#include "arg.h" #include "base64.hpp" #include "log.h" #include "common.h" #include "sampling.h" #include "clip.h" #include "llava.h" #include "llama.h" #include "ggml.h" #include #include #include #include static bool eval_tokens(struct llama_context * ctx_llama, std::vector tokens, int n_batch, int * n_past) { int N = (int) tokens.size(); for (int i = 0; i < N; i += n_batch) { int n_eval = (int) tokens.size() - i; if (n_eval > n_batch) { n_eval = n_batch; } if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) { LOG_ERR("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past); return false; } *n_past += n_eval; } return true; } static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) { std::vector tokens; tokens.push_back(id); return eval_tokens(ctx_llama, tokens, 1, n_past); } static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){ std::string str2 = str; std::vector embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos, true); eval_tokens(ctx_llama, embd_inp, n_batch, n_past); return true; } static const char * sample(struct gpt_sampler * smpl, struct llama_context * ctx_llama, int * n_past) { const llama_token id = gpt_sampler_sample(smpl, ctx_llama, -1); gpt_sampler_accept(smpl, id, true); static std::string ret; if (llama_token_is_eog(llama_get_model(ctx_llama), id)) { ret = ""; } else { ret = llama_token_to_piece(ctx_llama, id); } eval_id(ctx_llama, id, n_past); return ret.c_str(); } static const char* IMG_BASE64_TAG_BEGIN = ""; static void find_image_tag_in_prompt(const std::string& prompt, size_t& begin_out, size_t& end_out) { begin_out = prompt.find(IMG_BASE64_TAG_BEGIN); end_out = prompt.find(IMG_BASE64_TAG_END, (begin_out == std::string::npos) ? 0UL : begin_out); } static bool prompt_contains_image(const std::string& prompt) { size_t begin, end; find_image_tag_in_prompt(prompt, begin, end); return (begin != std::string::npos); } // replaces the base64 image tag in the prompt with `replacement` static llava_image_embed * llava_image_embed_make_with_prompt_base64(struct clip_ctx * ctx_clip, int n_threads, const std::string& prompt) { size_t img_base64_str_start, img_base64_str_end; find_image_tag_in_prompt(prompt, img_base64_str_start, img_base64_str_end); if (img_base64_str_start == std::string::npos || img_base64_str_end == std::string::npos) { LOG_ERR("%s: invalid base64 image tag. must be %s%s\n", __func__, IMG_BASE64_TAG_BEGIN, IMG_BASE64_TAG_END); return NULL; } auto base64_bytes_start = img_base64_str_start + strlen(IMG_BASE64_TAG_BEGIN); auto base64_bytes_count = img_base64_str_end - base64_bytes_start; auto base64_str = prompt.substr(base64_bytes_start, base64_bytes_count ); auto required_bytes = base64::required_encode_size(base64_str.size()); auto img_bytes = std::vector(required_bytes); base64::decode(base64_str.begin(), base64_str.end(), img_bytes.begin()); auto embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, img_bytes.data(), img_bytes.size()); if (!embed) { LOG_ERR("%s: could not load image from base64 string.\n", __func__); return NULL; } return embed; } static std::string remove_image_from_prompt(const std::string& prompt, const char * replacement = "") { size_t begin, end; find_image_tag_in_prompt(prompt, begin, end); if (begin == std::string::npos || end == std::string::npos) { return prompt; } auto pre = prompt.substr(0, begin); auto post = prompt.substr(end + strlen(IMG_BASE64_TAG_END)); return pre + replacement + post; } struct llava_context { struct clip_ctx * ctx_clip = NULL; struct llama_context * ctx_llama = NULL; struct llama_model * model = NULL; }; static void print_usage(int, char ** argv) { LOG("\n example usage:\n"); LOG("\n %s -m --mmproj --image --image [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]); LOG("\n note: a lower temperature value like 0.1 is recommended for better quality.\n"); } static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_params * params, const std::string & fname) { // load and preprocess the image llava_image_embed * embed = NULL; auto prompt = params->prompt; if (prompt_contains_image(prompt)) { if (!params->image.empty()) { LOG_INF("using base64 encoded image instead of command line image path\n"); } embed = llava_image_embed_make_with_prompt_base64(ctx_llava->ctx_clip, params->cpuparams.n_threads, prompt); if (!embed) { LOG_ERR("%s: can't load image from prompt\n", __func__); return NULL; } params->prompt = remove_image_from_prompt(prompt); } else { embed = llava_image_embed_make_with_filename(ctx_llava->ctx_clip, params->cpuparams.n_threads, fname.c_str()); if (!embed) { fprintf(stderr, "%s: is %s really an image file?\n", __func__, fname.c_str()); return NULL; } } return embed; } static void process_prompt(struct llava_context * ctx_llava, struct llava_image_embed * image_embed, gpt_params * params, const std::string & prompt) { int n_past = 0; const int max_tgt_len = params->n_predict < 0 ? 256 : params->n_predict; std::string system_prompt, user_prompt; size_t image_pos = prompt.find(""); if (image_pos != std::string::npos) { // new templating mode: Provide the full prompt including system message and use as a placeholder for the image system_prompt = prompt.substr(0, image_pos); user_prompt = prompt.substr(image_pos + std::string("").length()); LOG_INF("system_prompt: %s\n", system_prompt.c_str()); if (params->verbose_prompt) { auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, system_prompt, true, true); for (int i = 0; i < (int) tmp.size(); i++) { LOG_INF("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str()); } } LOG_INF("user_prompt: %s\n", user_prompt.c_str()); if (params->verbose_prompt) { auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, user_prompt, true, true); for (int i = 0; i < (int) tmp.size(); i++) { LOG_INF("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str()); } } } else { // llava-1.5 native mode system_prompt = "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER:"; user_prompt = prompt + "\nASSISTANT:"; if (params->verbose_prompt) { auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, user_prompt, true, true); for (int i = 0; i < (int) tmp.size(); i++) { LOG_INF("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str()); } } } eval_string(ctx_llava->ctx_llama, system_prompt.c_str(), params->n_batch, &n_past, true); llava_eval_image_embed(ctx_llava->ctx_llama, image_embed, params->n_batch, &n_past); eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, false); // generate the response LOG("\n"); struct gpt_sampler * smpl = gpt_sampler_init(ctx_llava->model, params->sparams); if (!smpl) { LOG_ERR("%s: failed to initialize sampling subsystem\n", __func__); exit(1); } std::string response = ""; for (int i = 0; i < max_tgt_len; i++) { const char * tmp = sample(smpl, ctx_llava->ctx_llama, &n_past); response += tmp; if (strcmp(tmp, "") == 0) break; if (strstr(tmp, "###")) break; // Yi-VL behavior LOG("%s", tmp); if (strstr(response.c_str(), "<|im_end|>")) break; // Yi-34B llava-1.6 - for some reason those decode not as the correct token (tokenizer works) if (strstr(response.c_str(), "<|im_start|>")) break; // Yi-34B llava-1.6 if (strstr(response.c_str(), "USER:")) break; // mistral llava-1.6 fflush(stdout); } gpt_sampler_free(smpl); LOG("\n"); } static struct llama_model * llava_init(gpt_params * params) { llama_backend_init(); llama_numa_init(params->numa); llama_model_params model_params = llama_model_params_from_gpt_params(*params); llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params); if (model == NULL) { LOG_ERR("%s: unable to load model\n" , __func__); return NULL; } return model; } static struct llava_context * llava_init_context(gpt_params * params, llama_model * model) { const char * clip_path = params->mmproj.c_str(); auto prompt = params->prompt; if (prompt.empty()) { prompt = "describe the image in detail."; } auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1); llama_context_params ctx_params = llama_context_params_from_gpt_params(*params); ctx_params.n_ctx = params->n_ctx < 2048 ? 2048 : params->n_ctx; // we need a longer context size to process image embeddings llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params); if (ctx_llama == NULL) { LOG_ERR("%s: failed to create the llama_context\n" , __func__); return NULL; } auto * ctx_llava = (struct llava_context *)malloc(sizeof(llava_context)); ctx_llava->ctx_llama = ctx_llama; ctx_llava->ctx_clip = ctx_clip; ctx_llava->model = model; return ctx_llava; } static void llava_free(struct llava_context * ctx_llava) { if (ctx_llava->ctx_clip) { clip_free(ctx_llava->ctx_clip); ctx_llava->ctx_clip = NULL; } llama_free(ctx_llava->ctx_llama); llama_free_model(ctx_llava->model); llama_backend_free(); } int main(int argc, char ** argv) { ggml_time_init(); gpt_params params; if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, print_usage)) { return 1; } gpt_init(); if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) { print_usage(argc, argv); return 1; } auto * model = llava_init(¶ms); if (model == NULL) { fprintf(stderr, "%s: error: failed to init llava model\n", __func__); return 1; } if (prompt_contains_image(params.prompt)) { auto * ctx_llava = llava_init_context(¶ms, model); auto * image_embed = load_image(ctx_llava, ¶ms, ""); // process the prompt process_prompt(ctx_llava, image_embed, ¶ms, params.prompt); llama_perf_context_print(ctx_llava->ctx_llama); llava_image_embed_free(image_embed); ctx_llava->model = NULL; llava_free(ctx_llava); } else { for (auto & image : params.image) { auto * ctx_llava = llava_init_context(¶ms, model); auto * image_embed = load_image(ctx_llava, ¶ms, image); if (!image_embed) { LOG_ERR("%s: failed to load image %s. Terminating\n\n", __func__, image.c_str()); return 1; } // process the prompt process_prompt(ctx_llava, image_embed, ¶ms, params.prompt); llama_perf_context_print(ctx_llava->ctx_llama); llava_image_embed_free(image_embed); ctx_llava->model = NULL; llava_free(ctx_llava); } } llama_free_model(model); return 0; }