprise = -log2f(candidates->data[X_idx].p); float e = observed_surprise - tau; // Update mu using the learning rate and error *mu = *mu - eta * e; if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } return X; } llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) { const int64_t t_start_sample_us = ggml_time_us(); // Find max element auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) { return a.logit < b.logit; }); llama_token result = max_iter->id; if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; ctx->n_sample++; } return result; } llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) { GGML_ASSERT(ctx); const int64_t t_start_sample_us = ggml_time_us(); llama_sample_softmax(nullptr, candidates); std::vector probs; probs.reserve(candidates->size); for (size_t i = 0; i < candidates->size; ++i) { probs.push_back(candidates->data[i].p); } std::discrete_distribution<> dist(probs.begin(), probs.end()); auto & rng = ctx->rng; int idx = dist(rng); llama_token result = candidates->data[idx].id; ctx->t_sample_us += ggml_time_us() - t_start_sample_us; ctx->n_sample++; return result; } void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) { const int64_t t_start_sample_us = ggml_time_us(); if (token == llama_token_eos(ctx)) { for (const auto & stack : grammar->stacks) { if (stack.empty()) { return; } } GGML_ASSERT(false); } const std::string piece = llama_token_to_str(ctx, token); // Note terminating 0 in decoded string const auto decoded = decode_utf8(piece.c_str(), grammar->partial_utf8); const auto & code_points = decoded.first; for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) { grammar->stacks = llama_grammar_accept(grammar->rules, grammar->stacks, *it); } grammar->partial_utf8 = decoded.second; GGML_ASSERT(!grammar->stacks.empty()); ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } // // Beam search // struct llama_beam { std::vector tokens; float p; // Cumulative beam probability (renormalized relative to all beams) bool eob; // Initialize end-of-beam to false. Callback sets this to true. // Sort beams by probability. In case of ties, prefer beams at eob. bool operator<(const llama_beam & rhs) const { return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob); } // Shift off first n tokens and discard them. void shift_tokens(const size_t n) { if (n) { std::copy(tokens.begin() + n, tokens.end(), tokens.begin()); tokens.resize(tokens.size() - n); } } llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; } }; // A struct for calculating logit-related info. struct llama_logit_info { const float * const logits; const int n_vocab; const float max_l; const float normalizer; struct sum_exp { float max_l; float operator()(float sum, float l) const { return sum + std::exp(l - max_l); } }; llama_logit_info(llama_context * ctx) : logits(llama_get_logits(ctx)) , n_vocab(llama_n_vocab(llama_get_model(ctx))) , max_l(*std::max_element(logits, logits + n_vocab)) , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l})) { } llama_token_data get_token_data(const llama_token token_id) const { constexpr auto p = std::numeric_limits::quiet_NaN(); // never used return {token_id, logits[token_id], p}; } // Return top k token_data by logit. std::vector top_k(size_t k) { std::vector min_heap; // min-heap by logit const llama_token k_min = std::min(static_cast(k), n_vocab); min_heap.reserve(k_min); for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) { min_heap.push_back(get_token_data(token_id)); } auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; }; std::make_heap(min_heap.begin(), min_heap.end(), comp); for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) { if (min_heap.front().logit < logits[token_id]) { std::pop_heap(min_heap.begin(), min_heap.end(), comp); min_heap.back().id = token_id; min_heap.back().logit = logits[token_id]; std::push_heap(min_heap.begin(), min_heap.end(), comp); } } return min_heap; } float probability_from_logit(float logit) const { return normalizer * std::exp(logit - max_l); } }; struct llama_beam_search_data { llama_context * ctx; size_t n_beams; int n_past; int n_predict; std::vector beams; std::vector next_beams; // Re-calculated on each loop iteration size_t common_prefix_length; // Used to communicate to/from callback on beams state. std::vector beam_views; llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict) : ctx(ctx) , n_beams(n_beams) , n_past(n_past) , n_predict(n_predict) , beam_views(n_beams) { beams.reserve(n_beams); next_beams.reserve(n_beams); } // Collapse beams to a single beam given by index. void collapse_beams(const size_t beam_idx) { if (0u < beam_idx) { std::swap(beams[0], beams[beam_idx]); } beams.resize(1); } // Min-heaps are used to efficiently collect the top-k elements (k=n_beams). // The repetative patterns below reflect the 2 stages of heaps: // * Gather elements until the vector is full, then call std::make_heap() on it. // * If the heap is full and a new element is found that should be included, pop the // least element to the back(), replace it with the new, then push it into the heap. void fill_next_beams_by_top_probabilities(llama_beam & beam) { // Min-heaps use a greater-than comparator. const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; }; if (beam.eob) { // beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough. if (next_beams.size() < n_beams) { next_beams.push_back(std::move(beam)); if (next_beams.size() == n_beams) { std::make_heap(next_beams.begin(), next_beams.end(), comp); } } else if (next_beams.front().p < beam.p) { std::pop_heap(next_beams.begin(), next_beams.end(), comp); next_beams.back() = std::move(beam); std::push_heap(next_beams.begin(), next_beams.end(), comp); } } else { // beam is not at end-of-sentence, so branch with next top_k tokens. if (!beam.tokens.empty()) { llama_decode(ctx, llama_batch_get_one(beam.tokens.data(), beam.tokens.size(), n_past, 0)); } llama_logit_info logit_info(ctx); std::vector next_tokens = logit_info.top_k(n_beams); size_t i=0; if (next_beams.size() < n_beams) { for (; next_beams.size() < n_beams ; ++i) { llama_beam next_beam = beam; next_beam.tokens.push_back(next_tokens[i].id); next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit); next_beams.push_back(std::move(next_beam)); } std::make_heap(next_beams.begin(), next_beams.end(), comp); } else { for (; next_beams.front().p == 0.0f ; ++i) { std::pop_heap(next_beams.begin(), next_beams.end(), comp); next_beams.back() = beam; next_beams.back().tokens.push_back(next_tokens[i].id); next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit); std::push_heap(next_beams.begin(), next_beams.end(), comp); } } for (; i < n_beams ; ++i) { const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit); if (next_beams.front().p < next_p) { std::pop_heap(next_beams.begin(), next_beams.end(), comp); next_beams.back() = beam; next_beams.back().tokens.push_back(next_tokens[i].id); next_beams.back().p = next_p; std::push_heap(next_beams.begin(), next_beams.end(), comp); } } } } // Find common_prefix_length based on beams. // Requires beams is not empty. size_t find_common_prefix_length() { size_t common_prefix_length = beams[0].tokens.size(); for (size_t i = 1 ; i < beams.size() ; ++i) { common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size()); for (size_t j = 0 ; j < common_prefix_length ; ++j) { if (beams[0].tokens[j] != beams[i].tokens[j]) { common_prefix_length = j; break; } } } return common_prefix_length; } // Construct beams_state to send back to caller via the callback function. // Side effect: set common_prefix_length = find_common_prefix_length(); llama_beams_state get_beams_state(const bool last_call) { for (size_t i = 0 ; i < beams.size() ; ++i) { beam_views[i] = beams[i].view(); } common_prefix_length = find_common_prefix_length(); return {beam_views.data(), beams.size(), common_prefix_length, last_call}; } // Loop: // * while i < n_predict, AND // * any of the beams have not yet reached end-of-beam (eob), AND // * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence // (since all other beam probabilities can only decrease) void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) { beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob. const auto not_eob = [](const llama_beam & beam) { return !beam.eob; }; for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) && !beams[top_beam_index()].eob ; ++i) { callback(callback_data, get_beams_state(false)); // Sets common_prefix_length update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed. if (common_prefix_length) { llama_decode(ctx, llama_batch_get_one(beams[0].tokens.data(), common_prefix_length, n_past, 0)); n_past += common_prefix_length; } // Zero-out next_beam probabilities to place them last in following min-heap. std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; }); for (llama_beam & beam : beams) { beam.shift_tokens(common_prefix_length); fill_next_beams_by_top_probabilities(beam); } // next_beams become the beams of next/final iteration. Swap them to re-use memory. beams.swap(next_beams); renormalize_beam_probabilities(beams); } collapse_beams(top_beam_index()); callback(callback_data, get_beams_state(true)); } // As beams grow, the cumulative probabilities decrease. // Renormalize them to avoid floating point underflow. static void renormalize_beam_probabilities(std::vector & beams) { const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; }; const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p); std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; }); } // Assumes beams is non-empty. Uses llama_beam::operator<() for ordering. size_t top_beam_index() { return std::max_element(beams.begin(), beams.end()) - beams.begin(); } // Copy (p,eob) for each beam which may have been changed by the callback. void update_beams_from_beam_views() { for (size_t i = 0 ; i < beams.size() ; ++i) { beams[i].p = beam_views[i].p; beams[i].eob = beam_views[i].eob; } } }; void llama_beam_search(llama_context * ctx, llama_beam_search_callback_fn_t callback, void * callback_data, size_t n_beams, int n_past, int n_predict) { assert(ctx); const int64_t t_start_sample_us = ggml_time_us(); llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict); beam_search_data.loop(callback, callback_data); ctx->t_sample_us += ggml_time_us() - t_start_sample_us; ctx->n_sample++; } // // quantization // template struct no_init { T value; no_init() { /* do nothing */ } }; static void llama_convert_tensor_internal( struct ggml_tensor * tensor, std::vector> & output, std::vector & workers, const size_t nelements, const int nthread ) { if (output.size() < nelements) { output.resize(nelements); } float * f32_output = (float *) output.data(); ggml_type_traits_t qtype; if (ggml_is_quantized(tensor->type)) { qtype = ggml_internal_get_type_traits(tensor->type); if (qtype.to_float == NULL) { throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type))); } } else if (tensor->type != GGML_TYPE_F16) { throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type))); } if (nthread < 2) { if (tensor->type == GGML_TYPE_F16) { ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements); } else if (ggml_is_quantized(tensor->type)) { qtype.to_float(tensor->data, f32_output, nelements); } else { GGML_ASSERT(false); // unreachable } return; } auto block_size = tensor->type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor->type); auto block_size_bytes = ggml_type_size(tensor->type); GGML_ASSERT(nelements % block_size == 0); auto nblocks = nelements / block_size; auto blocks_per_thread = nblocks / nthread; auto spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count for (auto tnum = 0, in_buff_offs = 0, out_buff_offs = 0; tnum < nthread; tnum++) { auto thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread auto thr_elems = thr_blocks * block_size; // number of elements for this thread auto thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) { if (typ == GGML_TYPE_F16) { ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels); } else { qtype.to_float(inbuf, outbuf, nels); } }; workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems); in_buff_offs += thr_block_bytes; out_buff_offs += thr_elems; } for (auto & w : workers) { w.join(); } workers.clear(); } #ifdef GGML_USE_K_QUANTS static ggml_type get_k_quant_type( ggml_type new_type, const ggml_tensor * tensor, const llama_model & model, llama_ftype ftype, int * i_attention_wv, int n_attention_wv, int * i_feed_forward_w2, int n_feed_forward_w2 ) { const std::string name = ggml_get_name(tensor); // TODO: avoid hardcoded tensor names - use the TN_* constants const auto tn = LLM_TN(model.arch); auto use_more_bits = [](int i_layer, int num_layers) -> bool { return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2; }; if (name == tn(LLM_TENSOR_OUTPUT, "weight")) { int nx = tensor->ne[0]; if (model.arch == LLM_ARCH_FALCON || nx % QK_K != 0) { new_type = GGML_TYPE_Q8_0; } else if (new_type != GGML_TYPE_Q8_0) { new_type = GGML_TYPE_Q6_K; } } else if (name.find("attn_v.weight") != std::string::npos) { if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) { new_type = *i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) && use_more_bits(*i_attention_wv, n_attention_wv)) new_type = GGML_TYPE_Q6_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && *i_attention_wv < 4) new_type = GGML_TYPE_Q5_K; else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) && (*i_attention_wv < n_attention_wv/8 || *i_attention_wv >= 7*n_attention_wv/8)) new_type = GGML_TYPE_Q6_K; if (model.type == MODEL_70B) { // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with // nearly negligible increase in model size by quantizing this tensor with more bits: if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K; } ++*i_attention_wv; } else if (name.find("ffn_down.weight") != std::string::npos) { if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) { new_type = *i_feed_forward_w2 < 2 ? GGML_TYPE_Q5_K : model.arch != LLM_ARCH_FALCON || use_more_bits(*i_feed_forward_w2, n_feed_forward_w2) ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) { new_type = model.arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) { if (model.arch == LLM_ARCH_FALCON) { new_type = *i_feed_forward_w2 < 2 ? GGML_TYPE_Q6_K : use_more_bits(*i_feed_forward_w2, n_feed_forward_w2) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K; } else { if (use_more_bits(*i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K; } } else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(*i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && model.arch != LLM_ARCH_FALCON && *i_feed_forward_w2 < 4) { new_type = GGML_TYPE_Q5_K; } ++*i_feed_forward_w2; } else if (name.find("attn_output.weight") != std::string::npos) { if (model.arch != LLM_ARCH_FALCON) { if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) new_type = GGML_TYPE_Q4_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; } else { if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K; } } else if (name.find("attn_qkv.weight") != std::string::npos) { if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K; } else if (name.find("ffn_gate.weight") != std::string::npos || name.find("ffn_up.weight") != std::string::npos) { if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; } // This can be used to reduce the size of the Q5_K_S model. // The associated PPL increase is fully in line with the size reduction //else { // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K; //} bool convert_incompatible_tensor = false; if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K || new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K) { int nx = tensor->ne[0]; int ny = tensor->ne[1]; if (nx % QK_K != 0) { LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for k-quants\n", __func__, nx, ny, QK_K); convert_incompatible_tensor = true; } } if (convert_incompatible_tensor) { if (name == tn(LLM_TENSOR_OUTPUT, "weight")) { new_type = GGML_TYPE_F16; //fall back to F16 instead of just failing. LLAMA_LOG_WARN("F16 will be used for this tensor instead.\n"); } else if (name == tn(LLM_TENSOR_TOKEN_EMBD, "weight")) { new_type = GGML_TYPE_Q4_0; //fall back to Q4_0 instead of just failing. LLAMA_LOG_WARN("Q4_0 will be used for this tensor instead.\n"); } else { throw std::runtime_error("Unsupported tensor size encountered\n"); } } return new_type; } #endif static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) { ggml_type quantized_type; llama_ftype ftype = params->ftype; switch (params->ftype) { case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break; case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break; case LLAMA_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_TYPE_Q5_0; break; case LLAMA_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_TYPE_Q5_1; break; case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break; case LLAMA_FTYPE_MOSTLY_F16: quantized_type = GGML_TYPE_F16; break; case LLAMA_FTYPE_ALL_F32: quantized_type = GGML_TYPE_F32; break; #ifdef GGML_USE_K_QUANTS // K-quants case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break; case LLAMA_FTYPE_MOSTLY_Q3_K_S: case LLAMA_FTYPE_MOSTLY_Q3_K_M: case LLAMA_FTYPE_MOSTLY_Q3_K_L: quantized_type = GGML_TYPE_Q3_K; break; case LLAMA_FTYPE_MOSTLY_Q4_K_S: case LLAMA_FTYPE_MOSTLY_Q4_K_M: quantized_type = GGML_TYPE_Q4_K; break; case LLAMA_FTYPE_MOSTLY_Q5_K_S: case LLAMA_FTYPE_MOSTLY_Q5_K_M: quantized_type = GGML_TYPE_Q5_K; break; case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break; #endif default: throw std::runtime_error(format("invalid output file type %d\n", ftype)); } int nthread = params->nthread; if (nthread <= 0) { nthread = std::thread::hardware_concurrency(); } // mmap consistently increases speed Linux, and also increases speed on Windows with // hot cache. It may cause a slowdown on macOS, possibly related to free memory. #if defined(__linux__) || defined(_WIN32) constexpr bool use_mmap = true; #else constexpr bool use_mmap = false; #endif llama_model_loader ml(fname_inp, use_mmap); if (ml.use_mmap) { ml.mapping.reset(new llama_mmap(&ml.file, /* prefetch */ 0, ggml_is_numa())); } llama_model model; llm_load_arch(ml, model); llm_load_hparams(ml, model); if (params->only_copy) { ftype = model.ftype; } const size_t align = GGUF_DEFAULT_ALIGNMENT; struct gguf_context * ctx_out = gguf_init_empty(); // copy the KV pairs from the input file gguf_set_kv (ctx_out, ml.ctx_gguf); gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION); gguf_set_val_u32(ctx_out, "general.file_type", ftype); #ifdef GGML_USE_K_QUANTS int n_attention_wv = 0; int n_feed_forward_w2 = 0; for (int i = 0; i < ml.n_tensors; ++i) { struct ggml_tensor * meta = ml.get_tensor_meta(i); const std::string name = ggml_get_name(meta); // TODO: avoid hardcoded tensor names - use the TN_* constants if (name.find("attn_v.weight") != std::string::npos || name.find("attn_qkv.weight") != std::string::npos) { ++n_attention_wv; } else if (name.find("ffn_down.weight") != std::string::npos) { ++n_feed_forward_w2; } } if (n_attention_wv != n_feed_forward_w2 || (uint32_t)n_attention_wv != model.hparams.n_layer) { LLAMA_LOG_WARN("%s ============ Strange model: n_attention_wv = %d, n_feed_forward_w2 = %d, hparams.n_layer = %d\n", __func__, n_attention_wv, n_feed_forward_w2, model.hparams.n_layer); } int i_attention_wv = 0; int i_feed_forward_w2 = 0; #endif size_t total_size_org = 0; size_t total_size_new = 0; std::vector hist_all(1 << 4, 0); std::vector workers; workers.reserve(nthread); std::mutex mutex; int idx = 0; std::vector> read_data; std::vector> work; std::vector> f32_conv_buf; // populate the original tensors so we get an initial meta data for (int i = 0; i < ml.n_tensors; ++i) { struct ggml_tensor * meta = ml.get_tensor_meta(i); gguf_add_tensor(ctx_out, meta); } std::ofstream fout(fname_out, std::ios::binary); fout.exceptions(std::ofstream::failbit); // fail fast on write errors const size_t meta_size = gguf_get_meta_size(ctx_out); LLAMA_LOG_INFO("%s: meta size = %zu bytes\n", __func__, meta_size); // placeholder for the meta data ::zeros(fout, meta_size); for (int i = 0; i < ml.n_tensors; ++i) { struct ggml_tensor * tensor = ml.get_tensor_meta(i); const std::string name = ggml_get_name(tensor); if (!ml.use_mmap) { if (read_data.size() < ggml_nbytes(tensor)) { read_data.resize(ggml_nbytes(tensor)); } tensor->data = read_data.data(); } ml.load_data_for(tensor); LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ", ++idx, ml.n_tensors, ggml_get_name(tensor), llama_format_tensor_shape(tensor).c_str(), ggml_type_name(tensor->type)); // This used to be a regex, but has an extreme cost to compile times. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'? // quantize only 2D tensors quantize &= (tensor->n_dims == 2); quantize &= params->quantize_output_tensor || name != "output.weight"; quantize &= !params->only_copy; enum ggml_type new_type; void * new_data; size_t new_size; if (quantize) { new_type = quantized_type; #ifdef GGML_USE_K_QUANTS new_type = get_k_quant_type( new_type, tensor, model, ftype, &i_attention_wv, n_attention_wv, &i_feed_forward_w2, n_feed_forward_w2 ); #endif // If we've decided to quantize to the same type the tensor is already // in then there's nothing to do. quantize = tensor->type != new_type; } if (!quantize) { new_type = tensor->type; new_data = tensor->data; new_size = ggml_nbytes(tensor); LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0); } else { const size_t nelements = ggml_nelements(tensor); float * f32_data; if (tensor->type == GGML_TYPE_F32) { f32_data = (float *) tensor->data; } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) { throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type))); } else { llama_convert_tensor_internal(tensor, f32_conv_buf, workers, nelements, nthread); f32_data = (float *) f32_conv_buf.data(); } LLAMA_LOG_INFO("quantizing to %s .. ", ggml_type_name(new_type)); fflush(stdout); if (work.size() < nelements * 4) { work.resize(nelements * 4); // upper bound on size } new_data = work.data(); std::array hist_cur = {}; static const int chunk_size = 32 * 512; const int nchunk = (nelements + chunk_size - 1)/chunk_size; const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1; if (nthread_use < 2) { new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data()); } else { size_t counter = 0; new_size = 0; auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements]() { std::array local_hist = {}; size_t local_size = 0; while (true) { std::unique_lock lock(mutex); size_t first = counter; counter += chunk_size; if (first >= nelements) { if (local_size > 0) { for (int j=0; j %8.2f MB | hist: ", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0); int64_t tot_count = 0; for (size_t i = 0; i < hist_cur.size(); i++) { hist_all[i] += hist_cur[i]; tot_count += hist_cur[i]; } if (tot_count > 0) { for (size_t i = 0; i < hist_cur.size(); i++) { LLAMA_LOG_INFO("%5.3f ", hist_cur[i] / float(nelements)); } } LLAMA_LOG_INFO("\n"); } total_size_org += ggml_nbytes(tensor); total_size_new += new_size; // update the gguf meta data as we go gguf_set_tensor_type(ctx_out, name.c_str(), new_type); gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size); // write tensor data + padding fout.write((const char *) new_data, new_size); zeros(fout, GGML_PAD(new_size, align) - new_size); } // go back to beginning of file and write the updated meta data { fout.seekp(0); std::vector data(gguf_get_meta_size(ctx_out)); gguf_get_meta_data(ctx_out, data.data()); fout.write((const char *) data.data(), data.size()); } fout.close(); gguf_free(ctx_out); LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0); LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0); // print histogram for all tensors { int64_t sum_all = 0; for (size_t i = 0; i < hist_all.size(); i++) { sum_all += hist_all[i]; } if (sum_all > 0) { LLAMA_LOG_INFO("%s: hist: ", __func__); for (size_t i = 0; i < hist_all.size(); i++) { LLAMA_LOG_INFO("%5.3f ", hist_all[i] / float(sum_all)); } LLAMA_LOG_INFO("\n"); } } } static int llama_apply_lora_from_file_internal( const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads ) { LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora); const int64_t t_start_lora_us = ggml_time_us(); auto fin = std::ifstream(path_lora, std::ios::binary); if (!fin) { LLAMA_LOG_ERROR("%s: failed to open '%s'\n", __func__, path_lora); return 1; } // verify magic and version { uint32_t magic; fin.read((char *) &magic, sizeof(magic)); uint32_t format_version; fin.read((char *) &format_version, sizeof(format_version)); if (format_version != 1) { LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ ); return 1; } } int32_t lora_r; int32_t lora_alpha; fin.read((char *) &lora_r, sizeof(lora_r)); fin.read((char *) &lora_alpha, sizeof(lora_alpha)); float scaling = scale * (float)lora_alpha / (float)lora_r; LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling); // create a temporary ggml context to store the lora tensors // todo: calculate size from biggest possible tensor std::vector lora_buf(1024ull * 1024ull * 1024ull); struct ggml_init_params params; params.mem_size = lora_buf.size(); params.mem_buffer = lora_buf.data(); params.no_alloc = false; ggml_context * lora_ctx = ggml_init(params); std::unordered_map lora_tensors; // create a name -> tensor map of the model to accelerate lookups std::unordered_map model_tensors; for (const auto & kv : model.tensors_by_name) { model_tensors.insert(kv); } // load base model std::unique_ptr ml; ggml_context * base_ctx = NULL; std::vector base_buf; if (path_base_model) { LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model); ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true)); size_t ctx_size; size_t mmapped_size; ml->calc_sizes(ctx_size, mmapped_size); base_buf.resize(ctx_size); ggml_init_params base_params; base_params.mem_size = base_buf.size(); base_params.mem_buffer = base_buf.data(); base_params.no_alloc = ml->use_mmap; base_ctx = ggml_init(base_params); // maybe this should in llama_model_loader if (ml->use_mmap) { ml->mapping.reset(new llama_mmap(&ml->file, /* prefetch */ 0, ggml_is_numa())); } } // read tensors and apply bool warned = false; int n_tensors = 0; std::vector work_buffer; while (true) { int32_t n_dims; int32_t length; int32_t ftype; fin.read(reinterpret_cast(&n_dims), sizeof(n_dims)); fin.read(reinterpret_cast(&length), sizeof(length)); fin.read(reinterpret_cast(&ftype), sizeof(ftype)); if (fin.eof()) { break; } int32_t ne[2] = { 1, 1 }; for (int i = 0; i < n_dims; ++i) { fin.read(reinterpret_cast(&ne[i]), sizeof(ne[i])); } std::string name; { char buf[1024]; fin.read(buf, length); name = std::string(buf, length); } // check for lora suffix and get the type of tensor const std::string lora_suffix = ".lora"; size_t pos = name.rfind(lora_suffix); if (pos == std::string::npos) { LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str()); return 1; } std::string lora_type = name.substr(pos + lora_suffix.length()); std::string base_name = name; base_name.erase(pos); // LLAMA_LOG_INFO("%s: %s => %s (lora type %s) \n", __func__, name.c_str(),base_name.c_str(), lora_type.c_str()); if (model_tensors.find(base_name) == model_tensors.end()) { LLAMA_LOG_ERROR("%s: unknown tensor '%s' in lora adapter\n", __func__, name.data()); return 1; } // create ggml tensor ggml_type wtype; switch (ftype) { case 0: wtype = GGML_TYPE_F32; break; case 1: wtype = GGML_TYPE_F16; break; default: { LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n", __func__, ftype); return false; } } ggml_tensor * lora_tensor; if (n_dims == 2) { lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]); } else { LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims); return 1; } ggml_set_name(lora_tensor, "lora_tensor"); // load tensor data size_t offset = fin.tellg(); size_t tensor_data_size = ggml_nbytes(lora_tensor); offset = (offset + 31) & -32; fin.seekg(offset); fin.read((char*)lora_tensor->data, tensor_data_size); lora_tensors[name] = lora_tensor; // check if we have both A and B tensors and apply if (lora_tensors.find(base_name + ".loraA") != lora_tensors.end() && lora_tensors.find(base_name + ".loraB") != lora_tensors.end()) { ggml_tensor * dest_t = model_tensors[base_name]; offload_func_t offload_func = llama_nop; offload_func_t offload_func_force_inplace = llama_nop; #ifdef GGML_USE_CUBLAS if (dest_t->backend == GGML_BACKEND_GPU || dest_t->backend == GGML_BACKEND_GPU_SPLIT) { if (dest_t->type != GGML_TYPE_F16) { throw std::runtime_error(format( "%s: error: the simultaneous use of LoRAs and GPU acceleration is only supported for f16 models", __func__)); } offload_func = ggml_cuda_assign_buffers; offload_func_force_inplace = ggml_cuda_assign_buffers_force_inplace; } #endif // GGML_USE_CUBLAS ggml_tensor * base_t; if (ml) { struct gguf_context * ctx_gguf = ml->ctx_gguf; // load from base model if (gguf_find_tensor(ctx_gguf, base_name.c_str()) < 0) { // TODO: throw LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str()); return 1; } // TODO: not tested!! maybe not working! base_t = ml->create_tensor(base_ctx, base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] }, GGML_BACKEND_CPU); ml->load_data_for(base_t); } else { base_t = dest_t; } if (ggml_is_quantized(base_t->type)) { if (!warned) { LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, " "use a f16 or f32 base model with --lora-base\n", __func__); warned = true; } } ggml_tensor * loraA = lora_tensors[base_name + ".loraA"]; GGML_ASSERT(loraA->type == GGML_TYPE_F32); ggml_set_name(loraA, "loraA"); ggml_tensor * loraB = lora_tensors[base_name + ".loraB"]; GGML_ASSERT(loraB->type == GGML_TYPE_F32); ggml_set_name(loraB, "loraB"); if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) { LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");" " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]); return 1; } // w = w + BA*s ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB); offload_func(BA); ggml_set_name(BA, "BA"); if (scaling != 1.0f) { ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx, scaling); ggml_set_name(scale_tensor, "scale_tensor"); BA = ggml_scale_inplace(lora_ctx, BA, scale_tensor); offload_func(BA); ggml_set_name(BA, "BA_scaled"); } ggml_tensor * r; if (base_t == dest_t) { r = ggml_add_inplace(lora_ctx, dest_t, BA); offload_func_force_inplace(r); ggml_set_name(r, "r_add_inplace"); } else { r = ggml_add(lora_ctx, base_t, BA); offload_func(r); ggml_set_name(r, "r_add"); r = ggml_cpy(lora_ctx, r, dest_t); offload_func(r); ggml_set_name(r, "r_cpy"); } struct ggml_cgraph * gf = ggml_new_graph(lora_ctx); ggml_build_forward_expand(gf, r); ggml_graph_compute_helper(work_buffer, gf, n_threads); // we won't need these tensors again, reset the context to save memory ggml_free(lora_ctx); lora_ctx = ggml_init(params); lora_tensors.clear(); n_tensors++; if (n_tensors % 4 == 0) { LLAMA_LOG_INFO("."); } } } // TODO: this should be in a destructor, it will leak on failure ggml_free(lora_ctx); if (base_ctx) { ggml_free(base_ctx); } const int64_t t_lora_us = ggml_time_us() - t_start_lora_us; LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0); return 0; } // // interface implementation // struct llama_model_params llama_model_default_params() { struct llama_model_params result = { /*.n_gpu_layers =*/ 0, /*.main_gpu =*/ 0, /*.tensor_split =*/ nullptr, /*.progress_callback =*/ nullptr, /*.progress_callback_user_data =*/ nullptr, /*.vocab_only =*/ false, /*.use_mmap =*/ true, /*.use_mlock =*/ false, }; #ifdef GGML_USE_METAL result.n_gpu_layers = 1; #endif return result; } struct llama_context_params llama_context_default_params() { struct llama_context_params result = { /*.seed =*/ LLAMA_DEFAULT_SEED, /*.n_ctx =*/ 512, /*.n_batch =*/ 512, /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS, /*.rope_freq_base =*/ 0.0f, /*.rope_freq_scale =*/ 0.0f, /*.mul_mat_q =*/ true, /*.f16_kv =*/ true, /*.logits_all =*/ false, /*.embedding =*/ false, }; return result; } struct llama_model_quantize_params llama_model_quantize_default_params() { struct llama_model_quantize_params result = { /*.nthread =*/ 0, /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1, /*.allow_requantize =*/ false, /*.quantize_output_tensor =*/ true, /*.only_copy =*/ false, }; return result; } int llama_max_devices(void) { return LLAMA_MAX_DEVICES; } bool llama_mmap_supported(void) { return llama_mmap::SUPPORTED; } bool llama_mlock_supported(void) { return llama_mlock::SUPPORTED; } void llama_backend_init(bool numa) { ggml_time_init(); // needed to initialize f16 tables { struct ggml_init_params params = { 0, NULL, false }; struct ggml_context * ctx = ggml_init(params); ggml_free(ctx); } if (numa) { ggml_numa_init(); } #ifdef GGML_USE_MPI ggml_mpi_backend_init(); #endif } void llama_backend_free(void) { #ifdef GGML_USE_MPI ggml_mpi_backend_free(); #endif } int64_t llama_time_us(void) { return ggml_time_us(); } struct llama_model * llama_load_model_from_file( const char * path_model, struct llama_model_params params) { ggml_time_init(); llama_model * model = new llama_model; unsigned cur_percentage = 0; if (params.progress_callback == NULL) { params.progress_callback_user_data = &cur_percentage; params.progress_callback = [](float progress, void * ctx) { unsigned * cur_percentage_p = (unsigned *) ctx; unsigned percentage = (unsigned) (100 * progress); while (percentage > *cur_percentage_p) { *cur_percentage_p = percentage; LLAMA_LOG_INFO("."); if (percentage >= 100) { LLAMA_LOG_INFO("\n"); } } }; } if (!llama_model_load(path_model, *model, params.n_gpu_layers, params.main_gpu, params.tensor_split, params.use_mmap, params.use_mlock, params.vocab_only, params.progress_callback, params.progress_callback_user_data)) { LLAMA_LOG_ERROR("%s: failed to load model\n", __func__); delete model; return nullptr; } return model; } void llama_free_model(struct llama_model * model) { delete model; } struct llama_context * llama_new_context_with_model( struct llama_model * model, struct llama_context_params params) { if (!model) { return nullptr; } llama_context * ctx = new llama_context(*model); const auto & hparams = model->hparams; auto & cparams = ctx->cparams; cparams.n_batch = params.n_batch; cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx; cparams.rope_freq_base = params.rope_freq_base == 0 ? hparams.rope_freq_base_train : params.rope_freq_base; cparams.rope_freq_scale = params.rope_freq_scale == 0 ? hparams.rope_freq_scale_train : params.rope_freq_scale; cparams.n_threads = params.n_threads; cparams.n_threads_batch = params.n_threads_batch; cparams.mul_mat_q = params.mul_mat_q; if (params.seed == LLAMA_DEFAULT_SEED) { params.seed = time(NULL); } LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx); LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base); LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale); ctx->rng = std::mt19937(params.seed); ctx->logits_all = params.logits_all; ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32; // reserve memory for context buffers if (!hparams.vocab_only) { if (!llama_kv_cache_init(ctx->model.hparams, ctx->kv_self, memory_type, cparams.n_ctx, model->n_gpu_layers)) { LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__); llama_free(ctx); return nullptr; } { const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v); LLAMA_LOG_INFO("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0); } // resized during inference if (params.logits_all) { ctx->logits.reserve(cparams.n_ctx*hparams.n_vocab); } else { ctx->logits.reserve(hparams.n_vocab); } if (params.embedding){ ctx->embedding.resize(hparams.n_embd); } { static const size_t tensor_alignment = 32; // the compute buffer is used to store the tensor and graph structs, while the allocator buffer is used for the tensor data ctx->buf_compute.resize(ggml_tensor_overhead()*GGML_MAX_NODES + ggml_graph_overhead()); // create measure allocator ctx->alloc = ggml_allocr_new_measure(tensor_alignment); // build worst-case graph int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_batch); int n_past = cparams.n_ctx - n_tokens; llama_token token = llama_token_bos(ctx); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0)); #ifdef GGML_USE_METAL if (model->n_gpu_layers > 0) { ggml_metal_log_set_callback(llama_log_callback_default, NULL); ctx->ctx_metal = ggml_metal_init(1); if (!ctx->ctx_metal) { LLAMA_LOG_ERROR("%s: ggml_metal_init() failed\n", __func__); llama_free(ctx); return NULL; } //ggml_metal_graph_find_concurrency(ctx->ctx_metal, gf, false); //ggml_allocr_set_parse_seq(ctx->alloc, ggml_metal_get_concur_list(ctx->ctx_metal), ggml_metal_if_optimized(ctx->ctx_metal)); } #endif // measure memory requirements for the graph size_t alloc_size = ggml_allocr_alloc_graph(ctx->alloc, gf) + tensor_alignment; LLAMA_LOG_INFO("%s: compute buffer total size = %.2f MB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0); // recreate allocator with exact memory requirements ggml_allocr_free(ctx->alloc); ctx->buf_alloc.resize(alloc_size); ctx->alloc = ggml_allocr_new(ctx->buf_alloc.data, ctx->buf_alloc.size, tensor_alignment); #ifdef GGML_USE_METAL if (ctx->ctx_metal) { //ggml_allocr_set_parse_seq(ctx->alloc, ggml_metal_get_concur_list(ctx->ctx_metal), ggml_metal_if_optimized(ctx->ctx_metal)); } #endif #ifdef GGML_USE_CUBLAS ggml_cuda_set_scratch_size(alloc_size); LLAMA_LOG_INFO("%s: VRAM scratch buffer: %.2f MB\n", __func__, alloc_size / 1024.0 / 1024.0); // calculate total VRAM usage auto add_tensor = [](const ggml_tensor * t, size_t & size) { if (t->backend == GGML_BACKEND_GPU || t->backend == GGML_BACKEND_GPU_SPLIT) { size += ggml_nbytes(t); } }; size_t model_vram_size = 0; for (const auto & kv : model->tensors_by_name) { add_tensor(kv.second, model_vram_size); } size_t kv_vram_size = 0; add_tensor(ctx->kv_self.k, kv_vram_size); add_tensor(ctx->kv_self.v, kv_vram_size); size_t ctx_vram_size = alloc_size + kv_vram_size; size_t total_vram_size = model_vram_size + ctx_vram_size; LLAMA_LOG_INFO("%s: total VRAM used: %.2f MB (model: %.2f MB, context: %.2f MB)\n", __func__, total_vram_size / 1024.0 / 1024.0, model_vram_size / 1024.0 / 1024.0, ctx_vram_size / 1024.0 / 1024.0); #endif } #ifdef GGML_USE_METAL if (model->n_gpu_layers > 0) { // this allocates all Metal resources and memory buffers void * data_ptr = NULL; size_t data_size = 0; if (ctx->model.mapping) { data_ptr = ctx->model.mapping->addr; data_size = ctx->model.mapping->size; } else { data_ptr = ggml_get_mem_buffer(ctx->model.ctx); data_size = ggml_get_mem_size (ctx->model.ctx); } const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx); LLAMA_LOG_INFO("%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0); #define LLAMA_METAL_CHECK_BUF(result) \ if (!(result)) { \ LLAMA_LOG_ERROR("%s: failed to add buffer\n", __func__); \ llama_free(ctx); \ return NULL; \ } LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size, max_size)); LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->kv_self.buf.data, ctx->kv_self.buf.size, 0)); LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "alloc", ctx->buf_alloc.data, ctx->buf_alloc.size, 0)); #undef LLAMA_METAL_CHECK_BUF } #endif } #ifdef GGML_USE_MPI ctx->ctx_mpi = ggml_mpi_init(); if (ggml_mpi_rank(ctx->ctx_mpi) > 0) { // Enter a blocking eval loop with dummy input, letting rank=0 drive the process // TODO: needs fix after #3228 GGML_ASSERT(false && "not implemented"); //const std::vector tmp(ctx->model.hparams.n_ctx, llama_token_bos(ctx)); //while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {}; llama_backend_free(); exit(1); } #endif return ctx; } void llama_free(struct llama_context * ctx) { delete ctx; } const llama_model * llama_get_model(const struct llama_context * ctx) { return &ctx->model; } int llama_n_ctx(const struct llama_context * ctx) { return ctx->cparams.n_ctx; } enum llama_vocab_type llama_vocab_type(const struct llama_model * model) { return model->vocab.type; } int llama_n_vocab(const struct llama_model * model) { return model->vocab.id_to_token.size(); } int llama_n_ctx_train(const struct llama_model * model) { return model->hparams.n_ctx_train; } int llama_n_embd(const struct llama_model * model) { return model->hparams.n_embd; } float llama_rope_freq_scale_train(const struct llama_model * model) { return model->hparams.rope_freq_scale_train; } int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) { return snprintf(buf, buf_size, "%s %s %s", llama_model_arch_name(model->arch).c_str(), llama_model_type_name(model->type), llama_model_ftype_name(model->ftype).c_str()); } uint64_t llama_model_size(const struct llama_model * model) { uint64_t size = 0; for (const auto & it : model->tensors_by_name) { size += ggml_nbytes(it.second); } return size; } uint64_t llama_model_n_params(const struct llama_model * model) { uint64_t nparams = 0; for (const auto & it : model->tensors_by_name) { nparams += ggml_nelements(it.second); } return nparams; } struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) { return ggml_get_tensor(model->ctx, name); } int llama_model_quantize( const char * fname_inp, const char * fname_out, const llama_model_quantize_params * params) { try { llama_model_quantize_internal(fname_inp, fname_out, params); return 0; } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what()); return 1; } } int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, float scale, const char * path_base_model, int n_threads) { try { return llama_apply_lora_from_file_internal(ctx->model, path_lora, scale, path_base_model, n_threads); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what()); return 1; } } int llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int n_threads) { try { return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what()); return 1; } } int llama_get_kv_cache_token_count(const struct llama_context * ctx) { return ctx->kv_self.head; } void llama_kv_cache_tokens_rm(struct llama_context * ctx, int32_t c0, int32_t c1) { llama_kv_cache_tokens_rm(ctx->kv_self, c0, c1); } void llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) { llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1); } void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) { if (seq_id_src == seq_id_dst) { return; } llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1); } void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) { llama_kv_cache_seq_keep(ctx->kv_self, seq_id); } void llama_kv_cache_seq_shift(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) { llama_kv_cache_seq_shift(ctx->kv_self, seq_id, p0, p1, delta); } // Returns the *maximum* size of the state size_t llama_get_state_size(const struct llama_context * ctx) { // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state. // for reference, std::mt19937(1337) serializes to 6701 bytes. const size_t s_rng_size = sizeof(size_t); const size_t s_rng = LLAMA_MAX_RNG_STATE; const size_t s_logits_capacity = sizeof(size_t); const size_t s_logits_size = sizeof(size_t); const size_t s_logits = ctx->logits.capacity() * sizeof(float); const size_t s_embedding_size = sizeof(size_t); const size_t s_embedding = ctx->embedding.size() * sizeof(float); const size_t s_kv_size = sizeof(size_t); const size_t s_kv_ntok = sizeof(int); const size_t s_kv = ctx->kv_self.buf.size; const size_t s_total = ( + s_rng_size + s_rng + s_logits_capacity + s_logits_size + s_logits + s_embedding_size + s_embedding + s_kv_size + s_kv_ntok + s_kv ); return s_total; } // llama_context_data struct llama_data_context { virtual void write(const void * src, size_t size) = 0; virtual size_t get_size_written() = 0; virtual ~llama_data_context() = default; }; struct llama_data_buffer_context : llama_data_context { uint8_t * ptr; size_t size_written = 0; llama_data_buffer_context(uint8_t * p) : ptr(p) {} void write(const void * src, size_t size) override { memcpy(ptr, src, size); ptr += size; size_written += size; } size_t get_size_written() override { return size_written; } }; struct llama_data_file_context : llama_data_context { llama_file * file; size_t size_written = 0; llama_data_file_context(llama_file * f) : file(f) {} void write(const void * src, size_t size) override { file->write_raw(src, size); size_written += size; } size_t get_size_written() override { return size_written; } }; /** copy state data into either a buffer or file depending on the passed in context * * file context: * llama_file file("/path", "wb"); * llama_data_file_context data_ctx(&file); * llama_copy_state_data(ctx, &data_ctx); * * buffer context: * std::vector buf(max_size, 0); * llama_data_buffer_context data_ctx(&buf.data()); * llama_copy_state_data(ctx, &data_ctx); * */ static void llama_copy_state_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) { // copy rng { std::stringstream rng_ss; rng_ss << ctx->rng; const size_t rng_size = rng_ss.str().size(); char rng_buf[LLAMA_MAX_RNG_STATE]; memset(&rng_buf[0], 0, LLAMA_MAX_RNG_STATE); memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size()); data_ctx->write(&rng_size, sizeof(rng_size)); data_ctx->write(&rng_buf[0], LLAMA_MAX_RNG_STATE); } // copy logits { const size_t logits_cap = ctx->logits.capacity(); const size_t logits_size = ctx->logits.size(); data_ctx->write(&logits_cap, sizeof(logits_cap)); data_ctx->write(&logits_size, sizeof(logits_size)); if (logits_size) { data_ctx->write(ctx->logits.data(), logits_size * sizeof(float)); } // If there is a gap between the size and the capacity, write padding size_t padding_size = (logits_cap - logits_size) * sizeof(float); if (padding_size > 0) { std::vector padding(padding_size, 0); // Create a buffer filled with zeros data_ctx->write(padding.data(), padding_size); } } // copy embeddings { const size_t embedding_size = ctx->embedding.size(); data_ctx->write(&embedding_size, sizeof(embedding_size)); if (embedding_size) { data_ctx->write(ctx->embedding.data(), embedding_size * sizeof(float)); } } // copy kv cache { const auto & kv_self = ctx->kv_self; const auto & hparams = ctx->model.hparams; const auto & cparams = ctx->cparams; const auto n_layer = hparams.n_layer; const auto n_embd = hparams.n_embd_gqa(); const auto n_ctx = cparams.n_ctx; const size_t kv_buf_size = kv_self.buf.size; const uint32_t kv_head = kv_self.head; const uint32_t kv_size = kv_self.size; data_ctx->write(&kv_buf_size, sizeof(kv_buf_size)); data_ctx->write(&kv_head, sizeof(kv_head)); data_ctx->write(&kv_size, sizeof(kv_size)); if (kv_buf_size) { const size_t elt_size = ggml_element_size(kv_self.k); ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true }); ggml_cgraph gf{}; ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_head, n_layer); std::vector kout3d_data(ggml_nbytes(kout3d), 0); kout3d->data = kout3d_data.data(); ggml_tensor * vout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_head, n_embd, n_layer); std::vector vout3d_data(ggml_nbytes(vout3d), 0); vout3d->data = vout3d_data.data(); ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k, n_embd, kv_head, n_layer, elt_size*n_embd, elt_size*n_embd*n_ctx, 0); ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v, kv_head, n_embd, n_layer, elt_size*n_ctx, elt_size*n_ctx*n_embd, 0); ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, k3d, kout3d)); ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, v3d, vout3d)); ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1); ggml_free(cpy_ctx); // our data is now in the kout3d_data and vout3d_data buffers // write them to file data_ctx->write(kout3d_data.data(), kout3d_data.size()); data_ctx->write(vout3d_data.data(), vout3d_data.size()); } for (uint32_t i = 0; i < kv_size; ++i) { const auto & cell = kv_self.cells[i]; const llama_pos pos = cell.pos; const size_t seq_id_size = cell.seq_id.size(); data_ctx->write(&pos, sizeof(pos)); data_ctx->write(&seq_id_size, sizeof(seq_id_size)); for (auto seq_id : cell.seq_id) { data_ctx->write(&seq_id, sizeof(seq_id)); } } } } size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) { llama_data_buffer_context data_ctx(dst); llama_copy_state_data_internal(ctx, &data_ctx); return data_ctx.get_size_written(); } // Sets the state reading from the specified source address size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) { uint8_t * inp = src; // set rng { size_t rng_size; char rng_buf[LLAMA_MAX_RNG_STATE]; memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size); memcpy(&rng_buf[0], inp, LLAMA_MAX_RNG_STATE); inp += LLAMA_MAX_RNG_STATE; std::stringstream rng_ss; rng_ss.str(std::string(&rng_buf[0], rng_size)); rng_ss >> ctx->rng; GGML_ASSERT(!rng_ss.fail()); } // set logits { size_t logits_cap; size_t logits_size; memcpy(&logits_cap, inp, sizeof(logits_cap)); inp += sizeof(logits_cap); memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size); GGML_ASSERT(ctx->logits.capacity() == logits_cap); if (logits_size) { ctx->logits.resize(logits_size); memcpy(ctx->logits.data(), inp, logits_size * sizeof(float)); } inp += logits_cap * sizeof(float); } // set embeddings { size_t embedding_size; memcpy(&embedding_size, inp, sizeof(embedding_size)); inp += sizeof(embedding_size); GGML_ASSERT(ctx->embedding.capacity() == embedding_size); if (embedding_size) { memcpy(ctx->embedding.data(), inp, embedding_size * sizeof(float)); inp += embedding_size * sizeof(float); } } // set kv cache { const auto & kv_self = ctx->kv_self; const auto & hparams = ctx->model.hparams; const auto & cparams = ctx->cparams; const int n_layer = hparams.n_layer; const int n_embd = hparams.n_embd_gqa(); const int n_ctx = cparams.n_ctx; size_t kv_buf_size; uint32_t kv_head; uint32_t kv_size; memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size); memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head); memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size); if (kv_buf_size) { GGML_ASSERT(kv_self.buf.size == kv_buf_size); const size_t elt_size = ggml_element_size(kv_self.k); ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true }); ggml_cgraph gf{}; ggml_tensor * kin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_head, n_layer); kin3d->data = (void *) inp; inp += ggml_nbytes(kin3d); ggml_tensor * vin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_head, n_embd, n_layer); vin3d->data = (void *) inp; inp += ggml_nbytes(vin3d); ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k, n_embd, kv_head, n_layer, elt_size*n_embd, elt_size*n_embd*n_ctx, 0); ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v, kv_head, n_embd, n_layer, elt_size*n_ctx, elt_size*n_ctx*n_embd, 0); ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, kin3d, k3d)); ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, vin3d, v3d)); ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1); ggml_free(cpy_ctx); } ctx->kv_self.head = kv_head; ctx->kv_self.size = kv_size; ctx->kv_self.cells.resize(kv_size); for (uint32_t i = 0; i < kv_size; ++i) { llama_pos pos; size_t seq_id_size; memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos); memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size); ctx->kv_self.cells[i].pos = pos; llama_seq_id seq_id; for (size_t j = 0; j < seq_id_size; ++j) { memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id); ctx->kv_self.cells[i].seq_id.insert(seq_id); } } } const size_t nread = inp - src; const size_t max_size = llama_get_state_size(ctx); GGML_ASSERT(nread <= max_size); return nread; } static bool llama_load_session_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { llama_file file(path_session, "rb"); // sanity checks { const uint32_t magic = file.read_u32(); const uint32_t version = file.read_u32(); if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) { LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version); return false; } llama_hparams session_hparams; file.read_raw(&session_hparams, sizeof(llama_hparams)); if (session_hparams != ctx->model.hparams) { LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__); return false; } } // load the prompt { const uint32_t n_token_count = file.read_u32(); if (n_token_count > n_token_capacity) { LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity); return false; } file.read_raw(tokens_out, sizeof(llama_token) * n_token_count); *n_token_count_out = n_token_count; } // restore the context state { const size_t n_state_size_cur = file.size - file.tell(); const size_t n_state_size_max = llama_get_state_size(ctx); if (n_state_size_cur > n_state_size_max) { LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur); return false; } std::vector state_data(n_state_size_max); file.read_raw(state_data.data(), n_state_size_cur); llama_set_state_data(ctx, state_data.data()); } return true; } bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { try { return llama_load_session_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out); } catch (const std::exception & err) { LLAMA_LOG_ERROR("error loading session file: %s\n", err.what()); return false; } } bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) { llama_file file(path_session, "wb"); file.write_u32(LLAMA_SESSION_MAGIC); file.write_u32(LLAMA_SESSION_VERSION); file.write_raw(&ctx->model.hparams, sizeof(llama_hparams)); // save the prompt file.write_u32((uint32_t) n_token_count); file.write_raw(tokens, sizeof(llama_token) * n_token_count); // save the context state using stream saving llama_data_file_context data_ctx(&file); llama_copy_state_data_internal(ctx, &data_ctx); return true; } int llama_eval( struct llama_context * ctx, llama_token * tokens, int32_t n_tokens, int n_past) { llama_kv_cache_tokens_rm(ctx->kv_self, n_past, -1); const int ret = llama_decode_internal(*ctx, llama_batch_get_one(tokens, n_tokens, n_past, 0)); if (ret < 0) { LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret); } return ret; } int llama_eval_embd( struct llama_context * ctx, float * embd, int32_t n_tokens, int n_past) { llama_kv_cache_tokens_rm(ctx->kv_self, n_past, -1); llama_batch batch = { n_tokens, nullptr, embd, nullptr, nullptr, nullptr, nullptr, n_past, 1, 0, }; const int ret = llama_decode_internal(*ctx, batch); if (ret < 0) { LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret); } return ret; } void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) { ctx->cparams.n_threads = n_threads; ctx->cparams.n_threads_batch = n_threads_batch; } struct llama_batch llama_batch_get_one( llama_token * tokens, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) { return { /*n_tokens =*/ n_tokens, /*tokens =*/ tokens, /*embd =*/ nullptr, /*pos =*/ nullptr, /*n_seq_id =*/ nullptr, /*seq_id =*/ nullptr, /*logits =*/ nullptr, /*all_pos_0 =*/ pos_0, /*all_pos_1 =*/ 1, /*all_seq_id =*/ seq_id, }; } struct llama_batch llama_batch_init(int32_t n_tokens, int32_t embd, int32_t n_seq_max) { llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, }; if (embd) { batch.embd = (float *) malloc(sizeof(float) * n_tokens * embd); } else { batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens); } batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens); batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens); batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * n_tokens); for (int i = 0; i < n_tokens; ++i) { batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max); } batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens); return batch; } void llama_batch_free(struct llama_batch batch) { if (batch.token) free(batch.token); if (batch.embd) free(batch.embd); if (batch.pos) free(batch.pos); if (batch.n_seq_id) free(batch.n_seq_id); if (batch.seq_id) { for (int i = 0; i < batch.n_tokens; ++i) { free(batch.seq_id[i]); } free(batch.seq_id); } if (batch.logits) free(batch.logits); } int llama_decode( struct llama_context * ctx, struct llama_batch batch) { const int ret = llama_decode_internal(*ctx, batch); if (ret < 0) { LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret); } return ret; } float * llama_get_logits(struct llama_context * ctx) { return ctx->logits.data(); } float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) { return ctx->logits.data() + i*ctx->model.hparams.n_vocab; } float * llama_get_embeddings(struct llama_context * ctx) { return ctx->embedding.data(); } const char * llama_token_get_text(const struct llama_context * ctx, llama_token token) { return ctx->model.vocab.id_to_token[token].text.c_str(); } float llama_token_get_score(const struct llama_context * ctx, llama_token token) { return ctx->model.vocab.id_to_token[token].score; } llama_token_type llama_token_get_type(const struct llama_context * ctx, llama_token token) { return ctx->model.vocab.id_to_token[token].type; } llama_token llama_token_bos(const struct llama_context * ctx) { return ctx->model.vocab.special_bos_id; } llama_token llama_token_eos(const struct llama_context * ctx) { return ctx->model.vocab.special_eos_id; } llama_token llama_token_nl(const struct llama_context * ctx) { return ctx->model.vocab.linefeed_id; } llama_token llama_token_prefix(const struct llama_context * ctx) { return ctx->model.vocab.special_prefix_id; } llama_token llama_token_middle(const struct llama_context * ctx) { return ctx->model.vocab.special_middle_id; } llama_token llama_token_suffix(const struct llama_context * ctx) { return ctx->model.vocab.special_suffix_id; } llama_token llama_token_eot(const struct llama_context * ctx) { return ctx->model.vocab.special_eot_id; } int llama_tokenize( const struct llama_model * model, const char * text, int text_len, llama_token * tokens, int n_max_tokens, bool add_bos, bool special) { auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_bos, special); if (n_max_tokens < (int) res.size()) { // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__); return -((int) res.size()); } for (size_t i = 0; i < res.size(); i++) { tokens[i] = res[i]; } return res.size(); } static std::string llama_decode_text(const std::string & text) { std::string decoded_text; auto unicode_sequences = codepoints_from_utf8(text); for (auto& unicode_sequence : unicode_sequences) { decoded_text += unicode_to_bytes_bpe(codepoint_to_utf8(unicode_sequence)); } return decoded_text; } // does not write null-terminator to buf int llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int length) { if (0 <= token && token < llama_n_vocab(model)) { switch (llama_vocab_get_type(model->vocab)) { case LLAMA_VOCAB_TYPE_SPM: { if (llama_is_normal_token(model->vocab, token)) { std::string result = model->vocab.id_to_token[token].text; llama_unescape_whitespace(result); if (length < (int) result.length()) { return -result.length(); } memcpy(buf, result.c_str(), result.length()); return result.length(); } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT if (length < 3) { return -3; } memcpy(buf, "\xe2\x96\x85", 3); return 3; } else if (llama_is_control_token(model->vocab, token)) { ; } else if (llama_is_byte_token(model->vocab, token)) { if (length < 1) { return -1; } buf[0] = llama_token_to_byte(model->vocab, token); return 1; } else { // TODO: for now we accept all unsupported token types, // suppressing them like CONTROL tokens. // GGML_ASSERT(false); } break; } case LLAMA_VOCAB_TYPE_BPE: { if (llama_is_normal_token(model->vocab, token)) { std::string result = model->vocab.id_to_token[token].text; result = llama_decode_text(result); if (length < (int) result.length()) { return -result.length(); } memcpy(buf, result.c_str(), result.length()); return result.length(); } else if (llama_is_control_token(model->vocab, token)) { ; } else { // TODO: for now we accept all unsupported token types, // suppressing them like CONTROL tokens. // GGML_ASSERT(false); } break; } default: GGML_ASSERT(false); } } return 0; } struct llama_timings llama_get_timings(struct llama_context * ctx) { struct llama_timings result = { /*.t_start_ms =*/ 1e-3 * ctx->t_start_us, /*.t_end_ms =*/ 1.00 * ggml_time_ms(), /*.t_load_ms =*/ 1e-3 * ctx->t_load_us, /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us, /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us, /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us, /*.n_sample =*/ std::max(1, ctx->n_sample), /*.n_p_eval =*/ std::max(1, ctx->n_p_eval), /*.n_eval =*/ std::max(1, ctx->n_eval), }; return result; } void llama_print_timings(struct llama_context * ctx) { const llama_timings timings = llama_get_timings(ctx); LLAMA_LOG_INFO("\n"); LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms); LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n", __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample); LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n", __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval); LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n", __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval); LLAMA_LOG_INFO("%s: total time = %10.2f ms\n", __func__, (timings.t_end_ms - timings.t_start_ms)); } void llama_reset_timings(struct llama_context * ctx) { ctx->t_start_us = ggml_time_us(); ctx->t_sample_us = ctx->n_sample = 0; ctx->t_eval_us = ctx->n_eval = 0; ctx->t_p_eval_us = ctx->n_p_eval = 0; } const char * llama_print_system_info(void) { static std::string s; s = ""; s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | "; s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | "; s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | "; s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | "; s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | "; s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | "; s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | "; s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | "; s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | "; s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | "; s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | "; s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | "; s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | "; s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | "; s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | "; return s.c_str(); } void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) { fprintf(stream, "\n"); fprintf(stream, "###########\n"); fprintf(stream, "# Timings #\n"); fprintf(stream, "###########\n"); fprintf(stream, "\n"); fprintf(stream, "mst_eval: %.2f # ms / token during generation\n", 1.0e-3 * ctx->t_eval_us / ctx->n_eval); fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n", 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval); fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n", 1.0e-3 * ctx->t_sample_us / ctx->n_sample); fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval); fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval); fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample); fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us); fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us); fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us); fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us); fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n", 1.0e6 * ctx->n_eval / ctx->t_eval_us); fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n", 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us); fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n", 1.0e6 * ctx->n_sample / ctx->t_sample_us); } // For internal test use const std::vector> & llama_internal_get_tensor_map( struct llama_context * ctx ) { return ctx->model.tensors_by_name; } void llama_log_set(ggml_log_callback log_callback, void * user_data) { g_state.log_callback = log_callback ? log_callback : llama_log_callback_default; g_state.log_callback_user_data = user_data; } static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) { va_list args_copy; va_copy(args_copy, args); char buffer[128]; int len = vsnprintf(buffer, 128, format, args); if (len < 128) { g_state.log_callback(level, buffer, g_state.log_callback_user_data); } else { char* buffer2 = new char[len+1]; vsnprintf(buffer2, len+1, format, args_copy); buffer2[len] = 0; g_state.log_callback(level, buffer2, g_state.log_callback_user_data); delete[] buffer2; } va_end(args_copy); } static void llama_log_internal(ggml_log_level level, const char * format, ...) { va_list args; va_start(args, format); llama_log_internal_v(level, format, args); va_end(args); } static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) { (void) level; (void) user_data; fputs(text, stderr); fflush(stderr); }