#include "arg.h" #include "common.h" #include "llama.h" #include #include #include #include static void print_usage(int, char ** argv) { LOG_TEE("\nexample usage:\n"); LOG_TEE("\n %s -m model.gguf -p \"Hello my name is\" -n 32 -np 4\n", argv[0]); LOG_TEE("\n"); } int main(int argc, char ** argv) { gpt_params params; params.prompt = "Hello my name is"; params.n_predict = 32; if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON, print_usage)) { return 1; } // number of parallel batches int n_parallel = params.n_parallel; // total length of the sequences including the prompt int n_predict = params.n_predict; // init LLM llama_backend_init(); llama_numa_init(params.numa); // initialize the model llama_model_params model_params = llama_model_params_from_gpt_params(params); llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params); if (model == NULL) { fprintf(stderr , "%s: error: unable to load model\n" , __func__); return 1; } // tokenize the prompt std::vector tokens_list; tokens_list = ::llama_tokenize(model, params.prompt, true); const int n_kv_req = tokens_list.size() + (n_predict - tokens_list.size())*n_parallel; // initialize the context llama_context_params ctx_params = llama_context_params_from_gpt_params(params); ctx_params.n_ctx = n_kv_req; ctx_params.n_batch = std::max(n_predict, n_parallel); llama_context * ctx = llama_new_context_with_model(model, ctx_params); auto sparams = llama_sampler_chain_default_params(); llama_sampler * smpl = llama_sampler_chain_init(sparams); llama_sampler_chain_add(smpl, llama_sampler_init_top_k(params.sparams.top_k)); llama_sampler_chain_add(smpl, llama_sampler_init_top_p(params.sparams.top_p, params.sparams.min_keep)); llama_sampler_chain_add(smpl, llama_sampler_init_temp (params.sparams.temp)); llama_sampler_chain_add(smpl, llama_sampler_init_dist (params.sparams.seed)); if (ctx == NULL) { fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__); return 1; } const int n_ctx = llama_n_ctx(ctx); LOG_TEE("\n%s: n_predict = %d, n_ctx = %d, n_batch = %u, n_parallel = %d, n_kv_req = %d\n", __func__, n_predict, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req); // make sure the KV cache is big enough to hold all the prompt and generated tokens if (n_kv_req > n_ctx) { LOG_TEE("%s: error: n_kv_req (%d) > n_ctx, the required KV cache size is not big enough\n", __func__, n_kv_req); LOG_TEE("%s: either reduce n_parallel or increase n_ctx\n", __func__); return 1; } // print the prompt token-by-token fprintf(stderr, "\n"); for (auto id : tokens_list) { fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str()); } fflush(stderr); // create a llama_batch // we use this object to submit token data for decoding llama_batch batch = llama_batch_init(std::max(tokens_list.size(), (size_t) n_parallel), 0, n_parallel); std::vector seq_ids(n_parallel, 0); for (int32_t i = 0; i < n_parallel; ++i) { seq_ids[i] = i; } // evaluate the initial prompt for (size_t i = 0; i < tokens_list.size(); ++i) { llama_batch_add(batch, tokens_list[i], i, seq_ids, false); } GGML_ASSERT(batch.n_tokens == (int) tokens_list.size()); if (llama_model_has_encoder(model)) { if (llama_encode(ctx, batch)) { LOG_TEE("%s : failed to eval\n", __func__); return 1; } llama_token decoder_start_token_id = llama_model_decoder_start_token(model); if (decoder_start_token_id == -1) { decoder_start_token_id = llama_token_bos(model); } llama_batch_clear(batch); llama_batch_add(batch, decoder_start_token_id, 0, seq_ids, false); } // llama_decode will output logits only for the last token of the prompt batch.logits[batch.n_tokens - 1] = true; if (llama_decode(ctx, batch) != 0) { LOG_TEE("%s: llama_decode() failed\n", __func__); return 1; } //// assign the system KV cache to all parallel sequences //// this way, the parallel sequences will "reuse" the prompt tokens without having to copy them //for (int32_t i = 1; i < n_parallel; ++i) { // llama_kv_cache_seq_cp(ctx, 0, i, -1, -1); //} if (n_parallel > 1) { LOG_TEE("\n\n%s: generating %d sequences ...\n", __func__, n_parallel); } // main loop // we will store the parallel decoded sequences in this vector std::vector streams(n_parallel); // remember the batch index of the last token for each parallel sequence // we need this to determine which logits to sample from std::vector i_batch(n_parallel, batch.n_tokens - 1); int n_cur = batch.n_tokens; int n_decode = 0; const auto t_main_start = ggml_time_us(); while (n_cur <= n_predict) { // prepare the next batch llama_batch_clear(batch); // sample the next token for each parallel sequence / stream for (int32_t i = 0; i < n_parallel; ++i) { if (i_batch[i] < 0) { // the stream has already finished continue; } const llama_token new_token_id = llama_sampler_sample(smpl, ctx, i_batch[i]); // is it an end of generation? -> mark the stream as finished if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) { i_batch[i] = -1; LOG_TEE("\n"); if (n_parallel > 1) { LOG_TEE("%s: stream %d finished at n_cur = %d", __func__, i, n_cur); } continue; } // if there is only one stream, we print immediately to stdout if (n_parallel == 1) { LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str()); fflush(stdout); } streams[i] += llama_token_to_piece(ctx, new_token_id); i_batch[i] = batch.n_tokens; // push this new token for next evaluation llama_batch_add(batch, new_token_id, n_cur, { i }, true); n_decode += 1; } // all streams are finished if (batch.n_tokens == 0) { break; } n_cur += 1; // evaluate the current batch with the transformer model if (llama_decode(ctx, batch)) { fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1); return 1; } } LOG_TEE("\n"); if (n_parallel > 1) { LOG_TEE("\n"); for (int32_t i = 0; i < n_parallel; ++i) { LOG_TEE("sequence %d:\n\n%s%s\n\n", i, params.prompt.c_str(), streams[i].c_str()); } } const auto t_main_end = ggml_time_us(); LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n", __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f)); LOG_TEE("\n"); llama_perf_print(smpl, LLAMA_PERF_TYPE_SAMPLER_CHAIN); llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT); fprintf(stderr, "\n"); llama_batch_free(batch); llama_sampler_free(smpl); llama_free(ctx); llama_free_model(model); llama_backend_free(); return 0; }