#include "common.h" #include "llama.h" #include "grammar-parser.h" #include "utils.hpp" #include "oai.hpp" #include "../llava/clip.h" #include "../llava/llava.h" #include "stb_image.h" #ifndef NDEBUG // crash the server in debug mode, otherwise send an http 500 error #define CPPHTTPLIB_NO_EXCEPTIONS 1 #endif // increase max payload length to allow use of larger context size #define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576 #include "httplib.h" #include "json.hpp" // auto generated files (update with ./deps.sh) #include "index.html.hpp" #include "index.js.hpp" #include "completion.js.hpp" #include "json-schema-to-grammar.mjs.hpp" #include #include #include #include #include #include using json = nlohmann::json; struct server_params { std::string hostname = "127.0.0.1"; std::vector api_keys; std::string public_path = "examples/server/public"; std::string chat_template = ""; int32_t port = 8080; int32_t read_timeout = 600; int32_t write_timeout = 600; bool slots_endpoint = true; bool metrics_endpoint = false; int n_threads_http = -1; }; bool server_verbose = false; bool server_log_json = true; enum stop_type { STOP_FULL, STOP_PARTIAL, }; // TODO: can become bool if we can't find use of more states enum slot_state { IDLE, PROCESSING, }; enum slot_command { NONE, LOAD_PROMPT, RELEASE, }; struct slot_params { bool stream = true; bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt uint32_t seed = -1; // RNG seed int32_t n_keep = 0; // number of tokens to keep from initial prompt int32_t n_predict = -1; // new tokens to predict std::vector antiprompt; json input_prefix; json input_suffix; }; struct slot_image { int32_t id; bool request_encode_image = false; float * image_embedding = nullptr; int32_t image_tokens = 0; clip_image_u8 * img_data; std::string prefix_prompt; // before of this image }; struct server_slot { int id; int task_id = -1; struct slot_params params; slot_state state = IDLE; slot_command command = NONE; // used to determine the slot that has been used the longest int64_t t_last_used = -1; // generation props int32_t n_ctx = 0; // context size per slot int32_t n_past = 0; int32_t n_decoded = 0; int32_t n_remaining = -1; int32_t i_batch = -1; int32_t n_predict = -1; int32_t n_prompt_tokens = 0; int32_t n_prompt_tokens_processed = 0; json prompt; std::string generated_text; llama_token sampled; std::vector cache_tokens; std::vector generated_token_probs; bool infill = false; bool embedding = false; bool has_next_token = true; bool truncated = false; bool stopped_eos = false; bool stopped_word = false; bool stopped_limit = false; bool oaicompat = false; std::string oaicompat_model; std::string stopping_word; // sampling struct llama_sampling_params sparams; llama_sampling_context *ctx_sampling = nullptr; int32_t ga_i = 0; // group-attention state int32_t ga_n = 1; // group-attention factor int32_t ga_w = 512; // group-attention width int32_t n_past_se = 0; // self-extend // multimodal std::vector images; // stats size_t n_sent_text = 0; // number of sent text character size_t n_sent_token_probs = 0; int64_t t_start_process_prompt; int64_t t_start_genereration; double t_prompt_processing; // ms double t_token_generation; // ms // multitasks int multitask_id = -1; void reset() { n_prompt_tokens = 0; generated_text = ""; truncated = false; stopped_eos = false; stopped_word = false; stopped_limit = false; stopping_word = ""; n_past = 0; n_sent_text = 0; n_sent_token_probs = 0; infill = false; ga_i = 0; n_past_se = 0; generated_token_probs.clear(); for (slot_image & img : images) { free(img.image_embedding); if (img.img_data) { clip_image_u8_free(img.img_data); } img.prefix_prompt = ""; } images.clear(); } bool has_budget(gpt_params &global_params) { if (params.n_predict == -1 && global_params.n_predict == -1) { return true; // limitless } n_remaining = -1; if (params.n_predict != -1) { n_remaining = params.n_predict - n_decoded; } else if (global_params.n_predict != -1) { n_remaining = global_params.n_predict - n_decoded; } return n_remaining > 0; // no budget } bool available() const { return state == IDLE && command == NONE; } bool is_processing() const { return (state == IDLE && command == LOAD_PROMPT) || state == PROCESSING; } void add_token_string(const completion_token_output &token) { if (command == RELEASE) { return; } cache_tokens.push_back(token.tok); generated_token_probs.push_back(token); } void release() { if (state == PROCESSING) { t_token_generation = (ggml_time_us() - t_start_genereration) / 1e3; command = RELEASE; } } json get_formated_timings() { return json { {"prompt_n", n_prompt_tokens_processed}, {"prompt_ms", t_prompt_processing}, {"prompt_per_token_ms", t_prompt_processing / n_prompt_tokens_processed}, {"prompt_per_second", 1e3 / t_prompt_processing * n_prompt_tokens_processed}, {"predicted_n", n_decoded}, {"predicted_ms", t_token_generation}, {"predicted_per_token_ms", t_token_generation / n_decoded}, {"predicted_per_second", 1e3 / t_token_generation * n_decoded}, }; } void print_timings() const { char buffer[512]; double t_token = t_prompt_processing / n_prompt_tokens_processed; double n_tokens_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed; sprintf(buffer, "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)", t_prompt_processing, n_prompt_tokens_processed, t_token, n_tokens_second); LOG_INFO(buffer, { {"slot_id", id}, {"task_id", task_id}, {"t_prompt_processing", t_prompt_processing}, {"n_prompt_tokens_processed", n_prompt_tokens_processed}, {"t_token", t_token}, {"n_tokens_second", n_tokens_second}, }); t_token = t_token_generation / n_decoded; n_tokens_second = 1e3 / t_token_generation * n_decoded; sprintf(buffer, "generation eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)", t_token_generation, n_decoded, t_token, n_tokens_second); LOG_INFO(buffer, { {"slot_id", id}, {"task_id", task_id}, {"t_token_generation", t_token_generation}, {"n_decoded", n_decoded}, {"t_token", t_token}, {"n_tokens_second", n_tokens_second}, }); sprintf(buffer, " total time = %10.2f ms", t_prompt_processing + t_token_generation); LOG_INFO(buffer, { {"slot_id", id}, {"task_id", task_id}, {"t_prompt_processing", t_prompt_processing}, {"t_token_generation", t_token_generation}, {"t_total", t_prompt_processing + t_token_generation}, }); } }; struct server_metrics { uint64_t n_prompt_tokens_processed_total = 0; uint64_t n_tokens_predicted_total = 0; uint64_t n_prompt_tokens_processed = 0; uint64_t t_prompt_processing = 0; uint64_t n_tokens_predicted = 0; uint64_t t_tokens_generation = 0; void on_prompt_eval(const server_slot &slot) { n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed; n_prompt_tokens_processed += slot.n_prompt_tokens_processed; t_prompt_processing += slot.t_prompt_processing; } void on_prediction(const server_slot &slot) { n_tokens_predicted_total += slot.n_decoded; n_tokens_predicted += slot.n_decoded; t_tokens_generation += slot.t_token_generation; } void reset_bucket() { n_prompt_tokens_processed = 0; t_prompt_processing = 0; n_tokens_predicted = 0; t_tokens_generation = 0; } }; struct llama_server_context { llama_model *model = nullptr; llama_context *ctx = nullptr; clip_ctx *clp_ctx = nullptr; gpt_params params; llama_batch batch; bool multimodal = false; bool clean_kv_cache = true; bool all_slots_are_idle = false; bool add_bos_token = true; int32_t n_ctx; // total context for all clients / slots // system prompt bool system_need_update = false; std::string system_prompt; std::vector system_tokens; std::string name_user; // this should be the antiprompt std::string name_assistant; // slots / clients std::vector slots; json default_generation_settings_for_props; llama_server_queue queue_tasks; llama_server_response queue_results; server_metrics metrics; ~llama_server_context() { if (ctx) { llama_free(ctx); ctx = nullptr; } if (model) { llama_free_model(model); model = nullptr; } } bool load_model(const gpt_params ¶ms_) { params = params_; if (!params.mmproj.empty()) { multimodal = true; LOG_INFO("Multi Modal Mode Enabled", {}); clp_ctx = clip_model_load(params.mmproj.c_str(), /*verbosity=*/ 1); if(clp_ctx == nullptr) { LOG_ERROR("unable to load clip model", {{"model", params.mmproj}}); return false; } if (params.n_ctx < 2048) { // request larger context for the image embedding params.n_ctx = 2048; } } std::tie(model, ctx) = llama_init_from_gpt_params(params); if (model == nullptr) { LOG_ERROR("unable to load model", {{"model", params.model}}); return false; } if (multimodal) { const int n_embd_clip = clip_n_mmproj_embd(clp_ctx); const int n_embd_llm = llama_n_embd(model); if (n_embd_clip != n_embd_llm) { LOG_TEE("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_embd_clip, n_embd_llm); llama_free(ctx); llama_free_model(model); return false; } } n_ctx = llama_n_ctx(ctx); add_bos_token = llama_should_add_bos_token(model); return true; } void validate_model_chat_template(server_params & sparams) { llama_chat_message chat[] = {{"user", "test"}}; std::vector buf(1); int res = llama_chat_apply_template(model, nullptr, chat, 1, true, buf.data(), buf.size()); if (res < 0) { LOG_ERROR("The chat template comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", {}); sparams.chat_template = "chatml"; } } void initialize() { // create slots all_slots_are_idle = true; const int32_t n_ctx_slot = n_ctx / params.n_parallel; LOG_INFO("initializing slots", {{"n_slots", params.n_parallel}}); for (int i = 0; i < params.n_parallel; i++) { server_slot slot; slot.id = i; slot.n_ctx = n_ctx_slot; slot.n_predict = params.n_predict; LOG_INFO("new slot", { {"slot_id", slot.id}, {"n_ctx_slot", slot.n_ctx} }); const int ga_n = params.grp_attn_n; const int ga_w = params.grp_attn_w; if (ga_n != 1) { GGML_ASSERT(ga_n > 0 && "ga_n must be positive"); // NOLINT GGML_ASSERT(ga_w % ga_n == 0 && "ga_w must be a multiple of ga_n"); // NOLINT //GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of ga_w"); // NOLINT //GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * ga_n"); // NOLINT LOG_INFO("slot self-extend", { {"slot_id", slot.id}, {"ga_n", ga_n}, {"ga_w", ga_w} }); } slot.ga_i = 0; slot.ga_n = ga_n; slot.ga_w = ga_w; slot.reset(); slots.push_back(slot); } default_generation_settings_for_props = get_formated_generation(slots.front()); default_generation_settings_for_props["seed"] = -1; batch = llama_batch_init(n_ctx, 0, params.n_parallel); } std::vector tokenize(const json & json_prompt, bool add_bos) const { // TODO: currently, we tokenize using special tokens by default // this is not always correct (see https://github.com/ggerganov/llama.cpp/pull/4160#issuecomment-1824826216) // but it's better compared to completely ignoring ChatML and other chat templates const bool TMP_FORCE_SPECIAL = true; // If `add_bos` is true, we only add BOS, when json_prompt is a string, // or the first element of the json_prompt array is a string. std::vector prompt_tokens; if (json_prompt.is_array()) { bool first = true; for (const auto& p : json_prompt) { if (p.is_string()) { auto s = p.template get(); std::vector p; if (first) { p = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL); first = false; } else { p = ::llama_tokenize(ctx, s, false, TMP_FORCE_SPECIAL); } prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end()); } else { if (first) { first = false; } prompt_tokens.push_back(p.template get()); } } } else { auto s = json_prompt.template get(); prompt_tokens = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL); } return prompt_tokens; } server_slot* get_slot(int id) { int64_t t_last = ggml_time_us(); server_slot *last_used = nullptr; for (server_slot & slot : slots) { if (slot.id == id && slot.available()) { return &slot; } if (slot.available() && slot.t_last_used < t_last) { last_used = &slot; t_last = slot.t_last_used; } } return last_used; } bool launch_slot_with_data(server_slot* &slot, json data) { slot_params default_params; llama_sampling_params default_sparams; if (data.count("__oaicompat") != 0) { slot->oaicompat = true; slot->oaicompat_model = json_value(data, "model", std::string(DEFAULT_OAICOMPAT_MODEL)); } else { slot->oaicompat = false; slot->oaicompat_model = ""; } slot->params.stream = json_value(data, "stream", false); slot->params.cache_prompt = json_value(data, "cache_prompt", false); slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict); slot->sparams.top_k = json_value(data, "top_k", default_sparams.top_k); slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p); slot->sparams.min_p = json_value(data, "min_p", default_sparams.min_p); slot->sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z); slot->sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p); slot->sparams.temp = json_value(data, "temperature", default_sparams.temp); slot->sparams.dynatemp_range = json_value(data, "dynatemp_range", default_sparams.dynatemp_range); slot->sparams.dynatemp_exponent = json_value(data, "dynatemp_exponent", default_sparams.dynatemp_exponent); slot->sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n); slot->sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat); slot->sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq); slot->sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present); slot->sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat); slot->sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau); slot->sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta); slot->sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl); slot->params.n_keep = json_value(data, "n_keep", slot->params.n_keep); slot->params.seed = json_value(data, "seed", default_params.seed); slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar); slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs); slot->sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep); if (slot->n_predict > 0 && slot->params.n_predict > slot->n_predict) { // Might be better to reject the request with a 400 ? LOG_WARNING("Max tokens to predict exceeds server configuration", { {"params.n_predict", slot->params.n_predict}, {"slot.n_predict", slot->n_predict}, }); slot->params.n_predict = slot->n_predict; } // infill if (data.count("input_prefix") != 0) { slot->params.input_prefix = data["input_prefix"]; } else { slot->params.input_prefix = ""; } if (data.count("input_suffix") != 0) { slot->params.input_suffix = data["input_suffix"]; } else { slot->params.input_suffix = ""; } if (data.count("prompt") != 0) { slot->prompt = data["prompt"]; } else { slot->prompt = ""; } slot->sparams.penalty_prompt_tokens.clear(); slot->sparams.use_penalty_prompt_tokens = false; const auto &penalty_prompt = data.find("penalty_prompt"); if (penalty_prompt != data.end()) { if (penalty_prompt->is_string()) { const auto penalty_prompt_string = penalty_prompt->get(); auto penalty_tokens = llama_tokenize(model, penalty_prompt_string, false); slot->sparams.penalty_prompt_tokens.swap(penalty_tokens); if (slot->params.n_predict > 0) { slot->sparams.penalty_prompt_tokens.reserve(slot->sparams.penalty_prompt_tokens.size() + slot->params.n_predict); } slot->sparams.use_penalty_prompt_tokens = true; } else if (penalty_prompt->is_array()) { const auto n_tokens = penalty_prompt->size(); slot->sparams.penalty_prompt_tokens.reserve(n_tokens + std::max(0, slot->params.n_predict)); const int n_vocab = llama_n_vocab(model); for (const auto &penalty_token : *penalty_prompt) { if (penalty_token.is_number_integer()) { const auto tok = penalty_token.get(); if (tok >= 0 && tok < n_vocab) { slot->sparams.penalty_prompt_tokens.push_back(tok); } } } slot->sparams.use_penalty_prompt_tokens = true; } } slot->sparams.logit_bias.clear(); if (json_value(data, "ignore_eos", false)) { slot->sparams.logit_bias[llama_token_eos(model)] = -INFINITY; } const auto &logit_bias = data.find("logit_bias"); if (logit_bias != data.end() && logit_bias->is_array()) { const int n_vocab = llama_n_vocab(model); for (const auto &el : *logit_bias) { if (el.is_array() && el.size() == 2) { float bias; if (el[1].is_number()) { bias = el[1].get(); } else if (el[1].is_boolean() && !el[1].get()) { bias = -INFINITY; } else { continue; } if (el[0].is_number_integer()) { llama_token tok = el[0].get(); if (tok >= 0 && tok < n_vocab) { slot->sparams.logit_bias[tok] = bias; } } else if (el[0].is_string()) { auto toks = llama_tokenize(model, el[0].get(), false); for (auto tok : toks) { slot->sparams.logit_bias[tok] = bias; } } } } } slot->params.antiprompt.clear(); const auto &stop = data.find("stop"); if (stop != data.end() && stop->is_array()) { for (const auto &word : *stop) { if (!word.empty()) { slot->params.antiprompt.push_back(word); } } } const auto &samplers_sequence = data.find("samplers"); if (samplers_sequence != data.end() && samplers_sequence->is_array()) { std::vector sampler_names; for (const auto &sampler_name : *samplers_sequence) { if (sampler_name.is_string()) { sampler_names.emplace_back(sampler_name); } } slot->sparams.samplers_sequence = sampler_types_from_names(sampler_names, false); } else { slot->sparams.samplers_sequence = default_sparams.samplers_sequence; } if (multimodal) { const auto &images_data = data.find("image_data"); if (images_data != data.end() && images_data->is_array()) { for (const auto &img : *images_data) { const std::vector image_buffer = base64_decode(img["data"].get()); slot_image img_sl; img_sl.id = img.count("id") != 0 ? img["id"].get() : slot->images.size(); img_sl.img_data = clip_image_u8_init(); if (!clip_image_load_from_bytes(image_buffer.data(), image_buffer.size(), img_sl.img_data)) { LOG_ERROR("failed to load image", { {"slot_id", slot->id}, {"img_sl_id", img_sl.id} }); return false; } LOG_VERBOSE("image loaded", { {"slot_id", slot->id}, {"img_sl_id", img_sl.id} }); img_sl.request_encode_image = true; slot->images.push_back(img_sl); } // process prompt // example: system prompt [img-102] user [img-103] describe [img-134] -> [{id: 102, prefix: 'system prompt '}, {id: 103, prefix: ' user '}, {id: 134, prefix: ' describe '}]} if (slot->images.size() > 0 && !slot->prompt.is_array()) { std::string prompt = slot->prompt.get(); size_t pos = 0, begin_prefix = 0; std::string pattern = "[img-"; while ((pos = prompt.find(pattern, pos)) != std::string::npos) { size_t end_prefix = pos; pos += pattern.length(); size_t end_pos = prompt.find(']', pos); if (end_pos != std::string::npos) { std::string image_id = prompt.substr(pos, end_pos - pos); try { int img_id = std::stoi(image_id); bool found = false; for (slot_image &img : slot->images) { if (img.id == img_id) { found = true; img.prefix_prompt = prompt.substr(begin_prefix, end_prefix - begin_prefix); begin_prefix = end_pos + 1; break; } } if (!found) { LOG_TEE("ERROR: Image with id: %i, not found.\n", img_id); slot->images.clear(); return false; } } catch (const std::invalid_argument& e) { LOG_TEE("Invalid image number id in prompt\n"); slot->images.clear(); return false; } } } slot->prompt = ""; slot->params.input_suffix = prompt.substr(begin_prefix); slot->params.cache_prompt = false; // multimodal doesn't support cache prompt } } } if (slot->ctx_sampling != nullptr) { llama_sampling_free(slot->ctx_sampling); } slot->ctx_sampling = llama_sampling_init(slot->sparams); llama_set_rng_seed(ctx, slot->params.seed); slot->command = LOAD_PROMPT; all_slots_are_idle = false; LOG_INFO("slot is processing task", { {"slot_id", slot->id}, {"task_id", slot->task_id}, }); return true; } void kv_cache_clear() { // clear the entire KV cache llama_kv_cache_clear(ctx); clean_kv_cache = false; } void system_prompt_update() { kv_cache_clear(); system_tokens.clear(); if (!system_prompt.empty()) { system_tokens = ::llama_tokenize(ctx, system_prompt, add_bos_token); llama_batch_clear(batch); for (int i = 0; i < (int)system_tokens.size(); ++i) { llama_batch_add(batch, system_tokens[i], i, { 0 }, false); } for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += params.n_batch) { const int32_t n_tokens = std::min(params.n_batch, (int32_t) (batch.n_tokens - i)); llama_batch batch_view = { n_tokens, batch.token + i, nullptr, batch.pos + i, batch.n_seq_id + i, batch.seq_id + i, batch.logits + i, 0, 0, 0, // unused }; if (llama_decode(ctx, batch_view) != 0) { LOG_TEE("%s: llama_decode() failed\n", __func__); return; } } // assign the system KV cache to all parallel sequences for (int32_t i = 1; i < params.n_parallel; ++i) { llama_kv_cache_seq_cp(ctx, 0, i, 0, system_tokens.size()); } } LOG_TEE("system prompt updated\n"); system_need_update = false; } void system_prompt_notify() { // release all slots for (server_slot &slot : slots) { slot.release(); } system_need_update = true; } void system_prompt_process(const json &sys_props) { system_prompt = sys_props.value("prompt", ""); name_user = sys_props.value("anti_prompt", ""); name_assistant = sys_props.value("assistant_name", ""); system_prompt_notify(); } static size_t find_stopping_strings(const std::string &text, const size_t last_token_size, const stop_type type, server_slot &slot) { size_t stop_pos = std::string::npos; for (const std::string &word : slot.params.antiprompt) { size_t pos; if (type == STOP_FULL) { const size_t tmp = word.size() + last_token_size; const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0; pos = text.find(word, from_pos); } else { pos = find_partial_stop_string(word, text); } if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) { if (type == STOP_FULL) { slot.stopped_word = true; slot.stopping_word = word; slot.has_next_token = false; } stop_pos = pos; } } return stop_pos; } bool process_token(completion_token_output &result, server_slot &slot) { // remember which tokens were sampled - used for repetition penalties during sampling const std::string token_str = llama_token_to_piece(ctx, result.tok); slot.sampled = result.tok; // search stop word and delete it slot.generated_text += token_str; slot.has_next_token = true; if (slot.ctx_sampling->params.use_penalty_prompt_tokens && result.tok != -1) { // we can change penalty_prompt_tokens because it is always created from scratch each request slot.ctx_sampling->params.penalty_prompt_tokens.push_back(result.tok); } // check if there is incomplete UTF-8 character at the end bool incomplete = false; for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i) { unsigned char c = slot.generated_text[slot.generated_text.size() - i]; if ((c & 0xC0) == 0x80) { // continuation byte: 10xxxxxx continue; } if ((c & 0xE0) == 0xC0) { // 2-byte character: 110xxxxx ... incomplete = i < 2; } else if ((c & 0xF0) == 0xE0) { // 3-byte character: 1110xxxx ... incomplete = i < 3; } else if ((c & 0xF8) == 0xF0) { // 4-byte character: 11110xxx ... incomplete = i < 4; } // else 1-byte character or invalid byte break; } if (!incomplete) { size_t pos = std::min(slot.n_sent_text, slot.generated_text.size()); const std::string str_test = slot.generated_text.substr(pos); bool is_stop_full = false; size_t stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_FULL, slot); if (stop_pos != std::string::npos) { is_stop_full = true; slot.generated_text.erase( slot.generated_text.begin() + pos + stop_pos, slot.generated_text.end()); pos = std::min(slot.n_sent_text, slot.generated_text.size()); } else { is_stop_full = false; stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_PARTIAL, slot); } // check if there is any token to predict if (stop_pos == std::string::npos || (!slot.has_next_token && !is_stop_full && stop_pos > 0)) { // no send the stop word in the response result.text_to_send = slot.generated_text.substr(pos, std::string::npos); slot.n_sent_text += result.text_to_send.size(); // add the token to slot queue and cache } slot.add_token_string(result); if (slot.params.stream) { send_partial_response(slot, result); } } if (incomplete) { slot.has_next_token = true; } // check the limits if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params)) { slot.stopped_limit = true; slot.has_next_token = false; } if (!slot.cache_tokens.empty() && result.tok == llama_token_eos(model)) { slot.stopped_eos = true; slot.has_next_token = false; LOG_VERBOSE("eos token found", {}); } LOG_VERBOSE("next token", { {"token", result.tok}, {"token_text", tokens_to_output_formatted_string(ctx, result.tok)}, {"has_next_token", slot.has_next_token}, {"n_remain", slot.n_remaining}, {"num_tokens_predicted", slot.n_decoded}, {"stopped_eos", slot.stopped_eos}, {"stopped_word", slot.stopped_word}, {"stopped_limit", slot.stopped_limit}, {"stopping_word", slot.stopping_word}, }); return slot.has_next_token; // continue } bool process_images(server_slot &slot) const { for (slot_image &img : slot.images) { if (!img.request_encode_image) { continue; } if (!llava_image_embed_make_with_clip_img(clp_ctx, params.n_threads, img.img_data, &img.image_embedding, &img.image_tokens)) { LOG_TEE("Error processing the given image"); return false; } img.request_encode_image = false; } return slot.images.size() > 0; } void send_error(task_server& task, const std::string &error) { LOG_TEE("task %i - error: %s\n", task.id, error.c_str()); task_result res; res.id = task.id; res.multitask_id = task.multitask_id; res.stop = false; res.error = true; res.result_json = { { "content", error } }; queue_results.send(res); } json get_formated_generation(server_slot &slot) { const auto eos_bias = slot.sparams.logit_bias.find(llama_token_eos(model)); const bool ignore_eos = eos_bias != slot.sparams.logit_bias.end() && eos_bias->second < 0.0f && std::isinf(eos_bias->second); std::vector samplers_sequence; for (const auto &sampler_type : slot.sparams.samplers_sequence) { samplers_sequence.emplace_back(sampler_type_to_name_string(sampler_type)); } return json { {"n_ctx", slot.n_ctx}, {"n_predict", slot.n_predict}, {"model", params.model_alias}, {"seed", slot.params.seed}, {"temperature", slot.sparams.temp}, {"dynatemp_range", slot.sparams.dynatemp_range}, {"dynatemp_exponent", slot.sparams.dynatemp_exponent}, {"top_k", slot.sparams.top_k}, {"top_p", slot.sparams.top_p}, {"min_p", slot.sparams.min_p}, {"tfs_z", slot.sparams.tfs_z}, {"typical_p", slot.sparams.typical_p}, {"repeat_last_n", slot.sparams.penalty_last_n}, {"repeat_penalty", slot.sparams.penalty_repeat}, {"presence_penalty", slot.sparams.penalty_present}, {"frequency_penalty", slot.sparams.penalty_freq}, {"penalty_prompt_tokens", slot.sparams.penalty_prompt_tokens}, {"use_penalty_prompt_tokens", slot.sparams.use_penalty_prompt_tokens}, {"mirostat", slot.sparams.mirostat}, {"mirostat_tau", slot.sparams.mirostat_tau}, {"mirostat_eta", slot.sparams.mirostat_eta}, {"penalize_nl", slot.sparams.penalize_nl}, {"stop", slot.params.antiprompt}, {"n_predict", slot.params.n_predict}, {"n_keep", params.n_keep}, {"ignore_eos", ignore_eos}, {"stream", slot.params.stream}, {"logit_bias", slot.sparams.logit_bias}, {"n_probs", slot.sparams.n_probs}, {"min_keep", slot.sparams.min_keep}, {"grammar", slot.sparams.grammar}, {"samplers", samplers_sequence} }; } void send_partial_response(server_slot &slot, completion_token_output tkn) { task_result res; res.id = slot.task_id; res.multitask_id = slot.multitask_id; res.error = false; res.stop = false; res.result_json = json { {"content", tkn.text_to_send}, {"stop", false}, {"slot_id", slot.id}, {"multimodal", multimodal} }; if (slot.sparams.n_probs > 0) { std::vector probs_output = {}; const std::vector to_send_toks = llama_tokenize(ctx, tkn.text_to_send, false); size_t probs_pos = std::min(slot.n_sent_token_probs, slot.generated_token_probs.size()); size_t probs_stop_pos = std::min(slot.n_sent_token_probs + to_send_toks.size(), slot.generated_token_probs.size()); if (probs_pos < probs_stop_pos) { probs_output = std::vector(slot.generated_token_probs.begin() + probs_pos, slot.generated_token_probs.begin() + probs_stop_pos); } slot.n_sent_token_probs = probs_stop_pos; res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs_output); } if (slot.oaicompat) { res.result_json["oaicompat_token_ctr"] = slot.n_decoded; res.result_json["model"] = slot.oaicompat_model; } queue_results.send(res); } void send_final_response(server_slot &slot) { task_result res; res.id = slot.task_id; res.multitask_id = slot.multitask_id; res.error = false; res.stop = true; res.result_json = json { {"content", !slot.params.stream ? slot.generated_text : ""}, {"slot_id", slot.id}, {"stop", true}, {"model", params.model_alias}, {"tokens_predicted", slot.n_decoded}, {"tokens_evaluated", slot.n_prompt_tokens}, {"generation_settings", get_formated_generation(slot)}, {"prompt", slot.prompt}, {"truncated", slot.truncated}, {"stopped_eos", slot.stopped_eos}, {"stopped_word", slot.stopped_word}, {"stopped_limit", slot.stopped_limit}, {"stopping_word", slot.stopping_word}, {"tokens_cached", slot.n_past}, {"timings", slot.get_formated_timings()} }; if (slot.sparams.n_probs > 0) { std::vector probs = {}; if (!slot.params.stream && slot.stopped_word) { const std::vector stop_word_toks = llama_tokenize(ctx, slot.stopping_word, false); probs = std::vector(slot.generated_token_probs.begin(), slot.generated_token_probs.end() - stop_word_toks.size()); } else { probs = std::vector( slot.generated_token_probs.begin(), slot.generated_token_probs.end()); } res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs); } if (slot.oaicompat) { res.result_json["oaicompat_token_ctr"] = slot.n_decoded; res.result_json["model"] = slot.oaicompat_model; } queue_results.send(res); } void send_embedding(server_slot & slot, const llama_batch & batch) { task_result res; res.id = slot.task_id; res.multitask_id = slot.multitask_id; res.error = false; res.stop = true; const int n_embd = llama_n_embd(model); if (!params.embedding) { LOG_WARNING("embedding disabled", {{"params.embedding", params.embedding}}); res.result_json = json { {"embedding", std::vector(n_embd, 0.0f)}, }; } else { for (int i = 0; i < batch.n_tokens; ++i) { if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) { continue; } const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]); if (embd == NULL) { embd = llama_get_embeddings_ith(ctx, i); if (embd == NULL) { LOG_ERROR("failed to get embeddings for token", {{"token", batch.token[i]}, {"seq_id", batch.seq_id[i][0]}}); res.result_json = json { {"embedding", std::vector(n_embd, 0.0f)}, }; continue; } } res.result_json = json { {"embedding", std::vector(embd, embd + n_embd)}, }; } } queue_results.send(res); } void request_completion(int task_id, json data, bool infill, bool embedding, int multitask_id) { task_server task; task.id = task_id; task.target_id = 0; task.data = std::move(data); task.infill_mode = infill; task.embedding_mode = embedding; task.type = TASK_TYPE_COMPLETION; task.multitask_id = multitask_id; // when a completion task's prompt array is not a singleton, we split it into multiple requests // otherwise, it's a single-prompt task, we actually queue it // if there's numbers in the prompt array it will be treated as an array of tokens if (task.data.count("prompt") != 0 && task.data.at("prompt").size() > 1) { bool numbers = false; for (const auto& e : task.data.at("prompt")) { if (e.is_number()) { numbers = true; break; } } // NOTE: split_multiprompt_task() does not handle a mix of strings and numbers, // it will completely stall the server. I don't know where the bug for this is. // // if there are numbers, it needs to be treated like a single prompt, // queue_tasks handles a mix of strings and numbers just fine. if (numbers) { queue_tasks.post(task); } else { split_multiprompt_task(task_id, task); } } else { // an empty prompt can make slot become buggy if (task.data.contains("prompt") && task.data["prompt"].is_string() && task.data["prompt"].get().empty()) { task.data["prompt"] = " "; // add a space so that we have one token } queue_tasks.post(task); } } // for multiple images processing bool ingest_images(server_slot &slot, int n_batch) { int image_idx = 0; while (image_idx < (int) slot.images.size()) { slot_image &img = slot.images[image_idx]; // process prefix prompt for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) { const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i)); llama_batch batch_view = { n_tokens, batch.token + i, nullptr, batch.pos + i, batch.n_seq_id + i, batch.seq_id + i, batch.logits + i, 0, 0, 0, // unused }; if (llama_decode(ctx, batch_view)) { LOG_TEE("%s : failed to eval\n", __func__); return false; } } // process image with llm for (int i = 0; i < img.image_tokens; i += n_batch) { int n_eval = img.image_tokens - i; if (n_eval > n_batch) { n_eval = n_batch; } const int n_embd = llama_n_embd(model); llama_batch batch_img = { n_eval, nullptr, (img.image_embedding + i * n_embd), nullptr, nullptr, nullptr, nullptr, slot.n_past, 1, 0 }; if (llama_decode(ctx, batch_img)) { LOG_TEE("%s : failed to eval image\n", __func__); return false; } slot.n_past += n_eval; } image_idx++; llama_batch_clear(batch); // append prefix of next image const auto json_prompt = (image_idx >= (int) slot.images.size()) ? slot.params.input_suffix : // no more images, then process suffix prompt (json)(slot.images[image_idx].prefix_prompt); std::vector append_tokens = tokenize(json_prompt, false); // has next image for (int i = 0; i < (int) append_tokens.size(); ++i) { llama_batch_add(batch, append_tokens[i], system_tokens.size() + slot.n_past, { slot.id }, true); slot.n_past += 1; } } return true; } void request_cancel(int task_id) { task_server task; task.type = TASK_TYPE_CANCEL; task.target_id = task_id; queue_tasks.post(task); } void split_multiprompt_task(int multitask_id, task_server& multiprompt_task) { int prompt_count = multiprompt_task.data.at("prompt").size(); if (prompt_count <= 1) { send_error(multiprompt_task, "error while handling multiple prompts"); return; } // generate all the ID for subtask std::vector subtask_ids(prompt_count); for (int i = 0; i < prompt_count; i++) { subtask_ids[i] = queue_tasks.get_new_id(); } // queue up the multitask so we can track its subtask progression queue_tasks.add_multitask(multitask_id, subtask_ids); // add subtasks for (int i = 0; i < prompt_count; i++) { json subtask_data = multiprompt_task.data; subtask_data["prompt"] = subtask_data["prompt"][i]; // subtasks inherit everything else (infill mode, embedding mode, etc.) request_completion(subtask_ids[i], subtask_data, multiprompt_task.infill_mode, multiprompt_task.embedding_mode, multitask_id); } } void process_single_task(task_server& task) { switch (task.type) { case TASK_TYPE_COMPLETION: { server_slot *slot = get_slot(json_value(task.data, "slot_id", -1)); if (slot == nullptr) { // if no slot is available, we defer this task for processing later LOG_VERBOSE("no slot is available", {{"task_id", task.id}}); queue_tasks.defer(task); break; } if (task.data.contains("system_prompt")) { if (!all_slots_are_idle) { send_error(task, "system prompt can only be updated when all slots are idle"); break; } system_prompt_process(task.data["system_prompt"]); // reset cache_tokens for all slots for (server_slot &slot : slots) { slot.cache_tokens.clear(); slot.n_past = 0; slot.n_past_se = 0; } } slot->reset(); slot->infill = task.infill_mode; slot->embedding = task.embedding_mode; slot->task_id = task.id; slot->multitask_id = task.multitask_id; if (!launch_slot_with_data(slot, task.data)) { // send error result send_error(task, "internal_error"); break; } } break; case TASK_TYPE_CANCEL: { // release slot linked with the task id for (auto & slot : slots) { if (slot.task_id == task.target_id) { slot.release(); break; } } } break; case TASK_TYPE_NEXT_RESPONSE: { // do nothing } break; case TASK_TYPE_METRICS: { json slots_data = json::array(); int n_idle_slots = 0; int n_processing_slots = 0; for (server_slot &slot: slots) { json slot_data = get_formated_generation(slot); slot_data["id"] = slot.id; slot_data["task_id"] = slot.task_id; slot_data["state"] = slot.state; slot_data["prompt"] = slot.prompt; slot_data["next_token"] = { {"has_next_token", slot.has_next_token}, {"n_remain", slot.n_remaining}, {"num_tokens_predicted", slot.n_decoded}, {"stopped_eos", slot.stopped_eos}, {"stopped_word", slot.stopped_word}, {"stopped_limit", slot.stopped_limit}, {"stopping_word", slot.stopping_word}, }; if (slot_data["state"] == IDLE) { n_idle_slots++; } else { n_processing_slots++; } slots_data.push_back(slot_data); } LOG_INFO("slot data", { {"task_id", task.id}, {"n_idle_slots", n_idle_slots}, {"n_processing_slots", n_processing_slots} }); LOG_VERBOSE("slot data", { {"task_id", task.id}, {"n_idle_slots", n_idle_slots}, {"n_processing_slots", n_processing_slots}, {"slots", slots_data} }); task_result res; res.id = task.id; res.multitask_id = task.multitask_id; res.stop = true; res.error = false; res.result_json = { { "idle", n_idle_slots }, { "processing", n_processing_slots }, { "deferred", queue_tasks.queue_tasks_deferred.size() }, { "n_prompt_tokens_processed_total", metrics.n_prompt_tokens_processed_total}, { "n_tokens_predicted_total", metrics.n_tokens_predicted_total}, { "n_prompt_tokens_processed", metrics.n_prompt_tokens_processed}, { "t_prompt_processing", metrics.t_prompt_processing}, { "n_tokens_predicted", metrics.n_tokens_predicted}, { "t_tokens_generation", metrics.t_tokens_generation}, { "kv_cache_tokens_count", llama_get_kv_cache_token_count(ctx)}, { "kv_cache_used_cells", llama_get_kv_cache_used_cells(ctx)}, { "slots", slots_data }, }; metrics.reset_bucket(); queue_results.send(res); } break; } } void on_finish_multitask(task_multi& multitask) { // all subtasks done == multitask is done task_result result; result.id = multitask.id; result.stop = true; result.error = false; // collect json results into one json result std::vector result_jsons; for (auto& subres : multitask.results) { result_jsons.push_back(subres.result_json); result.error = result.error && subres.error; } result.result_json = json{ { "results", result_jsons } }; queue_results.send(result); } bool update_slots() { if (system_need_update) { LOG_INFO("updating system prompt", {}); system_prompt_update(); } llama_batch_clear(batch); if (all_slots_are_idle) { if (system_prompt.empty() && clean_kv_cache) { LOG_INFO("all slots are idle and system prompt is empty, clear the KV cache", {}); kv_cache_clear(); } return true; } LOG_VERBOSE("posting NEXT_RESPONSE", {}); task_server task; task.type = TASK_TYPE_NEXT_RESPONSE; task.target_id = -1; queue_tasks.post(task); for (server_slot &slot : slots) { if (slot.ga_n == 1) { if (slot.is_processing() && system_tokens.size() + slot.cache_tokens.size() >= (size_t) slot.n_ctx) { // Shift context const int n_keep = slot.params.n_keep + add_bos_token; const int n_left = (int) system_tokens.size() + slot.n_past - n_keep; const int n_discard = n_left / 2; LOG_INFO("slot context shift", { {"slot_id", slot.id}, {"task_id", slot.task_id}, {"n_keep", n_keep}, {"n_left", n_left}, {"n_discard", n_discard}, {"n_ctx", n_ctx}, {"n_past", slot.n_past}, {"n_system_tokens", system_tokens.size()}, {"n_cache_tokens", slot.cache_tokens.size()} }); llama_kv_cache_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard); llama_kv_cache_seq_add(ctx, slot.id, n_keep + n_discard, system_tokens.size() + slot.n_past, -n_discard); for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) { slot.cache_tokens[i - n_discard] = slot.cache_tokens[i]; } slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard); slot.n_past -= n_discard; slot.truncated = true; } } } // decode any currently ongoing sequences LOG_VERBOSE("decoding ongoing sequences", {}); for (auto & slot : slots) { // release the slot if (slot.command == RELEASE) { slot.state = IDLE; slot.command = NONE; slot.t_last_used = ggml_time_us(); LOG_INFO("slot released", { {"slot_id", slot.id}, {"task_id", slot.task_id}, {"n_ctx", n_ctx}, {"n_past", slot.n_past}, {"n_system_tokens", system_tokens.size()}, {"n_cache_tokens", slot.cache_tokens.size()}, {"truncated", slot.truncated} }); queue_tasks.notify_slot_changed(); continue; } if (slot.state == IDLE) { continue; } slot.i_batch = batch.n_tokens; const int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past; // TODO: we always have to take into account the "system_tokens" // this is not great and needs to be improved somehow llama_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id }, true); slot.n_past += 1; } // process in chunks of params.n_batch int32_t n_batch = params.n_batch; // assign workload to the slots if (params.cont_batching || batch.n_tokens == 0) { for (auto & slot : slots) { const bool has_prompt = slot.prompt.is_array() || (slot.prompt.is_string() && !slot.prompt.get().empty()) || !slot.images.empty(); // empty prompt passed -> release the slot and send empty response // note: infill mode allows empty prompt if (slot.state == IDLE && slot.command == LOAD_PROMPT && !has_prompt && !slot.infill) { slot.release(); slot.print_timings(); send_final_response(slot); continue; } // need process the prompt if (slot.state == IDLE && slot.command == LOAD_PROMPT) { slot.state = PROCESSING; slot.command = NONE; std::vector prompt_tokens; slot.t_start_process_prompt = ggml_time_us(); slot.t_start_genereration = 0; if (slot.infill) { bool suff_rm_leading_spc = true; if (params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1) { params.input_suffix.erase(0, 1); suff_rm_leading_spc = false; } auto prefix_tokens = tokenize(slot.params.input_prefix, false); auto suffix_tokens = tokenize(slot.params.input_suffix, false); const int space_token = 29871; // TODO: this should not be hardcoded if (suff_rm_leading_spc && !suffix_tokens.empty() && suffix_tokens[0] == space_token) { suffix_tokens.erase(suffix_tokens.begin()); } prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(model)); prefix_tokens.insert(prefix_tokens.begin(), llama_token_bos(model)); // always add BOS prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(model)); prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end()); prefix_tokens.push_back(llama_token_middle(model)); prompt_tokens = prefix_tokens; } else { prompt_tokens = tokenize(slot.prompt, system_prompt.empty() && add_bos_token); // add BOS if there isn't system prompt } slot.n_prompt_tokens = prompt_tokens.size(); if (slot.params.n_keep < 0) { slot.params.n_keep = slot.n_prompt_tokens; } slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep); // if input prompt is too big, truncate it, if group attention self-extend is disabled if (slot.ga_n == 1 && slot.n_prompt_tokens >= slot.n_ctx) { const int n_left = slot.n_ctx - slot.params.n_keep; const int n_block_size = n_left / 2; const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size; std::vector new_tokens( prompt_tokens.begin(), prompt_tokens.begin() + slot.params.n_keep); new_tokens.insert( new_tokens.end(), prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size, prompt_tokens.end()); LOG_VERBOSE("input truncated", { {"n_ctx", slot.n_ctx}, {"n_keep", slot.params.n_keep}, {"n_left", n_left}, {"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())}, }); slot.truncated = true; prompt_tokens = new_tokens; slot.n_prompt_tokens = prompt_tokens.size(); GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx); } if (!slot.params.cache_prompt) { llama_sampling_reset(slot.ctx_sampling); slot.n_past = 0; slot.n_past_se = 0; slot.ga_i = 0; slot.n_prompt_tokens_processed = slot.n_prompt_tokens; } else { // push the prompt into the sampling context (do not apply grammar) for (auto &token : prompt_tokens) { llama_sampling_accept(slot.ctx_sampling, ctx, token, false); } slot.n_past = common_part(slot.cache_tokens, prompt_tokens); // the last token of the cache is not in the KV cache until the next call to llama_decode // (it was sampled, pushed into the "cache_tokens", but not yet put in the context) if (slot.n_past > 0 && slot.n_past == (int32_t) slot.cache_tokens.size()) { slot.n_past -= 1; } slot.n_prompt_tokens_processed = slot.n_prompt_tokens - slot.n_past; if (slot.ga_n != 1) { int ga_i = 0; int32_t ga_n = slot.ga_n; int32_t ga_w = slot.ga_w; int32_t slot_npast = 0; for (int k = 0; k < slot.n_past; ++k) { while (slot_npast >= ga_i + ga_w) { const int bd = (ga_w/ga_n)*(ga_n - 1); slot_npast -= bd; ga_i += ga_w/ga_n; } slot_npast++; } slot.n_past_se = slot_npast; slot.ga_i = ga_i; } LOG_INFO("slot progression", { { "slot_id", slot.id }, { "task_id", slot.task_id }, { "n_past", slot.n_past }, { "n_past_se", slot.n_past_se }, { "ga_i", slot.ga_i }, { "n_prompt_tokens_processed", slot.n_prompt_tokens_processed } }); } slot.cache_tokens = prompt_tokens; if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) { // we have to evaluate at least 1 token to generate logits. LOG_INFO("we have to evaluate at least 1 token to generate logits", { { "slot_id", slot.id }, { "task_id", slot.task_id } }); slot.n_past--; if (slot.ga_i > 0) { slot.n_past_se--; } } int p0 = (int) system_tokens.size() + slot.n_past; LOG_INFO("kv cache rm [p0, end)", { { "slot_id", slot.id }, { "task_id", slot.task_id }, { "p0", p0 } }); llama_kv_cache_seq_rm(ctx, slot.id, p0, -1); LOG_VERBOSE("prompt ingested", { {"n_past", slot.n_past}, {"cached", tokens_to_str(ctx, slot.cache_tokens.cbegin(), slot.cache_tokens.cbegin() + slot.n_past)}, {"to_eval", tokens_to_str(ctx, slot.cache_tokens.cbegin() + slot.n_past, slot.cache_tokens.cend())}, }); const bool has_images = process_images(slot); // process the prefix of first image std::vector prefix_tokens = has_images ? tokenize(slot.images[0].prefix_prompt, add_bos_token) : prompt_tokens; int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past; int32_t ga_i = slot.ga_i; int32_t ga_n = slot.ga_n; int32_t ga_w = slot.ga_w; for (; slot.n_past < (int) prefix_tokens.size(); ++slot.n_past) { if (slot.ga_n != 1) { while (slot_npast >= ga_i + ga_w) { const int bd = (ga_w/ga_n)*(ga_n - 1); slot_npast -= bd; ga_i += ga_w/ga_n; } } llama_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot_npast, { slot.id }, false); slot_npast++; } if (has_images && !ingest_images(slot, n_batch)) { LOG_ERROR("failed processing images", { {"slot_id", slot.id}, {"task_id", slot.task_id}, }); // FIXME @phymbert: to be properly tested // early returning without changing the slot state will block the slot for ever // no one at the moment is checking the return value return false; } // extract the logits only for the last token if (batch.n_tokens > 0) { batch.logits[batch.n_tokens - 1] = true; } slot.n_decoded = 0; slot.i_batch = batch.n_tokens - 1; } } } if (batch.n_tokens == 0) { all_slots_are_idle = true; return true; } for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) { const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i); for (auto & slot : slots) { if (slot.ga_n != 1) { // context extension via Self-Extend while (slot.n_past_se >= slot.ga_i + slot.ga_w) { const int ib = (slot.ga_n * slot.ga_i) / slot.ga_w; const int bd = (slot.ga_w / slot.ga_n) * (slot.ga_n - 1); const int dd = (slot.ga_w / slot.ga_n) - ib * bd - slot.ga_w; LOG_TEE("\n"); LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i, slot.n_past_se, ib * bd, slot.ga_i + ib * bd, slot.n_past_se + ib * bd); LOG_TEE("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n, (slot.ga_i + ib * bd) / slot.ga_n, (slot.ga_i + ib * bd + slot.ga_w) / slot.ga_n); LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd, slot.ga_i + ib * bd + slot.ga_w + dd, slot.n_past_se + ib * bd + dd); llama_kv_cache_seq_add(ctx, slot.id, slot.ga_i, slot.n_past_se, ib * bd); llama_kv_cache_seq_div(ctx, slot.id, slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w,slot.ga_n); llama_kv_cache_seq_add(ctx, slot.id, slot.ga_i + ib * bd + slot.ga_w,slot.n_past_se + ib * bd, dd); slot.n_past_se -= bd; slot.ga_i += slot.ga_w / slot.ga_n; LOG_TEE("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", slot.n_past_se + bd, slot.n_past_se, slot.ga_i); } slot.n_past_se += n_tokens; } } llama_batch batch_view = { n_tokens, batch.token + i, nullptr, batch.pos + i, batch.n_seq_id + i, batch.seq_id + i, batch.logits + i, 0, 0, 0, // unused }; const int ret = llama_decode(ctx, batch_view); if (ret != 0) { if (n_batch == 1 || ret < 0) { // if you get here, it means the KV cache is full - try increasing it via the context size LOG_TEE("%s : failed to decode the batch, n_batch = %d, ret = %d\n", __func__, n_batch, ret); return false; } LOG_TEE("%s : failed to find free space in the KV cache, retrying with smaller n_batch = %d\n", __func__, n_batch / 2); // retry with half the batch size to try to find a free slot in the KV cache n_batch /= 2; i -= n_batch; continue; } for (auto & slot : slots) { if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) { continue; } // prompt evaluated for embedding if (slot.embedding) { send_embedding(slot, batch_view); slot.release(); slot.i_batch = -1; continue; } completion_token_output result; const llama_token id = llama_sampling_sample(slot.ctx_sampling, ctx, NULL, slot.i_batch - i); llama_sampling_accept(slot.ctx_sampling, ctx, id, true); slot.n_decoded += 1; if (slot.n_decoded == 1) { slot.t_start_genereration = ggml_time_us(); slot.t_prompt_processing = (slot.t_start_genereration - slot.t_start_process_prompt) / 1e3; metrics.on_prompt_eval(slot); } llama_token_data_array cur_p = { slot.ctx_sampling->cur.data(), slot.ctx_sampling->cur.size(), false }; result.tok = id; const int32_t n_probs = slot.sparams.n_probs; if (slot.sparams.temp <= 0 && n_probs > 0) { // for llama_sample_token_greedy we need to sort candidates llama_sample_softmax(ctx, &cur_p); } for (size_t i = 0; i < std::min(cur_p.size, (size_t)n_probs); ++i) { result.probs.push_back({cur_p.data[i].id, cur_p.data[i].p}); } if (!process_token(result, slot)) { slot.release(); slot.print_timings(); send_final_response(slot); metrics.on_prediction(slot); } slot.i_batch = -1; } } LOG_VERBOSE("slots updated", {}); return true; } json model_meta() { return json{ {"vocab_type", llama_vocab_type(model)}, {"n_vocab", llama_n_vocab(model)}, {"n_ctx_train", llama_n_ctx_train(model)}, {"n_embd", llama_n_embd(model)}, {"n_params", llama_model_n_params(model)}, {"size", llama_model_size(model)}, }; } }; static void server_print_usage(const char *argv0, const gpt_params ¶ms, const server_params &sparams) { printf("usage: %s [options]\n", argv0); printf("\n"); printf("options:\n"); printf(" -h, --help show this help message and exit\n"); printf(" -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled"); printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); printf(" -tb N, --threads-batch N number of threads to use during batch and prompt processing (default: same as --threads)\n"); printf(" --threads-http N number of threads in the http server pool to process requests (default: max(hardware concurrency - 1, --parallel N + 2))\n"); printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx); printf(" --rope-scaling {none,linear,yarn}\n"); printf(" RoPE frequency scaling method, defaults to linear unless specified by the model\n"); printf(" --rope-freq-base N RoPE base frequency (default: loaded from model)\n"); printf(" --rope-freq-scale N RoPE frequency scaling factor, expands context by a factor of 1/N\n"); printf(" --yarn-ext-factor N YaRN: extrapolation mix factor (default: 1.0, 0.0 = full interpolation)\n"); printf(" --yarn-attn-factor N YaRN: scale sqrt(t) or attention magnitude (default: 1.0)\n"); printf(" --yarn-beta-slow N YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow); printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast); printf(" --pooling {none,mean,cls}\n"); printf(" pooling type for embeddings, use model default if unspecified\n"); printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch); printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n"); printf(" not recommended: doubles context memory required and no measurable increase in quality\n"); if (llama_supports_mlock()) { printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n"); } if (llama_supports_mmap()) { printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n"); } printf(" --numa TYPE attempt optimizations that help on some NUMA systems\n"); printf(" - distribute: spread execution evenly over all nodes\n"); printf(" - isolate: only spawn threads on CPUs on the node that execution started on\n"); printf(" - numactl: use the CPU map provided my numactl\n"); if (llama_supports_gpu_offload()) { printf(" -ngl N, --n-gpu-layers N\n"); printf(" number of layers to store in VRAM\n"); printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n"); printf(" how to split the model across multiple GPUs, one of:\n"); printf(" - none: use one GPU only\n"); printf(" - layer (default): split layers and KV across GPUs\n"); printf(" - row: split rows across GPUs\n"); printf(" -ts SPLIT --tensor-split SPLIT\n"); printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n"); printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n"); printf(" or for intermediate results and KV (with split-mode = row)\n"); } printf(" -m FNAME, --model FNAME\n"); printf(" model path (default: %s)\n", params.model.c_str()); printf(" -a ALIAS, --alias ALIAS\n"); printf(" set an alias for the model, will be added as `model` field in completion response\n"); printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n"); printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n"); printf(" --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str()); printf(" --port PORT port to listen (default (default: %d)\n", sparams.port); printf(" --path PUBLIC_PATH path from which to serve static files (default %s)\n", sparams.public_path.c_str()); printf(" --api-key API_KEY optional api key to enhance server security. If set, requests must include this key for access.\n"); printf(" --api-key-file FNAME path to file containing api keys delimited by new lines. If set, requests must include one of the keys for access.\n"); printf(" -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout); printf(" --embedding enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled"); printf(" -np N, --parallel N number of slots for process requests (default: %d)\n", params.n_parallel); printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n"); printf(" -spf FNAME, --system-prompt-file FNAME\n"); printf(" set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications.\n"); printf(" -ctk TYPE, --cache-type-k TYPE\n"); printf(" KV cache data type for K (default: f16)\n"); printf(" -ctv TYPE, --cache-type-v TYPE\n"); printf(" KV cache data type for V (default: f16)\n"); printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA.\n"); printf(" --log-format log output format: json or text (default: json)\n"); printf(" --log-disable disables logging to a file.\n"); printf(" --slots-endpoint-disable disables slots monitoring endpoint.\n"); printf(" --metrics enable prometheus compatible metrics endpoint (default: %s).\n", sparams.metrics_endpoint ? "enabled" : "disabled"); printf("\n"); printf(" -n, --n-predict maximum tokens to predict (default: %d)\n", params.n_predict); printf(" --override-kv KEY=TYPE:VALUE\n"); printf(" advanced option to override model metadata by key. may be specified multiple times.\n"); printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n"); printf(" -gan N, --grp-attn-n N set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`\n"); printf(" -gaw N, --grp-attn-w N set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`\n"); printf(" --chat-template JINJA_TEMPLATE\n"); printf(" set custom jinja chat template (default: template taken from model's metadata)\n"); printf(" Note: only commonly used templates are accepted, since we don't have jinja parser\n"); printf("\n"); } static void server_params_parse(int argc, char **argv, server_params &sparams, gpt_params ¶ms, llama_server_context& llama) { gpt_params default_params; server_params default_sparams; std::string arg; bool invalid_param = false; for (int i = 1; i < argc; i++) { arg = argv[i]; if (arg == "--port") { if (++i >= argc) { invalid_param = true; break; } sparams.port = std::stoi(argv[i]); } else if (arg == "--host") { if (++i >= argc) { invalid_param = true; break; } sparams.hostname = argv[i]; } else if (arg == "--path") { if (++i >= argc) { invalid_param = true; break; } sparams.public_path = argv[i]; } else if (arg == "--api-key") { if (++i >= argc) { invalid_param = true; break; } sparams.api_keys.emplace_back(argv[i]); } else if (arg == "--api-key-file") { if (++i >= argc) { invalid_param = true; break; } std::ifstream key_file(argv[i]); if (!key_file) { fprintf(stderr, "error: failed to open file '%s'\n", argv[i]); invalid_param = true; break; } std::string key; while (std::getline(key_file, key)) { if (key.size() > 0) { sparams.api_keys.push_back(key); } } key_file.close(); } else if (arg == "--timeout" || arg == "-to") { if (++i >= argc) { invalid_param = true; break; } sparams.read_timeout = std::stoi(argv[i]); sparams.write_timeout = std::stoi(argv[i]); } else if (arg == "-m" || arg == "--model") { if (++i >= argc) { invalid_param = true; break; } params.model = argv[i]; } else if (arg == "-a" || arg == "--alias") { if (++i >= argc) { invalid_param = true; break; } params.model_alias = argv[i]; } else if (arg == "-h" || arg == "--help") { server_print_usage(argv[0], default_params, default_sparams); exit(0); } else if (arg == "-c" || arg == "--ctx-size" || arg == "--ctx_size") { if (++i >= argc) { invalid_param = true; break; } params.n_ctx = std::stoi(argv[i]); } else if (arg == "--rope-scaling") { if (++i >= argc) { invalid_param = true; break; } std::string value(argv[i]); /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; } else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; } else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; } else { invalid_param = true; break; } } else if (arg == "--rope-freq-base") { if (++i >= argc) { invalid_param = true; break; } params.rope_freq_base = std::stof(argv[i]); } else if (arg == "--rope-freq-scale") { if (++i >= argc) { invalid_param = true; break; } params.rope_freq_scale = std::stof(argv[i]); } else if (arg == "--yarn-ext-factor") { if (++i >= argc) { invalid_param = true; break; } params.yarn_ext_factor = std::stof(argv[i]); } else if (arg == "--yarn-attn-factor") { if (++i >= argc) { invalid_param = true; break; } params.yarn_attn_factor = std::stof(argv[i]); } else if (arg == "--yarn-beta-fast") { if (++i >= argc) { invalid_param = true; break; } params.yarn_beta_fast = std::stof(argv[i]); } else if (arg == "--yarn-beta-slow") { if (++i >= argc) { invalid_param = true; break; } params.yarn_beta_slow = std::stof(argv[i]); } else if (arg == "--pooling") { if (++i >= argc) { invalid_param = true; break; } std::string value(argv[i]); /**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; } else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; } else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; } else { invalid_param = true; break; } } else if (arg == "--threads" || arg == "-t") { if (++i >= argc) { invalid_param = true; break; } params.n_threads = std::stoi(argv[i]); } else if (arg == "--grp-attn-n" || arg == "-gan") { if (++i >= argc) { invalid_param = true; break; } params.grp_attn_n = std::stoi(argv[i]); } else if (arg == "--grp-attn-w" || arg == "-gaw") { if (++i >= argc) { invalid_param = true; break; } params.grp_attn_w = std::stoi(argv[i]); } else if (arg == "--threads-batch" || arg == "-tb") { if (++i >= argc) { invalid_param = true; break; } params.n_threads_batch = std::stoi(argv[i]); } else if (arg == "--threads-http") { if (++i >= argc) { invalid_param = true; break; } sparams.n_threads_http = std::stoi(argv[i]); } else if (arg == "-b" || arg == "--batch-size") { if (++i >= argc) { invalid_param = true; break; } params.n_batch = std::stoi(argv[i]); } else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") { if (++i >= argc) { invalid_param = true; break; } if (llama_supports_gpu_offload()) { params.n_gpu_layers = std::stoi(argv[i]); } else { LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. " "See main README.md for information on enabling GPU BLAS support", {{"n_gpu_layers", params.n_gpu_layers}}); } } else if (arg == "--split-mode" || arg == "-sm") { if (++i >= argc) { invalid_param = true; break; } std::string arg_next = argv[i]; if (arg_next == "none") { params.split_mode = LLAMA_SPLIT_MODE_NONE; } else if (arg_next == "layer") { params.split_mode = LLAMA_SPLIT_MODE_LAYER; } else if (arg_next == "row") { params.split_mode = LLAMA_SPLIT_MODE_ROW; } else { invalid_param = true; break; } #ifndef GGML_USE_CUBLAS fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Setting the split mode has no effect.\n"); #endif // GGML_USE_CUBLAS } else if (arg == "--tensor-split" || arg == "-ts") { if (++i >= argc) { invalid_param = true; break; } #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL) std::string arg_next = argv[i]; // split string by , and / const std::regex regex{R"([,/]+)"}; std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1}; std::vector split_arg{it, {}}; GGML_ASSERT(split_arg.size() <= llama_max_devices()); for (size_t i_device = 0; i_device < llama_max_devices(); ++i_device) { if (i_device < split_arg.size()) { params.tensor_split[i_device] = std::stof(split_arg[i_device]); } else { params.tensor_split[i_device] = 0.0f; } } #else LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n", {}); #endif // GGML_USE_CUBLAS } else if (arg == "--main-gpu" || arg == "-mg") { if (++i >= argc) { invalid_param = true; break; } #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL) params.main_gpu = std::stoi(argv[i]); #else LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.", {}); #endif } else if (arg == "--lora") { if (++i >= argc) { invalid_param = true; break; } params.lora_adapter.emplace_back(argv[i], 1.0f); params.use_mmap = false; } else if (arg == "--lora-scaled") { if (++i >= argc) { invalid_param = true; break; } const char * lora_adapter = argv[i]; if (++i >= argc) { invalid_param = true; break; } params.lora_adapter.emplace_back(lora_adapter, std::stof(argv[i])); params.use_mmap = false; } else if (arg == "--lora-base") { if (++i >= argc) { invalid_param = true; break; } params.lora_base = argv[i]; } else if (arg == "-v" || arg == "--verbose") { #if SERVER_VERBOSE != 1 LOG_WARNING("server.cpp is not built with verbose logging.", {}); #else server_verbose = true; #endif } else if (arg == "--mlock") { params.use_mlock = true; } else if (arg == "--no-mmap") { params.use_mmap = false; } else if (arg == "--numa") { if (++i >= argc) { invalid_param = true; break; } else { std::string value(argv[i]); /**/ if (value == "distribute" || value == "" ) { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; } else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; } else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; } else { invalid_param = true; break; } } } else if (arg == "--embedding") { params.embedding = true; } else if (arg == "-cb" || arg == "--cont-batching") { params.cont_batching = true; } else if (arg == "-np" || arg == "--parallel") { if (++i >= argc) { invalid_param = true; break; } params.n_parallel = std::stoi(argv[i]); } else if (arg == "-n" || arg == "--n-predict") { if (++i >= argc) { invalid_param = true; break; } params.n_predict = std::stoi(argv[i]); } else if (arg == "-spf" || arg == "--system-prompt-file") { if (++i >= argc) { invalid_param = true; break; } std::ifstream file(argv[i]); if (!file) { fprintf(stderr, "error: failed to open file '%s'\n", argv[i]); invalid_param = true; break; } std::string systm_content; std::copy( std::istreambuf_iterator(file), std::istreambuf_iterator(), std::back_inserter(systm_content) ); llama.system_prompt_process(json::parse(systm_content)); } else if (arg == "-ctk" || arg == "--cache-type-k") { params.cache_type_k = argv[++i]; } else if (arg == "-ctv" || arg == "--cache-type-v") { params.cache_type_v = argv[++i]; } else if(arg == "--mmproj") { if (++i >= argc) { invalid_param = true; break; } params.mmproj = argv[i]; } else if (arg == "--log-format") { if (++i >= argc) { invalid_param = true; break; } if (std::strcmp(argv[i], "json") == 0) { server_log_json = true; } else if (std::strcmp(argv[i], "text") == 0) { server_log_json = false; } else { invalid_param = true; break; } } else if (arg == "--log-disable") { log_set_target(stdout); LOG_INFO("logging to file is disabled.", {}); } else if (arg == "--slots-endpoint-disable") { sparams.slots_endpoint = false; } else if (arg == "--metrics") { sparams.metrics_endpoint = true; } else if (arg == "--chat-template") { if (++i >= argc) { invalid_param = true; break; } if (!verify_custom_template(argv[i])) { fprintf(stderr, "error: the supplied chat template is not supported: %s\n", argv[i]); fprintf(stderr, "note: llama.cpp does not use jinja parser, we only support commonly used templates\n"); invalid_param = true; break; } sparams.chat_template = argv[i]; } else if (arg == "--override-kv") { if (++i >= argc) { invalid_param = true; break; } char * sep = strchr(argv[i], '='); if (sep == nullptr || sep - argv[i] >= 128) { fprintf(stderr, "error: Malformed KV override: %s\n", argv[i]); invalid_param = true; break; } struct llama_model_kv_override kvo; std::strncpy(kvo.key, argv[i], sep - argv[i]); kvo.key[sep - argv[i]] = 0; sep++; if (strncmp(sep, "int:", 4) == 0) { sep += 4; kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT; kvo.int_value = std::atol(sep); } else if (strncmp(sep, "float:", 6) == 0) { sep += 6; kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT; kvo.float_value = std::atof(sep); } else if (strncmp(sep, "bool:", 5) == 0) { sep += 5; kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL; if (std::strcmp(sep, "true") == 0) { kvo.bool_value = true; } else if (std::strcmp(sep, "false") == 0) { kvo.bool_value = false; } else { fprintf(stderr, "error: Invalid boolean value for KV override: %s\n", argv[i]); invalid_param = true; break; } } else { fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]); invalid_param = true; break; } params.kv_overrides.push_back(kvo); } else { fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); server_print_usage(argv[0], default_params, default_sparams); exit(1); } } if (!params.kv_overrides.empty()) { params.kv_overrides.emplace_back(); params.kv_overrides.back().key[0] = 0; } if (invalid_param) { fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); server_print_usage(argv[0], default_params, default_sparams); exit(1); } } /* llama.cpp completion api semantics */ static json format_partial_response( llama_server_context &llama, server_slot *slot, const std::string &content, const std::vector &probs ) { json res = json { {"content", content }, {"stop", false}, {"slot_id", slot->id }, {"multimodal", llama.multimodal } }; if (slot->sparams.n_probs > 0) { res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs); } return res; } static json format_tokenizer_response(const std::vector &tokens) { return json { {"tokens", tokens} }; } static json format_detokenized_response(std::string content) { return json { {"content", content} }; } static void log_server_request(const httplib::Request &req, const httplib::Response &res) { // skip GH copilot requests when using default port if (req.path == "/v1/health" || req.path == "/v1/completions") { return; } LOG_INFO("request", { {"remote_addr", req.remote_addr}, {"remote_port", req.remote_port}, {"status", res.status}, {"method", req.method}, {"path", req.path}, {"params", req.params}, }); LOG_VERBOSE("request", { {"request", req.body}, {"response", res.body}, }); } static void append_to_generated_text_from_generated_token_probs(llama_server_context &llama, server_slot *slot) { auto & gtps = slot->generated_token_probs; auto translator = token_translator{llama.ctx}; auto add_strlen = [=](size_t sum, const completion_token_output & cto) { return sum + translator(cto).size(); }; const size_t len = std::accumulate(gtps.begin(), gtps.end(), size_t(0), add_strlen); if (slot->generated_text.capacity() < slot->generated_text.size() + len) { slot->generated_text.reserve(slot->generated_text.size() + len); } for (const completion_token_output & cto : gtps) { slot->generated_text += translator(cto); } } std::function shutdown_handler; std::atomic_flag is_terminating = ATOMIC_FLAG_INIT; inline void signal_handler(int signal) { if (is_terminating.test_and_set()) { // in case it hangs, we can force terminate the server by hitting Ctrl+C twice // this is for better developer experience, we can remove when the server is stable enough fprintf(stderr, "Received second interrupt, terminating immediately.\n"); exit(1); } shutdown_handler(signal); } int main(int argc, char **argv) { #if SERVER_VERBOSE != 1 log_disable(); #endif // own arguments required by this example gpt_params params; server_params sparams; // struct that contains llama context and inference llama_server_context llama; server_params_parse(argc, argv, sparams, params, llama); if (params.model_alias == "unknown") { params.model_alias = params.model; } llama_backend_init(); llama_numa_init(params.numa); LOG_INFO("build info", {{"build", LLAMA_BUILD_NUMBER}, {"commit", LLAMA_COMMIT}}); LOG_INFO("system info", { {"n_threads", params.n_threads}, {"n_threads_batch", params.n_threads_batch}, {"total_threads", std::thread::hardware_concurrency()}, {"system_info", llama_print_system_info()}, }); httplib::Server svr; std::atomic state{SERVER_STATE_LOADING_MODEL}; svr.set_default_headers({{"Server", "llama.cpp"}}); // CORS preflight svr.Options(R"(.*)", [](const httplib::Request &req, httplib::Response &res) { res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); res.set_header("Access-Control-Allow-Credentials", "true"); res.set_header("Access-Control-Allow-Methods", "POST"); res.set_header("Access-Control-Allow-Headers", "*"); }); svr.Get("/health", [&](const httplib::Request& req, httplib::Response& res) { server_state current_state = state.load(); switch(current_state) { case SERVER_STATE_READY: { // request slots data using task queue task_server task; task.id = llama.queue_tasks.get_new_id(); task.type = TASK_TYPE_METRICS; task.target_id = -1; llama.queue_results.add_waiting_task_id(task.id); llama.queue_tasks.post(task); // get the result task_result result = llama.queue_results.recv(task.id); llama.queue_results.remove_waiting_task_id(task.id); int n_idle_slots = result.result_json["idle"]; int n_processing_slots = result.result_json["processing"]; json health = { {"status", "ok"}, {"slots_idle", n_idle_slots}, {"slots_processing", n_processing_slots}}; res.status = 200; // HTTP OK if (sparams.slots_endpoint && req.has_param("include_slots")) { health["slots"] = result.result_json["slots"]; } if (n_idle_slots == 0) { health["status"] = "no slot available"; if (req.has_param("fail_on_no_slot")) { res.status = 503; // HTTP Service Unavailable } } res.set_content(health.dump(), "application/json"); break; } case SERVER_STATE_LOADING_MODEL: res.set_content(R"({"status": "loading model"})", "application/json"); res.status = 503; // HTTP Service Unavailable break; case SERVER_STATE_ERROR: res.set_content(R"({"status": "error", "error": "Model failed to load"})", "application/json"); res.status = 500; // HTTP Internal Server Error break; } }); if (sparams.slots_endpoint) { svr.Get("/slots", [&](const httplib::Request&, httplib::Response& res) { // request slots data using task queue task_server task; task.id = llama.queue_tasks.get_new_id(); task.type = TASK_TYPE_METRICS; task.target_id = -1; llama.queue_results.add_waiting_task_id(task.id); llama.queue_tasks.post(task); // get the result task_result result = llama.queue_results.recv(task.id); llama.queue_results.remove_waiting_task_id(task.id); res.set_content(result.result_json["slots"].dump(), "application/json"); res.status = 200; // HTTP OK }); } if (sparams.metrics_endpoint) { svr.Get("/metrics", [&](const httplib::Request&, httplib::Response& res) { // request slots data using task queue task_server task; task.id = llama.queue_tasks.get_new_id(); task.type = TASK_TYPE_METRICS; task.target_id = -1; llama.queue_results.add_waiting_task_id(task.id); llama.queue_tasks.post(task); // get the result task_result result = llama.queue_results.recv(task.id); llama.queue_results.remove_waiting_task_id(task.id); json data = result.result_json; uint64_t n_prompt_tokens_processed = data["n_prompt_tokens_processed"]; uint64_t t_prompt_processing = data["t_prompt_processing"]; uint64_t n_tokens_predicted = data["n_tokens_predicted"]; uint64_t t_tokens_generation = data["t_tokens_generation"]; int32_t kv_cache_used_cells = data["kv_cache_used_cells"]; // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names json all_metrics_def = json { {"counter", {{ {"name", "prompt_tokens_total"}, {"help", "Number of prompt tokens processed."}, {"value", data["n_prompt_tokens_processed_total"]} }, { {"name", "tokens_predicted_total"}, {"help", "Number of generation tokens processed."}, {"value", data["n_tokens_predicted_total"]} }}}, {"gauge", {{ {"name", "prompt_tokens_seconds"}, {"help", "Average prompt throughput in tokens/s."}, {"value", n_prompt_tokens_processed ? 1e3 / t_prompt_processing * n_prompt_tokens_processed : 0} },{ {"name", "predicted_tokens_seconds"}, {"help", "Average generation throughput in tokens/s."}, {"value", n_tokens_predicted ? 1e3 / t_tokens_generation * n_tokens_predicted : 0} },{ {"name", "kv_cache_usage_ratio"}, {"help", "KV-cache usage. 1 means 100 percent usage."}, {"value", 1. * kv_cache_used_cells / params.n_ctx} },{ {"name", "kv_cache_tokens"}, {"help", "KV-cache tokens."}, {"value", data["kv_cache_tokens_count"]} },{ {"name", "requests_processing"}, {"help", "Number of request processing."}, {"value", data["processing"]} },{ {"name", "requests_deferred"}, {"help", "Number of request deferred."}, {"value", data["deferred"]} }}} }; std::stringstream prometheus; for (const auto& el : all_metrics_def.items()) { const auto& type = el.key(); const auto& metrics_def = el.value(); for (const auto& metric_def : metrics_def) { std::string name = metric_def["name"]; std::string help = metric_def["help"]; auto value = json_value(metric_def, "value", 0); prometheus << "# HELP llamacpp:" << name << " " << help << "\n" << "# TYPE llamacpp:" << name << " " << type << "\n" << "llamacpp:" << name << " " << value << "\n"; } } res.set_content(prometheus.str(), "text/plain; version=0.0.4"); res.status = 200; // HTTP OK }); } svr.set_logger(log_server_request); svr.set_exception_handler([](const httplib::Request &, httplib::Response &res, std::exception_ptr ep) { const char fmt[] = "500 Internal Server Error\n%s"; char buf[BUFSIZ]; try { std::rethrow_exception(std::move(ep)); } catch (std::exception &e) { snprintf(buf, sizeof(buf), fmt, e.what()); } catch (...) { snprintf(buf, sizeof(buf), fmt, "Unknown Exception"); } res.set_content(buf, "text/plain; charset=utf-8"); res.status = 500; }); svr.set_error_handler([](const httplib::Request &, httplib::Response &res) { if (res.status == 401) { res.set_content("Unauthorized", "text/plain; charset=utf-8"); } if (res.status == 400) { res.set_content("Invalid request", "text/plain; charset=utf-8"); } else if (res.status == 404) { res.set_content("File Not Found", "text/plain; charset=utf-8"); res.status = 404; } }); // set timeouts and change hostname and port svr.set_read_timeout (sparams.read_timeout); svr.set_write_timeout(sparams.write_timeout); if (!svr.bind_to_port(sparams.hostname, sparams.port)) { fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", sparams.hostname.c_str(), sparams.port); return 1; } // Set the base directory for serving static files svr.set_base_dir(sparams.public_path); std::unordered_map log_data; log_data["hostname"] = sparams.hostname; log_data["port"] = std::to_string(sparams.port); if (sparams.api_keys.size() == 1) { log_data["api_key"] = "api_key: ****" + sparams.api_keys[0].substr(sparams.api_keys[0].length() - 4); } else if (sparams.api_keys.size() > 1) { log_data["api_key"] = "api_key: " + std::to_string(sparams.api_keys.size()) + " keys loaded"; } // load the model if (!llama.load_model(params)) { state.store(SERVER_STATE_ERROR); return 1; } else { llama.initialize(); state.store(SERVER_STATE_READY); LOG_INFO("model loaded", {}); } const auto model_meta = llama.model_meta(); if (sparams.chat_template.empty()) { // custom chat template is not supplied // check if the template comes with the model is supported by us llama.validate_model_chat_template(sparams); } // Middleware for API key validation auto validate_api_key = [&sparams](const httplib::Request &req, httplib::Response &res) -> bool { // If API key is not set, skip validation if (sparams.api_keys.empty()) { return true; } // Check for API key in the header auto auth_header = req.get_header_value("Authorization"); std::string prefix = "Bearer "; if (auth_header.substr(0, prefix.size()) == prefix) { std::string received_api_key = auth_header.substr(prefix.size()); if (std::find(sparams.api_keys.begin(), sparams.api_keys.end(), received_api_key) != sparams.api_keys.end()) { return true; // API key is valid } } // API key is invalid or not provided res.set_content("Unauthorized: Invalid API Key", "text/plain; charset=utf-8"); res.status = 401; // Unauthorized LOG_WARNING("Unauthorized: Invalid API Key", {}); return false; }; // this is only called if no index.html is found in the public --path svr.Get("/", [](const httplib::Request &, httplib::Response &res) { res.set_content(reinterpret_cast(&index_html), index_html_len, "text/html; charset=utf-8"); return false; }); // this is only called if no index.js is found in the public --path svr.Get("/index.js", [](const httplib::Request &, httplib::Response &res) { res.set_content(reinterpret_cast(&index_js), index_js_len, "text/javascript; charset=utf-8"); return false; }); // this is only called if no index.html is found in the public --path svr.Get("/completion.js", [](const httplib::Request &, httplib::Response &res) { res.set_content(reinterpret_cast(&completion_js), completion_js_len, "application/javascript; charset=utf-8"); return false; }); // this is only called if no index.html is found in the public --path svr.Get("/json-schema-to-grammar.mjs", [](const httplib::Request &, httplib::Response &res) { res.set_content(reinterpret_cast(&json_schema_to_grammar_mjs), json_schema_to_grammar_mjs_len, "application/javascript; charset=utf-8"); return false; }); svr.Get("/props", [&llama](const httplib::Request & req, httplib::Response &res) { res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); json data = { { "user_name", llama.name_user.c_str() }, { "assistant_name", llama.name_assistant.c_str() }, { "default_generation_settings", llama.default_generation_settings_for_props }, { "total_slots", llama.params.n_parallel } }; res.set_content(data.dump(), "application/json; charset=utf-8"); }); svr.Post("/completion", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res) { res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); if (!validate_api_key(req, res)) { return; } json data = json::parse(req.body); const int task_id = llama.queue_tasks.get_new_id(); llama.queue_results.add_waiting_task_id(task_id); llama.request_completion(task_id, data, false, false, -1); if (!json_value(data, "stream", false)) { std::string completion_text; task_result result = llama.queue_results.recv(task_id); if (!result.error && result.stop) { res.set_content(result.result_json.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8"); } else { res.status = 404; res.set_content(result.result_json["content"], "text/plain; charset=utf-8"); } llama.queue_results.remove_waiting_task_id(task_id); } else { const auto chunked_content_provider = [task_id, &llama](size_t, httplib::DataSink & sink) { while (true) { task_result result = llama.queue_results.recv(task_id); if (!result.error) { const std::string str = "data: " + result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) + "\n\n"; LOG_VERBOSE("data stream", { { "to_send", str } }); if (!sink.write(str.c_str(), str.size())) { llama.queue_results.remove_waiting_task_id(task_id); return false; } if (result.stop) { break; } } else { const std::string str = "error: " + result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) + "\n\n"; LOG_VERBOSE("data stream", { { "to_send", str } }); if (!sink.write(str.c_str(), str.size())) { llama.queue_results.remove_waiting_task_id(task_id); return false; } break; } } llama.queue_results.remove_waiting_task_id(task_id); sink.done(); return true; }; auto on_complete = [task_id, &llama] (bool) { // cancel llama.request_cancel(task_id); llama.queue_results.remove_waiting_task_id(task_id); }; res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete); } }); svr.Get("/v1/models", [¶ms, &model_meta](const httplib::Request& req, httplib::Response& res) { res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); std::time_t t = std::time(0); json models = { {"object", "list"}, {"data", { { {"id", params.model_alias}, {"object", "model"}, {"created", t}, {"owned_by", "llamacpp"}, {"meta", model_meta} }, }} }; res.set_content(models.dump(), "application/json; charset=utf-8"); }); const auto chat_completions = [&llama, &validate_api_key, &sparams](const httplib::Request &req, httplib::Response &res) { res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); if (!validate_api_key(req, res)) { return; } json data = oaicompat_completion_params_parse(llama.model, json::parse(req.body), sparams.chat_template); const int task_id = llama.queue_tasks.get_new_id(); llama.queue_results.add_waiting_task_id(task_id); llama.request_completion(task_id, data, false, false, -1); if (!json_value(data, "stream", false)) { std::string completion_text; task_result result = llama.queue_results.recv(task_id); if (!result.error && result.stop) { json oaicompat_result = format_final_response_oaicompat(data, result); res.set_content(oaicompat_result.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8"); } else { res.status = 500; res.set_content(result.result_json["content"], "text/plain; charset=utf-8"); } llama.queue_results.remove_waiting_task_id(task_id); } else { const auto chunked_content_provider = [task_id, &llama](size_t, httplib::DataSink &sink) { while (true) { task_result llama_result = llama.queue_results.recv(task_id); if (!llama_result.error) { std::vector result_array = format_partial_response_oaicompat( llama_result); for (auto it = result_array.begin(); it != result_array.end(); ++it) { if (!it->empty()) { const std::string str = "data: " + it->dump(-1, ' ', false, json::error_handler_t::replace) + "\n\n"; LOG_VERBOSE("data stream", {{"to_send", str}}); if (!sink.write(str.c_str(), str.size())) { llama.queue_results.remove_waiting_task_id(task_id); return false; } } } if (llama_result.stop) { break; } } else { const std::string str = "error: " + llama_result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) + "\n\n"; LOG_VERBOSE("data stream", {{"to_send", str}}); if (!sink.write(str.c_str(), str.size())) { llama.queue_results.remove_waiting_task_id(task_id); return false; } break; } } sink.done(); llama.queue_results.remove_waiting_task_id(task_id); return true; }; auto on_complete = [task_id, &llama](bool) { // cancel request llama.request_cancel(task_id); llama.queue_results.remove_waiting_task_id(task_id); }; res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete); } }; svr.Post("/chat/completions", chat_completions); svr.Post("/v1/chat/completions", chat_completions); svr.Post("/infill", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res) { res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); if (!validate_api_key(req, res)) { return; } json data = json::parse(req.body); const int task_id = llama.queue_tasks.get_new_id(); llama.queue_results.add_waiting_task_id(task_id); llama.request_completion(task_id, data, true, false, -1); if (!json_value(data, "stream", false)) { std::string completion_text; task_result result = llama.queue_results.recv(task_id); if (!result.error && result.stop) { res.set_content(result.result_json.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8"); } else { res.status = 404; res.set_content(result.result_json["content"], "text/plain; charset=utf-8"); } llama.queue_results.remove_waiting_task_id(task_id); } else { const auto chunked_content_provider = [task_id, &llama](size_t, httplib::DataSink & sink) { while (true) { task_result result = llama.queue_results.recv(task_id); if (!result.error) { const std::string str = "data: " + result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) + "\n\n"; LOG_VERBOSE("data stream", { { "to_send", str } }); if (!sink.write(str.c_str(), str.size())) { llama.queue_results.remove_waiting_task_id(task_id); return false; } if (result.stop) { break; } } else { break; } } llama.queue_results.remove_waiting_task_id(task_id); sink.done(); return true; }; auto on_complete = [task_id, &llama] (bool) { // cancel llama.request_cancel(task_id); }; res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete); } }); svr.Options(R"(/.*)", [](const httplib::Request &, httplib::Response &res) { return res.set_content("", "application/json; charset=utf-8"); }); svr.Post("/tokenize", [&llama](const httplib::Request &req, httplib::Response &res) { res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); const json body = json::parse(req.body); std::vector tokens; if (body.count("content") != 0) { tokens = llama.tokenize(body["content"], false); } const json data = format_tokenizer_response(tokens); return res.set_content(data.dump(), "application/json; charset=utf-8"); }); svr.Post("/detokenize", [&llama](const httplib::Request &req, httplib::Response &res) { res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); const json body = json::parse(req.body); std::string content; if (body.count("tokens") != 0) { const std::vector tokens = body["tokens"]; content = tokens_to_str(llama.ctx, tokens.cbegin(), tokens.cend()); } const json data = format_detokenized_response(content); return res.set_content(data.dump(), "application/json; charset=utf-8"); }); svr.Post("/embedding", [&llama](const httplib::Request &req, httplib::Response &res) { res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); const json body = json::parse(req.body); json prompt; if (body.count("content") != 0) { prompt = body["content"]; } else { prompt = ""; } json image_data; if (body.count("image_data") != 0) { image_data = body["image_data"]; } else { image_data = ""; } // create and queue the task const int task_id = llama.queue_tasks.get_new_id(); llama.queue_results.add_waiting_task_id(task_id); llama.request_completion(task_id, { {"prompt", prompt}, { "n_predict", 0}, {"image_data", image_data} }, false, true, -1); // get the result task_result result = llama.queue_results.recv(task_id); llama.queue_results.remove_waiting_task_id(task_id); // send the result return res.set_content(result.result_json.dump(), "application/json; charset=utf-8"); }); svr.Post("/v1/embeddings", [&llama](const httplib::Request &req, httplib::Response &res) { res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); const json body = json::parse(req.body); json prompt; if (body.count("input") != 0) { prompt = body["input"]; // batch if(prompt.is_array()) { json data = json::array(); int i = 0; for (const json &elem : prompt) { const int task_id = llama.queue_tasks.get_new_id(); llama.queue_results.add_waiting_task_id(task_id); llama.request_completion(task_id, { {"prompt", elem}, { "n_predict", 0} }, false, true, -1); // get the result task_result result = llama.queue_results.recv(task_id); llama.queue_results.remove_waiting_task_id(task_id); json embedding = json{ {"embedding", json_value(result.result_json, "embedding", json::array())}, {"index", i++}, {"object", "embedding"} }; data.push_back(embedding); } json result = format_embeddings_response_oaicompat(body, data); return res.set_content(result.dump(), "application/json; charset=utf-8"); } } else { prompt = ""; } // create and queue the task const int task_id = llama.queue_tasks.get_new_id(); llama.queue_results.add_waiting_task_id(task_id); llama.request_completion(task_id, { {"prompt", prompt}, { "n_predict", 0}}, false, true, -1); // get the result task_result result = llama.queue_results.recv(task_id); llama.queue_results.remove_waiting_task_id(task_id); json data = json::array({json{ {"embedding", json_value(result.result_json, "embedding", json::array())}, {"index", 0}, {"object", "embedding"} }} ); json root = format_embeddings_response_oaicompat(body, data); // send the result return res.set_content(root.dump(), "application/json; charset=utf-8"); }); // GG: if I put the main loop inside a thread, it crashes on the first request when build in Debug!? // "Bus error: 10" - this is on macOS, it does not crash on Linux //std::thread t2([&]() /*{ bool running = true; while (running) { running = llama.update_slots(); } }*/ //); if (sparams.n_threads_http < 1) { // +2 threads for monitoring endpoints sparams.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1); } log_data["n_threads_http"] = std::to_string(sparams.n_threads_http); svr.new_task_queue = [&sparams] { return new httplib::ThreadPool(sparams.n_threads_http); }; LOG_INFO("HTTP server listening", log_data); // run the HTTP server in a thread - see comment below std::thread t([&]() { if (!svr.listen_after_bind()) { state.store(SERVER_STATE_ERROR); return 1; } return 0; }); llama.queue_tasks.on_new_task(std::bind( &llama_server_context::process_single_task, &llama, std::placeholders::_1)); llama.queue_tasks.on_finish_multitask(std::bind( &llama_server_context::on_finish_multitask, &llama, std::placeholders::_1)); llama.queue_tasks.on_run_slots(std::bind( &llama_server_context::update_slots, &llama)); llama.queue_results.on_multitask_update(std::bind( &llama_server_queue::update_multitask, &llama.queue_tasks, std::placeholders::_1, std::placeholders::_2, std::placeholders::_3 )); shutdown_handler = [&](int) { llama.queue_tasks.terminate(); }; #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) struct sigaction sigint_action; sigint_action.sa_handler = signal_handler; sigemptyset (&sigint_action.sa_mask); sigint_action.sa_flags = 0; sigaction(SIGINT, &sigint_action, NULL); #elif defined (_WIN32) auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL { return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false; }; SetConsoleCtrlHandler(reinterpret_cast(console_ctrl_handler), true); #endif llama.queue_tasks.start_loop(); svr.stop(); t.join(); llama_backend_free(); return 0; }