// NOTE: This is modified from clip.cpp only for LLaVA, // so there might be still unnecessary artifacts hanging around // I'll gradually clean and extend it // Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch #include "clip.h" #include "ggml.h" #include "ggml-cpu.h" #include "ggml-alloc.h" #include "ggml-backend.h" #ifdef GGML_USE_CUDA #include "ggml-cuda.h" #endif #ifdef GGML_USE_METAL #include "ggml-metal.h" #endif #ifdef GGML_USE_CANN #include "ggml-cann.h" #endif #ifdef GGML_USE_VULKAN #include "ggml-vulkan.h" #endif #define STB_IMAGE_IMPLEMENTATION #include "stb_image.h" #include #include #include #include #include #include #include #include #include #include #include #include #if defined(LLAVA_LOG_OFF) # define LOG_INF(...) # define LOG_WRN(...) # define LOG_ERR(...) # define LOG_DBG(...) #else // defined(LLAVA_LOG_OFF) # define LOG_INF(...) do { fprintf(stdout, __VA_ARGS__); } while (0) # define LOG_WRN(...) do { fprintf(stderr, __VA_ARGS__); } while (0) # define LOG_ERR(...) do { fprintf(stderr, __VA_ARGS__); } while (0) # define LOG_DBG(...) do { fprintf(stdout, __VA_ARGS__); } while (0) #endif // defined(LLAVA_LOG_OFF) //#define CLIP_DEBUG_FUNCTIONS // RGB uint8 image struct clip_image_u8 { int nx; int ny; std::vector buf; }; // RGB float32 image (NHWC) // Memory layout: RGBRGBRGB... struct clip_image_f32 { int nx; int ny; std::vector buf; }; static std::string format(const char * fmt, ...) { va_list ap; va_list ap2; va_start(ap, fmt); va_copy(ap2, ap); int size = vsnprintf(NULL, 0, fmt, ap); GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT std::vector buf(size + 1); int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2); GGML_ASSERT(size2 == size); va_end(ap2); va_end(ap); return std::string(buf.data(), buf.size()); } // // key constants // #define KEY_FTYPE "general.file_type" #define KEY_NAME "general.name" #define KEY_DESCRIPTION "general.description" #define KEY_HAS_TEXT_ENC "clip.has_text_encoder" #define KEY_HAS_VIS_ENC "clip.has_vision_encoder" #define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector" #define KEY_HAS_MINICPMV_PROJ "clip.has_minicpmv_projector" #define KEY_MINICPMV_VERSION "clip.minicpmv_version" #define KEY_USE_GELU "clip.use_gelu" #define KEY_N_EMBD "clip.%s.embedding_length" #define KEY_N_FF "clip.%s.feed_forward_length" #define KEY_N_BLOCK "clip.%s.block_count" #define KEY_N_HEAD "clip.%s.attention.head_count" #define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon" #define KEY_PROJ_DIM "clip.%s.projection_dim" #define KEY_TOKENS "tokenizer.ggml.tokens" #define KEY_N_POSITIONS "clip.text.context_length" #define KEY_IMAGE_SIZE "clip.vision.image_size" #define KEY_PATCH_SIZE "clip.vision.patch_size" #define KEY_IMAGE_MEAN "clip.vision.image_mean" #define KEY_IMAGE_STD "clip.vision.image_std" #define KEY_PROJ_TYPE "clip.projector_type" #define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type" #define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints" #define KEY_IMAGE_CROP_RESOLUTION "clip.vision.image_crop_resolution" // // tensor name constants // #define TN_TOKEN_EMBD "%s.token_embd.weight" #define TN_POS_EMBD "%s.position_embd.weight" #define TN_CLASS_EMBD "v.class_embd" #define TN_PATCH_EMBD "v.patch_embd.weight" #define TN_PATCH_BIAS "v.patch_embd.bias" #define TN_ATTN_K "%s.blk.%d.attn_k.%s" #define TN_ATTN_Q "%s.blk.%d.attn_q.%s" #define TN_ATTN_V "%s.blk.%d.attn_v.%s" #define TN_ATTN_OUTPUT "%s.blk.%d.attn_out.%s" #define TN_FFN_DOWN "%s.blk.%d.ffn_down.%s" #define TN_FFN_UP "%s.blk.%d.ffn_up.%s" #define TN_LN_1 "%s.blk.%d.ln1.%s" #define TN_LN_2 "%s.blk.%d.ln2.%s" #define TN_LN_PRE "%s.pre_ln.%s" #define TN_LN_POST "%s.post_ln.%s" #define TN_TEXT_PROJ "text_projection.weight" #define TN_VIS_PROJ "visual_projection.weight" #define TN_LLAVA_PROJ "mm.%d.%s" #define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s" #define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s" #define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s" #define TN_IMAGE_NEWLINE "model.image_newline" #define TN_MINICPMV_POS_EMBD_K "resampler.pos_embed_k" #define TN_MINICPMV_QUERY "resampler.query" #define TN_MINICPMV_PROJ "resampler.proj.weight" #define TN_MINICPMV_KV_PROJ "resampler.kv.weight" #define TN_MINICPMV_ATTN "resampler.attn.%s.%s" #define TN_MINICPMV_LN "resampler.ln_%s.%s" enum projector_type { PROJECTOR_TYPE_MLP, PROJECTOR_TYPE_MLP_NORM, PROJECTOR_TYPE_LDP, PROJECTOR_TYPE_LDPV2, PROJECTOR_TYPE_RESAMPLER, PROJECTOR_TYPE_UNKNOWN, }; static std::map PROJECTOR_TYPE_NAMES = { { PROJECTOR_TYPE_MLP, "mlp" }, { PROJECTOR_TYPE_LDP, "ldp" }, { PROJECTOR_TYPE_LDPV2, "ldpv2"}, { PROJECTOR_TYPE_RESAMPLER, "resampler"}, }; // // utilities to get data from a gguf file // static int get_key_idx(const gguf_context * ctx, const char * key) { int i = gguf_find_key(ctx, key); if (i == -1) { LOG_ERR("key %s not found in file\n", key); throw std::runtime_error(format("Missing required key: %s", key)); } return i; } static uint32_t get_u32(const gguf_context * ctx, const std::string & key) { const int i = get_key_idx(ctx, key.c_str()); return gguf_get_val_u32(ctx, i); } static float get_f32(const gguf_context * ctx, const std::string & key) { const int i = get_key_idx(ctx, key.c_str()); return gguf_get_val_f32(ctx, i); } static struct ggml_tensor * get_tensor(struct ggml_context * ctx, const std::string & name) { struct ggml_tensor * cur = ggml_get_tensor(ctx, name.c_str()); if (!cur) { throw std::runtime_error(format("%s: unable to find tensor %s\n", __func__, name.c_str())); } return cur; } static std::string get_ftype(int ftype) { return ggml_type_name(static_cast(ftype)); } static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) { switch (type) { case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]); case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]); case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]); case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]); case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]); case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]); case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]); case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]); case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]); case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]); case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false"; default: return format("unknown type %d", type); } } static void replace_all(std::string & s, const std::string & search, const std::string & replace) { if (search.empty()) { return; } std::string builder; builder.reserve(s.length()); size_t pos = 0; size_t last_pos = 0; while ((pos = s.find(search, last_pos)) != std::string::npos) { builder.append(s, last_pos, pos - last_pos); builder.append(replace); last_pos = pos + search.length(); } builder.append(s, last_pos, std::string::npos); s = std::move(builder); } static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) { const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i); switch (type) { case GGUF_TYPE_STRING: return gguf_get_val_str(ctx_gguf, i); case GGUF_TYPE_ARRAY: { const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i); int arr_n = gguf_get_arr_n(ctx_gguf, i); const void * data = gguf_get_arr_data(ctx_gguf, i); std::stringstream ss; ss << "["; for (int j = 0; j < arr_n; j++) { if (arr_type == GGUF_TYPE_STRING) { std::string val = gguf_get_arr_str(ctx_gguf, i, j); // escape quotes replace_all(val, "\\", "\\\\"); replace_all(val, "\"", "\\\""); ss << '"' << val << '"'; } else if (arr_type == GGUF_TYPE_ARRAY) { ss << "???"; } else { ss << gguf_data_to_str(arr_type, data, j); } if (j < arr_n - 1) { ss << ", "; } } ss << "]"; return ss.str(); } default: return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0); } } static void print_tensor_info(const ggml_tensor * tensor, const char * prefix = "") { size_t tensor_size = ggml_nbytes(tensor); LOG_INF("%s: n_dims = %d, name = %s, tensor_size=%zu, shape:[%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "], type = %s\n", prefix, ggml_n_dims(tensor), tensor->name, tensor_size, tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], ggml_type_name(tensor->type)); } static projector_type clip_projector_type_from_string(const std::string & name) { for (const auto & kv : PROJECTOR_TYPE_NAMES) { // NOLINT if (kv.second == name) { return kv.first; } } return PROJECTOR_TYPE_UNKNOWN; } #ifdef CLIP_DEBUG_FUNCTIONS static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) { std::ofstream file(filename, std::ios::binary); if (!file.is_open()) { LOG_ERR("Failed to open file for writing: %s\n", filename.c_str()); return; } // PPM header: P6 format, width, height, and max color value file << "P6\n" << img.nx << " " << img.ny << "\n255\n"; // Write pixel data for (size_t i = 0; i < img.buf.size(); i += 3) { // PPM expects binary data in RGB format, which matches our image buffer file.write(reinterpret_cast(&img.buf[i]), 3); } file.close(); } static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) { std::ofstream file(filename, std::ios::binary); if (!file.is_open()) { LOG_ERR("Failed to open file for writing: %s\n", filename.c_str()); return; } int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data int bytesPerPixel = 3; int widthInBytes = img.nx * bytesPerPixel; int paddingAmount = (4 - (widthInBytes % 4)) % 4; int stride = widthInBytes + paddingAmount; // Bitmap file header unsigned char fileHeader[14] = { 'B','M', // Signature 0,0,0,0, // Image file size in bytes 0,0,0,0, // Reserved 54,0,0,0 // Start of pixel array }; // Total file size fileSize = 54 + (stride * img.ny); fileHeader[2] = (unsigned char)(fileSize); fileHeader[3] = (unsigned char)(fileSize >> 8); fileHeader[4] = (unsigned char)(fileSize >> 16); fileHeader[5] = (unsigned char)(fileSize >> 24); // Bitmap information header (BITMAPINFOHEADER) unsigned char infoHeader[40] = { 40,0,0,0, // Size of this header (40 bytes) 0,0,0,0, // Image width 0,0,0,0, // Image height 1,0, // Number of color planes 24,0, // Bits per pixel 0,0,0,0, // No compression 0,0,0,0, // Image size (can be 0 for no compression) 0,0,0,0, // X pixels per meter (not specified) 0,0,0,0, // Y pixels per meter (not specified) 0,0,0,0, // Total colors (color table not used) 0,0,0,0 // Important colors (all are important) }; // Width and height in the information header infoHeader[4] = (unsigned char)(img.nx); infoHeader[5] = (unsigned char)(img.nx >> 8); infoHeader[6] = (unsigned char)(img.nx >> 16); infoHeader[7] = (unsigned char)(img.nx >> 24); infoHeader[8] = (unsigned char)(img.ny); infoHeader[9] = (unsigned char)(img.ny >> 8); infoHeader[10] = (unsigned char)(img.ny >> 16); infoHeader[11] = (unsigned char)(img.ny >> 24); // Write file headers file.write(reinterpret_cast(fileHeader), sizeof(fileHeader)); file.write(reinterpret_cast(infoHeader), sizeof(infoHeader)); // Pixel data std::vector padding(3, 0); // Max padding size to be added to each row for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top for (int x = 0; x < img.nx; ++x) { // Each pixel size_t pixelIndex = (y * img.nx + x) * 3; unsigned char pixel[3] = { img.buf[pixelIndex + 2], // BMP stores pixels in BGR format img.buf[pixelIndex + 1], img.buf[pixelIndex] }; file.write(reinterpret_cast(pixel), 3); } // Write padding for the row file.write(reinterpret_cast(padding.data()), paddingAmount); } file.close(); } // debug function to convert f32 to u8 static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) { dst.nx = src.nx; dst.ny = src.ny; dst.buf.resize(3 * src.nx * src.ny); for (size_t i = 0; i < src.buf.size(); ++i) { dst.buf[i] = static_cast(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255)); } } #endif // // clip layers // struct clip_hparams { int32_t image_size; int32_t patch_size; int32_t hidden_size; int32_t n_intermediate; int32_t projection_dim; int32_t n_head; int32_t n_layer; float eps; char mm_patch_merge_type[32] = "flat"; // spatial_unpad or flat (default) int32_t image_grid_pinpoints[32]; int32_t image_crop_resolution; }; struct clip_layer { // attention struct ggml_tensor * k_w; struct ggml_tensor * k_b; struct ggml_tensor * q_w; struct ggml_tensor * q_b; struct ggml_tensor * v_w; struct ggml_tensor * v_b; struct ggml_tensor * o_w; struct ggml_tensor * o_b; // layernorm 1 struct ggml_tensor * ln_1_w; struct ggml_tensor * ln_1_b; // ff struct ggml_tensor * ff_i_w; struct ggml_tensor * ff_i_b; struct ggml_tensor * ff_o_w; struct ggml_tensor * ff_o_b; // layernorm 2 struct ggml_tensor * ln_2_w; struct ggml_tensor * ln_2_b; }; struct clip_vision_model { struct clip_hparams hparams; // embeddings struct ggml_tensor * class_embedding; struct ggml_tensor * patch_embeddings; struct ggml_tensor * patch_bias; struct ggml_tensor * position_embeddings; struct ggml_tensor * pre_ln_w; struct ggml_tensor * pre_ln_b; std::vector layers; struct ggml_tensor * post_ln_w; struct ggml_tensor * post_ln_b; struct ggml_tensor * projection; // LLaVA projection struct ggml_tensor * mm_0_w = NULL; struct ggml_tensor * mm_0_b = NULL; struct ggml_tensor * mm_2_w = NULL; struct ggml_tensor * mm_2_b = NULL; struct ggml_tensor * image_newline = NULL; // Yi type models with mlp+normalization projection struct ggml_tensor * mm_1_w = NULL; // Yi type models have 0, 1, 3, 4 struct ggml_tensor * mm_1_b = NULL; struct ggml_tensor * mm_3_w = NULL; struct ggml_tensor * mm_3_b = NULL; struct ggml_tensor * mm_4_w = NULL; struct ggml_tensor * mm_4_b = NULL; // MobileVLM projection struct ggml_tensor * mm_model_mlp_1_w; struct ggml_tensor * mm_model_mlp_1_b; struct ggml_tensor * mm_model_mlp_3_w; struct ggml_tensor * mm_model_mlp_3_b; struct ggml_tensor * mm_model_block_1_block_0_0_w; struct ggml_tensor * mm_model_block_1_block_0_1_w; struct ggml_tensor * mm_model_block_1_block_0_1_b; struct ggml_tensor * mm_model_block_1_block_1_fc1_w; struct ggml_tensor * mm_model_block_1_block_1_fc1_b; struct ggml_tensor * mm_model_block_1_block_1_fc2_w; struct ggml_tensor * mm_model_block_1_block_1_fc2_b; struct ggml_tensor * mm_model_block_1_block_2_0_w; struct ggml_tensor * mm_model_block_1_block_2_1_w; struct ggml_tensor * mm_model_block_1_block_2_1_b; struct ggml_tensor * mm_model_block_2_block_0_0_w; struct ggml_tensor * mm_model_block_2_block_0_1_w; struct ggml_tensor * mm_model_block_2_block_0_1_b; struct ggml_tensor * mm_model_block_2_block_1_fc1_w; struct ggml_tensor * mm_model_block_2_block_1_fc1_b; struct ggml_tensor * mm_model_block_2_block_1_fc2_w; struct ggml_tensor * mm_model_block_2_block_1_fc2_b; struct ggml_tensor * mm_model_block_2_block_2_0_w; struct ggml_tensor * mm_model_block_2_block_2_1_w; struct ggml_tensor * mm_model_block_2_block_2_1_b; // MobileVLM_V2 projection struct ggml_tensor * mm_model_mlp_0_w; struct ggml_tensor * mm_model_mlp_0_b; struct ggml_tensor * mm_model_mlp_2_w; struct ggml_tensor * mm_model_mlp_2_b; struct ggml_tensor * mm_model_peg_0_w; struct ggml_tensor * mm_model_peg_0_b; // MINICPMV projection struct ggml_tensor * mm_model_pos_embed_k; struct ggml_tensor * mm_model_query; struct ggml_tensor * mm_model_proj; struct ggml_tensor * mm_model_kv_proj; struct ggml_tensor * mm_model_attn_q_w; struct ggml_tensor * mm_model_attn_q_b; struct ggml_tensor * mm_model_attn_k_w; struct ggml_tensor * mm_model_attn_k_b; struct ggml_tensor * mm_model_attn_v_w; struct ggml_tensor * mm_model_attn_v_b; struct ggml_tensor * mm_model_attn_o_w; struct ggml_tensor * mm_model_attn_o_b; struct ggml_tensor * mm_model_ln_q_w; struct ggml_tensor * mm_model_ln_q_b; struct ggml_tensor * mm_model_ln_kv_w; struct ggml_tensor * mm_model_ln_kv_b; struct ggml_tensor * mm_model_ln_post_w; struct ggml_tensor * mm_model_ln_post_b; }; struct clip_ctx { bool has_text_encoder = false; bool has_vision_encoder = false; bool has_llava_projector = false; bool has_minicpmv_projector = false; int minicpmv_version = 2; struct clip_vision_model vision_model; projector_type proj_type = PROJECTOR_TYPE_MLP; float image_mean[3]; float image_std[3]; bool use_gelu = false; int32_t ftype = 1; bool has_class_embedding = true; bool has_pre_norm = true; bool has_post_norm = false; bool has_patch_bias = false; struct gguf_context * ctx_gguf; struct ggml_context * ctx_data; std::vector buf_compute_meta; // memory buffers to evaluate the model ggml_backend_buffer_t params_buffer = NULL; ggml_backend_t backend = NULL; ggml_gallocr_t compute_alloc = NULL; struct clip_image_size * load_image_size; }; static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs, struct clip_image_size * load_image_size, bool is_inf = false) { if (!ctx->has_vision_encoder) { LOG_ERR("This gguf file seems to have no vision encoder\n"); return nullptr; } const auto & model = ctx->vision_model; const auto & hparams = model.hparams; const int image_size = hparams.image_size; int image_size_width = image_size; int image_size_height = image_size; if (ctx->has_minicpmv_projector) { if (load_image_size == nullptr) { load_image_size = clip_image_size_init(); } LOG_DBG("%s: %d %d\n", __func__, load_image_size->width, load_image_size->height); image_size_width = load_image_size->width; image_size_height = load_image_size->height; if (is_inf) { image_size_width = imgs->data->nx; image_size_height = imgs->data->ny; } } const int patch_size = hparams.patch_size; const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size)); const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0); const int hidden_size = hparams.hidden_size; const int n_head = hparams.n_head; const int d_head = hidden_size / n_head; int n_layer = hparams.n_layer; const float eps = hparams.eps; const int batch_size = imgs->size; if (ctx->has_llava_projector || ctx->has_minicpmv_projector) { GGML_ASSERT(batch_size == 1); } struct ggml_init_params params = { /*.mem_size =*/ ctx->buf_compute_meta.size(), /*.mem_buffer =*/ ctx->buf_compute_meta.data(), /*.no_alloc =*/ true, }; struct ggml_context * ctx0 = ggml_init(params); struct ggml_cgraph * gf = ggml_new_graph(ctx0); struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3, batch_size); ggml_set_name(inp_raw, "inp_raw"); ggml_set_input(inp_raw); struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings, inp_raw, patch_size, patch_size, 0, 0, 1, 1); inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size); inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3)); if (ctx->has_patch_bias) { // inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp)); inp = ggml_add(ctx0, inp, model.patch_bias); } struct ggml_tensor * embeddings = inp; struct ggml_tensor * pos_embed = nullptr; if (ctx->has_llava_projector) { // concat class_embeddings and patch_embeddings if (ctx->has_class_embedding) { embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size); ggml_set_name(embeddings, "embeddings"); ggml_set_input(embeddings); embeddings = ggml_acc(ctx0, embeddings, model.class_embedding, embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0); embeddings = ggml_acc(ctx0, embeddings, inp, embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]); } } struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions); ggml_set_name(positions, "positions"); ggml_set_input(positions); embeddings = ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions)); if (ctx->has_minicpmv_projector) { int pos_w = image_size_width/patch_size; int pos_h = image_size_height/patch_size; if (ctx->minicpmv_version == 2) { pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 4096, pos_w * pos_h, 1); } else if (ctx->minicpmv_version == 3) { pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1); } ggml_set_name(pos_embed, "pos_embed"); ggml_set_input(pos_embed); } // pre-layernorm if (ctx->has_pre_norm) { embeddings = ggml_norm(ctx0, embeddings, eps); ggml_set_name(embeddings, "pre_ln"); embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b); } // loop over layers if (ctx->has_minicpmv_projector) { n_layer += 1; } for (int il = 0; il < n_layer - 1; il++) { struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states //const size_t nb_q_w = model.layers[il].q_w->nb[0]; // layernorm1 { cur = ggml_norm(ctx0, cur, eps); cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w), model.layers[il].ln_1_b); } // self-attention { struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b); Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head)); Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size); Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3)); Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size); struct ggml_tensor * K = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b); K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size); K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3)); K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size); struct ggml_tensor * V = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b); V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size); V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3)); V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size); struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); KQ = ggml_soft_max_inplace(ctx0, KQ); struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ); KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size); KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3); cur = ggml_cont_3d(ctx0, KQV, hidden_size, num_positions, batch_size); } // attention output cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b); // re-add the layer input, e.g., residual cur = ggml_add(ctx0, cur, embeddings); embeddings = cur; // embeddings = residual, cur = hidden_states // layernorm2 { cur = ggml_norm(ctx0, cur, eps); cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b); } cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur); cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b); if (ctx->use_gelu) { cur = ggml_gelu_inplace(ctx0, cur); } else { cur = ggml_gelu_quick_inplace(ctx0, cur); } cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur); cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b); // residual 2 cur = ggml_add(ctx0, embeddings, cur); embeddings = cur; } // post-layernorm if (ctx->has_post_norm) { embeddings = ggml_norm(ctx0, embeddings, eps); ggml_set_name(embeddings, "post_ln"); embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b); } // llava projector if (ctx->has_llava_projector) { embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]); struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches); ggml_set_name(patches, "patches"); ggml_set_input(patches); // shape [1, 576, 1024] // ne is whcn, ne = [1024, 576, 1, 1] embeddings = ggml_get_rows(ctx0, embeddings, patches); // print_tensor_info(embeddings, "embeddings"); // llava projector if (ctx->proj_type == PROJECTOR_TYPE_MLP) { embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings); embeddings = ggml_add(ctx0, embeddings, model.mm_0_b); embeddings = ggml_gelu(ctx0, embeddings); embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings); embeddings = ggml_add(ctx0, embeddings, model.mm_2_b); } else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) { embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings); embeddings = ggml_add(ctx0, embeddings, model.mm_0_b); // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false); // First LayerNorm embeddings = ggml_norm(ctx0, embeddings, eps); embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w), model.mm_1_b); // GELU activation embeddings = ggml_gelu(ctx0, embeddings); // Second linear layer embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings); embeddings = ggml_add(ctx0, embeddings, model.mm_3_b); // Second LayerNorm embeddings = ggml_norm(ctx0, embeddings, eps); embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w), model.mm_4_b); } else if (ctx->proj_type == PROJECTOR_TYPE_LDP) { // MobileVLM projector int n_patch = 24; struct ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings); mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b); mlp_1 = ggml_gelu(ctx0, mlp_1); struct ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1); mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b); // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1] // block 1 struct ggml_tensor * block_1 = nullptr; { // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24] mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3)); mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]); // stride = 1, padding = 1, bias is nullptr block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1); // layer norm // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1] block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3)); // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1] block_1 = ggml_norm(ctx0, block_1, eps); block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b); block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3)); // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1] // hardswish struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1); block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0); // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1] // pointwise conv block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]); block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1); block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b); block_1 = ggml_relu(ctx0, block_1); block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1); block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b); block_1 = ggml_hardsigmoid(ctx0, block_1); // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1] block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]); block_1 = ggml_mul(ctx0, block_1_hw, block_1); int w = block_1->ne[0], h = block_1->ne[1]; block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]); block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3)); // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1] block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1); block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]); // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1] block_1 = ggml_norm(ctx0, block_1, eps); block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b); block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3)); // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1] // residual block_1 = ggml_add(ctx0, mlp_3, block_1); } // block_2 { // stride = 2 block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1); // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1] // layer norm block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3)); // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1] block_1 = ggml_norm(ctx0, block_1, eps); block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b); block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3)); // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1] // hardswish struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1); // not sure the parameters is right for globalAvgPooling block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0); // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1] // pointwise conv block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]); block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1); block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b); block_1 = ggml_relu(ctx0, block_1); block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1); block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b); block_1 = ggml_hardsigmoid(ctx0, block_1); // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1] block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]); block_1 = ggml_mul(ctx0, block_1_hw, block_1); int w = block_1->ne[0], h = block_1->ne[1]; block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]); block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3)); // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1] block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1); block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]); // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1] block_1 = ggml_norm(ctx0, block_1, eps); block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b); block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]); // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1] } embeddings = block_1; } else if (ctx->proj_type == PROJECTOR_TYPE_LDPV2) { int n_patch = 24; struct ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings); mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b); mlp_0 = ggml_gelu(ctx0, mlp_0); struct ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0); mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b); // mlp_2 ne = [2048, 576, 1, 1] // // AVG Pool Layer 2*2, strides = 2 mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 0, 2, 3)); // mlp_2 ne = [576, 2048, 1, 1] mlp_2 = ggml_reshape_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]); // mlp_2 ne [24, 24, 2048, 1] mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0); // weight ne = [3, 3, 2048, 1] struct ggml_tensor * peg_0 = ggml_conv_depthwise_2d(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1); peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3)); peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b); mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3)); peg_0 = ggml_add(ctx0, peg_0, mlp_2); peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]); embeddings = peg_0; } else { GGML_ABORT("fatal error"); } } // minicpmv projector else if (ctx->has_minicpmv_projector) { if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) { struct ggml_tensor * q = model.mm_model_query; { // layernorm q = ggml_norm(ctx0, q, eps); q = ggml_add(ctx0, ggml_mul(ctx0, q, model.mm_model_ln_q_w), model.mm_model_ln_q_b); } struct ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings); { // layernorm v = ggml_norm(ctx0, v, eps); v = ggml_add(ctx0, ggml_mul(ctx0, v, model.mm_model_ln_kv_w), model.mm_model_ln_kv_b); } struct ggml_tensor * k; { // position // q = ggml_add(ctx0, q, model.mm_model_pos_embed); k = ggml_add(ctx0, v, pos_embed); } { // attention int hidden_size = 4096; const int d_head = 128; int n_head = hidden_size/d_head; int num_query = 96; if (ctx->minicpmv_version == 2) { hidden_size = 4096; n_head = hidden_size/d_head; num_query = 96; } else if (ctx->minicpmv_version == 3) { hidden_size = 3584; n_head = hidden_size/d_head; num_query = 64; } struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q), model.mm_model_attn_q_b); Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head)); struct ggml_tensor * K = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k), model.mm_model_attn_k_b); struct ggml_tensor * V = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v), model.mm_model_attn_v_b); // permute Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_query, batch_size); Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3)); Q = ggml_reshape_3d(ctx0, Q, d_head, num_query, n_head * batch_size); K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size); K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3)); K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size); V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size); V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3)); V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size); struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); KQ = ggml_soft_max_inplace(ctx0, KQ); struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ); KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_query, n_head, batch_size); KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3); KQV = ggml_cont_3d(ctx0, KQV, hidden_size, num_query, batch_size); embeddings = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_o_w, KQV), model.mm_model_attn_o_b); } { // layernorm embeddings = ggml_norm(ctx0, embeddings, eps); embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_post_w), model.mm_model_ln_post_b); } embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings); } else { GGML_ASSERT(false); } } // build the graph ggml_build_forward_expand(gf, embeddings); ggml_free(ctx0); return gf; } // read and create ggml_context containing the tensors and their data struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { struct ggml_context * meta = NULL; struct gguf_init_params params = { /*.no_alloc = */ true, /*.ctx = */ &meta, }; struct gguf_context * ctx = gguf_init_from_file(fname, params); if (!ctx) { throw std::runtime_error(format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname)); } if (verbosity >= 1) { const int n_tensors = gguf_get_n_tensors(ctx); const int n_kv = gguf_get_n_kv(ctx); const int ftype = get_u32(ctx, KEY_FTYPE); const std::string ftype_str = get_ftype(ftype); const int idx_desc = get_key_idx(ctx, KEY_DESCRIPTION); const std::string description = gguf_get_val_str(ctx, idx_desc); const int idx_name = gguf_find_key(ctx, KEY_NAME); if (idx_name != -1) { // make name optional temporarily as some of the uploaded models missing it due to a bug const std::string name = gguf_get_val_str(ctx, idx_name); LOG_INF("%s: model name: %s\n", __func__, name.c_str()); } LOG_INF("%s: description: %s\n", __func__, description.c_str()); LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx)); LOG_INF("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx)); LOG_INF("%s: n_tensors: %d\n", __func__, n_tensors); LOG_INF("%s: n_kv: %d\n", __func__, n_kv); LOG_INF("%s: ftype: %s\n", __func__, ftype_str.c_str()); LOG_INF("\n"); } const int n_tensors = gguf_get_n_tensors(ctx); // kv const int n_kv = gguf_get_n_kv(ctx); LOG_INF("%s: loaded meta data with %d key-value pairs and %d tensors from %s\n", __func__, n_kv, n_tensors, fname); { std::map n_type; for (int i = 0; i < n_tensors; i++) { enum ggml_type type = gguf_get_tensor_type(ctx, i); n_type[type]++; } LOG_INF("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__); for (int i = 0; i < n_kv; i++) { const char * name = gguf_get_key(ctx, i); const enum gguf_type type = gguf_get_kv_type(ctx, i); const std::string type_name = type == GGUF_TYPE_ARRAY ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(ctx, i)), gguf_get_arr_n(ctx, i)) : gguf_type_name(type); std::string value = gguf_kv_to_str(ctx, i); const size_t MAX_VALUE_LEN = 40; if (value.size() > MAX_VALUE_LEN) { value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str()); } replace_all(value, "\n", "\\n"); LOG_INF("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str()); } // print type counts for (auto & kv : n_type) { if (kv.second == 0) { continue; } LOG_INF("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second); } } // data size_t model_size = 0; { for (int i = 0; i < n_tensors; ++i) { const char * name = gguf_get_tensor_name(ctx, i); const size_t offset = gguf_get_tensor_offset(ctx, i); enum ggml_type type = gguf_get_tensor_type(ctx, i); struct ggml_tensor * cur = ggml_get_tensor(meta, name); size_t tensor_size = ggml_nbytes(cur); model_size += tensor_size; if (verbosity >= 3) { LOG_INF("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n", __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type)); } } } clip_ctx * new_clip = new clip_ctx{}; // update projector type { int idx = gguf_find_key(ctx, KEY_PROJ_TYPE); if (idx != -1) { const std::string proj_type = gguf_get_val_str(ctx, idx); new_clip->proj_type = clip_projector_type_from_string(proj_type); } else { new_clip->proj_type = PROJECTOR_TYPE_MLP; } if (new_clip->proj_type == PROJECTOR_TYPE_MLP) { if (gguf_find_tensor(ctx, format(TN_LLAVA_PROJ, 3, "weight").c_str()) != -1) { new_clip->proj_type = PROJECTOR_TYPE_MLP_NORM; } } } #ifdef GGML_USE_CUDA new_clip->backend = ggml_backend_cuda_init(0); LOG_INF("%s: CLIP using CUDA backend\n", __func__); #endif #ifdef GGML_USE_METAL new_clip->backend = ggml_backend_metal_init(); LOG_INF("%s: CLIP using Metal backend\n", __func__); #endif #ifdef GGML_USE_CANN new_clip->backend = ggml_backend_cann_init(0); LOG_INF("%s: CLIP using CANN backend\n", __func__); #endif #ifdef GGML_USE_VULKAN new_clip->backend = ggml_backend_vk_init(0); LOG_INF("%s: CLIP using Vulkan backend\n", __func__); #endif if (!new_clip->backend) { new_clip->backend = ggml_backend_cpu_init(); LOG_INF("%s: CLIP using CPU backend\n", __func__); } // model size and capabilities { int idx = get_key_idx(ctx, KEY_HAS_TEXT_ENC); new_clip->has_text_encoder = gguf_get_val_bool(ctx, idx); idx = get_key_idx(ctx, KEY_HAS_VIS_ENC); new_clip->has_vision_encoder = gguf_get_val_bool(ctx, idx); idx = gguf_find_key(ctx, KEY_HAS_LLAVA_PROJ); if (idx != -1) { new_clip->has_llava_projector = gguf_get_val_bool(ctx, idx); } idx = gguf_find_key(ctx, KEY_HAS_MINICPMV_PROJ); if (idx != -1) { new_clip->has_minicpmv_projector = gguf_get_val_bool(ctx, idx); } idx = gguf_find_key(ctx, KEY_MINICPMV_VERSION); if (idx != -1) { new_clip->minicpmv_version = gguf_get_val_i32(ctx, idx); } // GGML_ASSERT(new_clip->has_llava_projector); // see monatis/clip.cpp for image and/or text encoding for semantic search GGML_ASSERT(new_clip->has_vision_encoder); GGML_ASSERT(!new_clip->has_text_encoder); idx = get_key_idx(ctx, KEY_USE_GELU); new_clip->use_gelu = gguf_get_val_bool(ctx, idx); if (verbosity >= 1) { LOG_INF("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder); LOG_INF("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder); LOG_INF("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector); LOG_INF("%s: minicpmv_projector: %d\n", __func__, new_clip->has_minicpmv_projector); LOG_INF("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0); LOG_INF("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0); } } LOG_INF("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, model_size / (1024.0 * 1024.0), n_tensors); // load tensors { std::vector read_buf; struct ggml_init_params params = { /*.mem_size =*/ (n_tensors + 1) * ggml_tensor_overhead(), /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, }; new_clip->ctx_data = ggml_init(params); if (!new_clip->ctx_data) { LOG_ERR("%s: ggml_init() failed\n", __func__); clip_free(new_clip); gguf_free(ctx); return nullptr; } auto fin = std::ifstream(fname, std::ios::binary); if (!fin) { LOG_ERR("cannot open model file for loading tensors\n"); clip_free(new_clip); gguf_free(ctx); return nullptr; } // add tensors to context for (int i = 0; i < n_tensors; ++i) { const char * name = gguf_get_tensor_name(ctx, i); struct ggml_tensor * t = ggml_get_tensor(meta, name); struct ggml_tensor * cur = ggml_dup_tensor(new_clip->ctx_data, t); ggml_set_name(cur, name); } // alloc memory and offload data new_clip->params_buffer = ggml_backend_alloc_ctx_tensors(new_clip->ctx_data, new_clip->backend); for (int i = 0; i < n_tensors; ++i) { const char * name = gguf_get_tensor_name(ctx, i); struct ggml_tensor * cur = ggml_get_tensor(new_clip->ctx_data, name); const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i); fin.seekg(offset, std::ios::beg); if (!fin) { LOG_ERR("%s: failed to seek for tensor %s\n", __func__, name); clip_free(new_clip); gguf_free(ctx); return nullptr; } int num_bytes = ggml_nbytes(cur); if (ggml_backend_buffer_is_host(new_clip->params_buffer)) { // for the CPU and Metal backend, we can read directly into the tensor fin.read(reinterpret_cast(cur->data), num_bytes); } else { // read into a temporary buffer first, then copy to device memory read_buf.resize(num_bytes); fin.read(reinterpret_cast(read_buf.data()), num_bytes); ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes); } } fin.close(); } // vision model if (new_clip->has_vision_encoder) { // load vision model auto & vision_model = new_clip->vision_model; auto & hparams = vision_model.hparams; hparams.hidden_size = get_u32(ctx, format(KEY_N_EMBD, "vision")); hparams.n_head = get_u32(ctx, format(KEY_N_HEAD, "vision")); hparams.n_intermediate = get_u32(ctx, format(KEY_N_FF, "vision")); hparams.n_layer = get_u32(ctx, format(KEY_N_BLOCK, "vision")); hparams.image_size = get_u32(ctx, KEY_IMAGE_SIZE); hparams.patch_size = get_u32(ctx, KEY_PATCH_SIZE); hparams.projection_dim = get_u32(ctx, format(KEY_PROJ_DIM, "vision")); hparams.eps = get_f32(ctx, format(KEY_LAYER_NORM_EPS, "vision")); try { int idx = get_key_idx(ctx, KEY_IMAGE_GRID_PINPOINTS); int n = gguf_get_arr_n(ctx, idx); const int32_t * pinpoints = (const int32_t *)gguf_get_arr_data(ctx, idx); for (int i = 0; i < 32 && i < n && pinpoints[i] != 0; ++i) { hparams.image_grid_pinpoints[i] = pinpoints[i]; } if (n < 32) hparams.image_grid_pinpoints[n] = 0; } catch (std::runtime_error & /*e*/) { hparams.image_grid_pinpoints[0]=0; } try { int idx = get_key_idx(ctx, KEY_MM_PATCH_MERGE_TYPE); strcpy(hparams.mm_patch_merge_type, gguf_get_val_str(ctx, idx)); } catch (std::runtime_error & /*e*/) { strcpy(hparams.mm_patch_merge_type, "flat"); } try { hparams.image_crop_resolution = get_u32(ctx, KEY_IMAGE_CROP_RESOLUTION); // llava-1.6 } catch(const std::exception& /*e*/) { hparams.image_crop_resolution = hparams.image_size; } int idx_mean = get_key_idx(ctx, KEY_IMAGE_MEAN); int idx_std = get_key_idx(ctx, KEY_IMAGE_STD); const float * mean_data = (const float *)gguf_get_arr_data(ctx, idx_mean); const float * std_data = (const float *)gguf_get_arr_data(ctx, idx_std); for (int i = 0; i < 3; ++i) { new_clip->image_mean[i] = mean_data[i]; new_clip->image_std[i] = std_data[i]; } if (verbosity >= 2) { LOG_INF("\n%s: vision model hparams\n", __func__); LOG_INF("image_size %d\n", hparams.image_size); LOG_INF("patch_size %d\n", hparams.patch_size); LOG_INF("v_hidden_size %d\n", hparams.hidden_size); LOG_INF("v_n_intermediate %d\n", hparams.n_intermediate); LOG_INF("v_projection_dim %d\n", hparams.projection_dim); LOG_INF("v_n_head %d\n", hparams.n_head); LOG_INF("v_n_layer %d\n", hparams.n_layer); LOG_INF("v_eps %f\n", hparams.eps); LOG_INF("v_image_mean %f %f %f\n", new_clip->image_mean[0], new_clip->image_mean[1], new_clip->image_mean[2]); LOG_INF("v_image_std %f %f %f\n", new_clip->image_std[0], new_clip->image_std[1], new_clip->image_std[2]); LOG_INF("v_image_grid_pinpoints: "); for (int i = 0; i < 32 && (hparams.image_grid_pinpoints[i] != 0); ++i) { LOG_INF("%d ", hparams.image_grid_pinpoints[i]); } LOG_INF("\n"); LOG_INF("v_mm_patch_merge_type: %s\n", hparams.mm_patch_merge_type); } try { vision_model.class_embedding = get_tensor(new_clip->ctx_data, TN_CLASS_EMBD); new_clip->has_class_embedding = true; } catch (const std::exception& /*e*/) { new_clip->has_class_embedding = false; } try { vision_model.pre_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "weight")); vision_model.pre_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias")); new_clip->has_pre_norm = true; } catch (std::exception & /*e*/) { new_clip->has_pre_norm = false; } try { vision_model.post_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "weight")); vision_model.post_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "bias")); new_clip->has_post_norm = true; } catch (std::exception & /*e*/) { new_clip->has_post_norm = false; } try { vision_model.patch_bias = get_tensor(new_clip->ctx_data, TN_PATCH_BIAS); new_clip->has_patch_bias = true; } catch (std::exception & /*e*/) { new_clip->has_patch_bias = false; } try { vision_model.patch_embeddings = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD); vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v")); } catch(const std::exception& /*e*/) { LOG_ERR("%s: failed to load vision model tensors\n", __func__); } // LLaVA projection if (new_clip->proj_type == PROJECTOR_TYPE_MLP || new_clip->proj_type == PROJECTOR_TYPE_MLP_NORM) { vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight")); vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias")); try { // Yi-type llava vision_model.mm_1_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "weight")); vision_model.mm_1_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "bias")); } catch (std::runtime_error & /*e*/) { } try { // missing in Yi-type llava vision_model.mm_2_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight")); vision_model.mm_2_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias")); } catch (std::runtime_error & /*e*/) { } try { // Yi-type llava vision_model.mm_3_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "weight")); vision_model.mm_3_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "bias")); } catch (std::runtime_error & /*e*/) { } try { // Yi-type llava vision_model.mm_4_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "weight")); vision_model.mm_4_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "bias")); } catch (std::runtime_error & /*e*/) { } try { vision_model.image_newline = get_tensor(new_clip->ctx_data, TN_IMAGE_NEWLINE); // LOG_INF("%s: image_newline tensor (llava-1.6) found\n", __func__); } catch (std::runtime_error & /*e*/) { } } else if (new_clip->proj_type == PROJECTOR_TYPE_LDP) { // MobileVLM projection vision_model.mm_model_mlp_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "weight")); vision_model.mm_model_mlp_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "bias")); vision_model.mm_model_mlp_3_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "weight")); vision_model.mm_model_mlp_3_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "bias")); vision_model.mm_model_block_1_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight")); vision_model.mm_model_block_1_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight")); vision_model.mm_model_block_1_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias")); vision_model.mm_model_block_1_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight")); vision_model.mm_model_block_1_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias")); vision_model.mm_model_block_1_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight")); vision_model.mm_model_block_1_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias")); vision_model.mm_model_block_1_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight")); vision_model.mm_model_block_1_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight")); vision_model.mm_model_block_1_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias")); vision_model.mm_model_block_2_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight")); vision_model.mm_model_block_2_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight")); vision_model.mm_model_block_2_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias")); vision_model.mm_model_block_2_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight")); vision_model.mm_model_block_2_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias")); vision_model.mm_model_block_2_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight")); vision_model.mm_model_block_2_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias")); vision_model.mm_model_block_2_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight")); vision_model.mm_model_block_2_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight")); vision_model.mm_model_block_2_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias")); } else if (new_clip->proj_type == PROJECTOR_TYPE_LDPV2) { // MobilVLM_V2 projection vision_model.mm_model_mlp_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 0, "weight")); vision_model.mm_model_mlp_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 0, "bias")); vision_model.mm_model_mlp_2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 2, "weight")); vision_model.mm_model_mlp_2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 2, "bias")); vision_model.mm_model_peg_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "weight")); vision_model.mm_model_peg_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "bias")); } else if (new_clip->proj_type == PROJECTOR_TYPE_RESAMPLER) { // vision_model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD); vision_model.mm_model_pos_embed_k = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD_K); vision_model.mm_model_query = get_tensor(new_clip->ctx_data, TN_MINICPMV_QUERY); vision_model.mm_model_proj = get_tensor(new_clip->ctx_data, TN_MINICPMV_PROJ); vision_model.mm_model_kv_proj = get_tensor(new_clip->ctx_data, TN_MINICPMV_KV_PROJ); vision_model.mm_model_attn_q_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "q", "weight")); vision_model.mm_model_attn_k_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "k", "weight")); vision_model.mm_model_attn_v_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "v", "weight")); vision_model.mm_model_attn_q_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "q", "bias")); vision_model.mm_model_attn_k_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "k", "bias")); vision_model.mm_model_attn_v_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "v", "bias")); vision_model.mm_model_attn_o_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "out", "weight")); vision_model.mm_model_attn_o_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "out", "bias")); vision_model.mm_model_ln_q_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "q", "weight")); vision_model.mm_model_ln_q_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "q", "bias")); vision_model.mm_model_ln_kv_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "kv", "weight")); vision_model.mm_model_ln_kv_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "kv", "bias")); vision_model.mm_model_ln_post_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "weight")); vision_model.mm_model_ln_post_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "bias")); } else { std::string proj_type = PROJECTOR_TYPE_NAMES[new_clip->proj_type]; throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str())); } vision_model.layers.resize(hparams.n_layer); for (int il = 0; il < hparams.n_layer; ++il) { auto & layer = vision_model.layers[il]; layer.k_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_K, "v", il, "weight")); layer.q_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q, "v", il, "weight")); layer.v_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_V, "v", il, "weight")); layer.o_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "weight")); layer.ln_1_w = get_tensor(new_clip->ctx_data, format(TN_LN_1, "v", il, "weight")); layer.ln_2_w = get_tensor(new_clip->ctx_data, format(TN_LN_2, "v", il, "weight")); layer.ff_i_w = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN, "v", il, "weight")); layer.ff_o_w = get_tensor(new_clip->ctx_data, format(TN_FFN_UP, "v", il, "weight")); layer.k_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_K, "v", il, "bias")); layer.q_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q, "v", il, "bias")); layer.v_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_V, "v", il, "bias")); layer.o_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "bias")); layer.ln_1_b = get_tensor(new_clip->ctx_data, format(TN_LN_1, "v", il, "bias")); layer.ln_2_b = get_tensor(new_clip->ctx_data, format(TN_LN_2, "v", il, "bias")); layer.ff_i_b = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN, "v", il, "bias")); layer.ff_o_b = get_tensor(new_clip->ctx_data, format(TN_FFN_UP, "v", il, "bias")); } } ggml_free(meta); new_clip->ctx_gguf = ctx; // measure mem requirement and allocate { new_clip->buf_compute_meta.resize(GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead()); new_clip->compute_alloc = ggml_gallocr_new(ggml_backend_get_default_buffer_type(new_clip->backend)); clip_image_f32_batch batch; batch.size = 1; ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch, nullptr, false); ggml_gallocr_reserve(new_clip->compute_alloc, gf); size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_clip->compute_alloc, 0); LOG_INF("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0); } return new_clip; } void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size) { ctx_clip->load_image_size = load_image_size; } struct clip_image_size * clip_image_size_init() { struct clip_image_size * load_image_size = new struct clip_image_size(); load_image_size->width = 448; load_image_size->height = 448; return load_image_size; } struct clip_image_u8 * clip_image_u8_init() { return new clip_image_u8(); } struct clip_image_f32 * clip_image_f32_init() { return new clip_image_f32(); } void clip_image_u8_free(struct clip_image_u8 * img) { delete img; } void clip_image_f32_free(struct clip_image_f32 * img) { delete img; } void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { if (batch->size > 0) { delete[] batch->data; batch->size = 0; } } void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { if (batch->size > 0) { delete[] batch->data; batch->size = 0; } } static void build_clip_img_from_data(const stbi_uc * data, int nx, int ny, clip_image_u8 * img) { img->nx = nx; img->ny = ny; img->buf.resize(3 * nx * ny); memcpy(img->buf.data(), data, img->buf.size()); } bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) { int nx, ny, nc; auto * data = stbi_load(fname, &nx, &ny, &nc, 3); if (!data) { LOG_ERR("%s: failed to load image '%s'\n", __func__, fname); return false; } build_clip_img_from_data(data, nx, ny, img); stbi_image_free(data); return true; } bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img) { int nx, ny, nc; auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3); if (!data) { LOG_ERR("%s: failed to decode image bytes\n", __func__); return false; } build_clip_img_from_data(data, nx, ny, img); stbi_image_free(data); return true; } // Linear interpolation between two points inline float clip_lerp(float s, float e, float t) { return s + (e - s) * t; } // Bilinear resize function static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) { dst.nx = target_width; dst.ny = target_height; dst.buf.resize(3 * target_width * target_height); float x_ratio = static_cast(src.nx - 1) / target_width; float y_ratio = static_cast(src.ny - 1) / target_height; for (int y = 0; y < target_height; y++) { for (int x = 0; x < target_width; x++) { float px = x_ratio * x; float py = y_ratio * y; int x_floor = static_cast(px); int y_floor = static_cast(py); float x_lerp = px - x_floor; float y_lerp = py - y_floor; for (int c = 0; c < 3; c++) { float top = clip_lerp( static_cast(src.buf[3 * (y_floor * src.nx + x_floor) + c]), static_cast(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]), x_lerp ); float bottom = clip_lerp( static_cast(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]), static_cast(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]), x_lerp ); dst.buf[3 * (y * target_width + x) + c] = static_cast(clip_lerp(top, bottom, y_lerp)); } } } } // Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not static void normalize_image_u8_to_f32(const clip_image_u8* src, clip_image_f32* dst, const float mean[3], const float std[3]) { dst->nx = src->nx; dst->ny = src->ny; dst->buf.resize(src->buf.size()); for (size_t i = 0; i < src->buf.size(); ++i) { int c = i % 3; // rgb dst->buf[i] = (static_cast(src->buf[i]) / 255.0f - mean[c]) / std[c]; } } inline int clip(int x, int lower, int upper) { return std::max(lower, std::min(x, upper)); } static bool bicubic_resize(const clip_image_u8 &img, clip_image_u8 &dst, int target_width, int target_height) { const int nx = img.nx; const int ny = img.ny; dst.nx = target_width; dst.ny = target_height; dst.buf.resize(3 * target_width * target_height); float Cc; float C[5]; float d0, d2, d3, a0, a1, a2, a3; int i, j, k, jj; int x, y; float dx, dy; float tx, ty; tx = (float)nx / (float)target_width; ty = (float)ny / (float)target_height; // Bicubic interpolation; adapted from ViT.cpp, inspired from : // -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36 // -> https://en.wikipedia.org/wiki/Bicubic_interpolation for (i = 0; i < target_height; i++) { for (j = 0; j < target_width; j++) { x = (int)(tx * j); y = (int)(ty * i); dx = tx * j - x; dy = ty * i - y; for (k = 0; k < 3; k++) { for (jj = 0; jj <= 3; jj++) { d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3; a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2; a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3; C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx; d0 = C[0] - C[1]; d2 = C[2] - C[1]; d3 = C[3] - C[1]; a0 = C[1]; a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3; a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2; a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3; Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy; const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f); dst.buf[(i * target_width + j) * 3 + k] = float(Cc2); } } } } return true; } // llava-1.6 type of resize_and_pad (black) static void resize_and_pad_image(const clip_image_u8& image, clip_image_u8 &image_output, const std::pair& target_resolution) { int target_width = target_resolution.first; int target_height = target_resolution.second; float scale_w = static_cast(target_width) / image.nx; float scale_h = static_cast(target_height) / image.ny; int new_width, new_height; if (scale_w < scale_h) { new_width = target_width; new_height = std::min(static_cast(std::ceil(image.ny * scale_w)), target_height); } else { new_height = target_height; new_width = std::min(static_cast(std::ceil(image.nx * scale_h)), target_width); } clip_image_u8 resized_image; // bilinear_resize(image, resized_image, new_width, new_height); bicubic_resize(image, resized_image, new_width, new_height); clip_image_u8 padded_image; padded_image.nx = target_width; padded_image.ny = target_height; padded_image.buf.resize(3 * target_width * target_height, 0); // Initialize with black // Calculate padding offsets int pad_x = (target_width - new_width) / 2; int pad_y = (target_height - new_height) / 2; // Copy the resized image into the center of the padded buffer for (int y = 0; y < new_height; ++y) { for (int x = 0; x < new_width; ++x) { for (int c = 0; c < 3; ++c) { padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c]; } } } image_output = std::move(padded_image); } /** * Selects the best resolution from a list of possible resolutions based on the original size. * * @param original_size The original size of the image in the format (width, height). * @param possible_resolutions A list of possible resolutions in the format [(width1, height1), (width2, height2), ...]. * @return The best fit resolution in the format (width, height). */ static std::pair select_best_resolution(const std::pair & original_size, const std::vector> & possible_resolutions) { int original_width = original_size.first; int original_height = original_size.second; std::pair best_fit; int max_effective_resolution = 0; int min_wasted_resolution = std::numeric_limits::max(); for (const auto& resolution : possible_resolutions) { int width = resolution.first; int height = resolution.second; float scale = std::min(static_cast(width) / original_width, static_cast(height) / original_height); int downscaled_width = static_cast(original_width * scale); int downscaled_height = static_cast(original_height * scale); int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height); int wasted_resolution = (width * height) - effective_resolution; // LOG_INF("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution); if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) { max_effective_resolution = effective_resolution; min_wasted_resolution = wasted_resolution; best_fit = resolution; } } return best_fit; } static std::vector divide_to_patches_u8(const clip_image_u8 & image, int patch_size) { std::vector patches; int width = image.nx; int height = image.ny; for (int i = 0; i < height; i += patch_size) { for (int j = 0; j < width; j += patch_size) { clip_image_u8 *patch = clip_image_u8_init(); patch->nx = std::min(patch_size, width - j); patch->ny = std::min(patch_size, height - i); patch->buf.resize(3 * patch->nx * patch->ny); for (int y = 0; y < patch->ny; ++y) { for (int x = 0; x < patch->nx; ++x) { for (int c = 0; c < 3; ++c) { patch->buf[3 * (y * patch->nx + x) + c] = image.buf[3 * ((i + y) * width + (j + x)) + c]; } } } patches.push_back(patch); } } return patches; } static int ensure_divide(int length, int patch_size) { return std::max(static_cast(std::round(static_cast(length) / patch_size) * patch_size), patch_size); } static std::pair uhd_find_best_resize(std::pair original_size, int scale_resolution, int patch_size, bool allow_upscale = false) { int width = original_size.first; int height = original_size.second; if ((width * height > scale_resolution * scale_resolution) || allow_upscale) { float r = static_cast(width) / height; height = static_cast(scale_resolution / std::sqrt(r)); width = static_cast(height * r); } int best_width = ensure_divide(width, patch_size); int best_height = ensure_divide(height, patch_size); return std::make_pair(best_width, best_height); } static std::pair uhd_get_refine_size(std::pair original_size, std::pair grid, int scale_resolution, int patch_size, bool allow_upscale = false) { int width, height; std::tie(width, height) = original_size; int grid_x, grid_y; std::tie(grid_x, grid_y) = grid; int refine_width = ensure_divide(width, grid_x); int refine_height = ensure_divide(height, grid_y); int grid_width = refine_width / grid_x; int grid_height = refine_height / grid_y; // auto best_grid_size = find_best_resize(std::make_tuple(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); (old line) auto best_grid_size = uhd_find_best_resize(std::make_pair(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); // (new line) => fixes conversion for make_tuple to make_pair int best_grid_width, best_grid_height; std::tie(best_grid_width, best_grid_height) = best_grid_size; // std::pair refine_size = std::make_tuple(best_grid_width * grid_x, best_grid_height * grid_y); (old line) std::pair refine_size = std::make_pair(best_grid_width * grid_x, best_grid_height * grid_y); // (new line) return refine_size; } static std::pair uhd_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) { std::vector candidate_split_grids_nums; for (int i : {multiple - 1, multiple, multiple + 1}) { if (i == 1 || i > max_slice_nums) { continue; } candidate_split_grids_nums.push_back(i); } std::vector> candidate_grids; for (int split_grids_nums : candidate_split_grids_nums) { int m = 1; while (m <= split_grids_nums) { if (split_grids_nums % m == 0) { candidate_grids.emplace_back(m, split_grids_nums / m); } ++m; } } std::pair best_grid{1, 1}; float min_error = std::numeric_limits::infinity(); for (const auto& grid : candidate_grids) { float error = std::abs(log_ratio - std::log(1.0 * grid.first / grid.second)); if (error < min_error) { best_grid = grid; min_error = error; } } return best_grid; } // inspired from LLaVA-UHD: // -> https://arxiv.org/pdf/2403.11703 // -> https://github.com/thunlp/LLaVA-UHD // -> https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118 static std::vector> uhd_slice_image(const clip_image_u8 * img, const int max_slice_nums=9, const int scale_resolution=448, const int patch_size=14) { const std::pair original_size={img->nx,img->ny}; const int original_width = img->nx; const int original_height = img->ny; const float log_ratio = log(1.0*original_width/original_height); const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution); const int multiple = fmin(ceil(ratio), max_slice_nums); std::vector> images; LOG_INF("%s: multiple %d\n", __func__, multiple); images.push_back(std::vector()); if (multiple <= 1) { auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size, true); clip_image_u8 * source_image = clip_image_u8_init(); bicubic_resize(*img, *source_image, best_size.first, best_size.second); // source_image = image.resize(best_size, Image.Resampling.BICUBIC) images[images.size()-1].push_back(source_image); } else if (multiple > 1) { auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size); clip_image_u8 * source_image = clip_image_u8_init(); bicubic_resize(*img, *source_image, best_size.first, best_size.second); // source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC) LOG_INF("%s: image_size: %d %d; source_image size: %d %d\n", __func__, img->nx, img->ny, best_size.first, best_size.second); images[images.size()-1].push_back(source_image); std::pair best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio); LOG_INF("%s: image_size: %d %d; best_grid: %d %d\n", __func__, img->nx, img->ny, best_grid.first, best_grid.second); auto refine_size = uhd_get_refine_size(original_size, best_grid, scale_resolution, patch_size, true); clip_image_u8 * refine_image = clip_image_u8_init(); bicubic_resize(*img, *refine_image, refine_size.first, refine_size.second); LOG_INF("%s: refine_image_size: %d %d; refine_size: %d %d\n", __func__, refine_image->nx, refine_image->ny, refine_size.first, refine_size.second); // split_to_patches int width = refine_image->nx; int height = refine_image->ny; int grid_x = int(width / best_grid.first); int grid_y = int(height / best_grid.second); for (int patches_i = 0, ic = 0; patches_i < height && ic < best_grid.second; patches_i += grid_y, ic += 1){ images.push_back(std::vector()); for(int patches_j = 0, jc = 0; patches_j < width && jc < best_grid.first; patches_j += grid_x, jc += 1){ clip_image_u8 * patch = clip_image_u8_init(); patch->nx = grid_x; patch->ny = grid_y; patch->buf.resize(3 * patch->nx * patch->ny); for (int y = patches_i; y < patches_i + grid_y; ++y) { for (int x = patches_j; x < patches_j + grid_x; ++x) { const int i = 3 * (y * refine_image->nx + x); const int j = 3 * ((y-patches_i) * patch->nx + (x-patches_j)); patch->buf[j] = refine_image->buf[i]; patch->buf[j+1] = refine_image->buf[i+1]; patch->buf[j+2] = refine_image->buf[i+2]; } } images[images.size()-1].push_back(patch); } } } return images; } int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip) { const int max_slice_nums=9; const int scale_resolution=448; const int original_width = ctx_clip->load_image_size->width; const int original_height = ctx_clip->load_image_size->height; const float log_ratio = log(1.0*original_width/original_height); const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution); const int multiple = fmin(ceil(ratio), max_slice_nums); std::pair best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio); return best_grid.first; } // returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector // res_imgs memory is being allocated here, previous allocations will be freed if found bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch * res_imgs) { if(clip_is_minicpmv(ctx)){ int max_slice_nums = 9; std::vector> imgs = uhd_slice_image(img, max_slice_nums); res_imgs->size = 0; for (size_t i = 0; i < imgs.size(); ++i){ res_imgs->size += imgs[i].size(); } res_imgs->data = new clip_image_f32[res_imgs->size]; int idx = 0; for (size_t i = 0; i < imgs.size(); ++i) { for (size_t j = 0; j < imgs[i].size(); ++j) { LOG_DBG("%s: %d %d\n", __func__,imgs[i][j]->nx,imgs[i][j]->ny); clip_image_f32 * res = clip_image_f32_init(); normalize_image_u8_to_f32(imgs[i][j], res, ctx->image_mean, ctx->image_std); res_imgs->data[idx++] = *res; clip_image_f32_free(res); } } return true; } bool pad_to_square = true; if (!ctx->has_vision_encoder) { LOG_ERR("This gguf file seems to have no vision encoder\n"); return false; } auto & params = ctx->vision_model.hparams; // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing if (strcmp(params.mm_patch_merge_type, "spatial_unpad") == 0) { pad_to_square = false; } // free the previous res_imgs if any set if (res_imgs->size > 0) { clip_image_f32_batch_free(res_imgs); } res_imgs->data = nullptr; res_imgs->size = 0; // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104) // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156 clip_image_u8 * temp = clip_image_u8_init(); // we will keep the input image data here temporarily if (pad_to_square && img->nx != img->ny) { int longer_side = std::max(img->nx, img->ny); temp->nx = longer_side; temp->ny = longer_side; temp->buf.resize(3 * longer_side * longer_side); const uint8_t bc[3] = {122, 116, 104}; // background color in RGB from LLaVA (this is the mean rgb color * 255) // fill with background color for (size_t i = 0; i < temp->buf.size(); i++) { temp->buf[i] = bc[i % 3]; } // copy from the input image for (int y = 0; y < img->ny; y++) { for (int x = 0; x < img->nx; x++) { const int i = 3 * (y * img->nx + x); const int j = 3 * (y * temp->nx + x); temp->buf[j] = img->buf[i]; temp->buf[j+1] = img->buf[i+1]; temp->buf[j+2] = img->buf[i+2]; } } } else { if (params.image_grid_pinpoints[0] != 0) { // "spatial_unpad" with "anyres" processing for llava-1.6 std::vector> possible_resolutions; for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) { possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]}); } std::pair best_resolution = select_best_resolution({img->nx, img->ny}, possible_resolutions); // clip_image_save_to_bmp(*img, "input.bmp"); resize_and_pad_image(*img, *temp, best_resolution); // we do not pad with mean-bg color anymore in llava-1.6 // clip_image_save_to_bmp(*temp, "resized.bmp"); // visually verify normalized image: // normalize_image_u8_to_f32(*temp, *res, ctx->image_mean, ctx->image_std); // { // clip_image_u8 * temp2 = clip_image_u8_init(); // clip_image_convert_f32_to_u8(*res, *temp2); // clip_image_save_to_bmp(*temp2, "resized_normalized_f32.bmp"); // clip_image_u8_free(temp2); // } std::vector patches = divide_to_patches_u8(*temp, params.image_size); // prepare spatial sorted main patches of image_size each (336 in llava-1.6) clip_image_u8 *image_original_resize = clip_image_u8_init(); // bilinear_resize(*img, *image_original_resize, params.image_size, params.image_size); // in python this is "shortest_edge", but all CLIP are square bicubic_resize(*img, *image_original_resize, params.image_size, params.image_size); // in python this is "shortest_edge", but all CLIP are square patches.insert(patches.begin(), image_original_resize); // clip_image_f32_batch_init(patches.size()); res_imgs->size = patches.size(); res_imgs->data = new clip_image_f32[res_imgs->size]; int num=0; for (auto& patch : patches) { normalize_image_u8_to_f32(patch, &res_imgs->data[num], ctx->image_mean, ctx->image_std); num++; } for (size_t i = 0; i < patches.size(); i++) { // LOG_DBG("patch %d: %d %d\n", i, patches[i]->nx, patches[i]->ny); clip_image_u8_free(patches[i]); } clip_image_u8_free(temp); return true; } else { temp->nx = img->nx; temp->ny = img->ny; temp->buf.resize(img->buf.size()); memcpy(temp->buf.data(), img->buf.data(), temp->buf.size()); } } const int nx = temp->nx; const int ny = temp->ny; // clip_image_save_to_bmp(*temp, "resized_vanilla.bmp"); const int nx2 = ctx->vision_model.hparams.image_size; const int ny2 = ctx->vision_model.hparams.image_size; clip_image_f32 * res = clip_image_f32_init(); res->nx = nx2; res->ny = ny2; res->buf.resize(3 * nx2 * ny2); const float scale = std::max(nx, ny) / (float)ctx->vision_model.hparams.image_size; const int nx3 = int(nx / scale + 0.5f); const int ny3 = int(ny / scale + 0.5f); const auto & m3 = ctx->image_mean; // {0.48145466f, 0.4578275f, 0.40821073f}; const auto & s3 = ctx->image_std; // {0.26862954f, 0.26130258f, 0.27577711f}; for (int y = 0; y < ny3; y++) { for (int x = 0; x < nx3; x++) { for (int c = 0; c < 3; c++) { // linear interpolation const float sx = (x + 0.5f) * scale - 0.5f; const float sy = (y + 0.5f) * scale - 0.5f; const int x0 = std::max(0, (int)std::floor(sx)); const int y0 = std::max(0, (int)std::floor(sy)); const int x1 = std::min(x0 + 1, nx - 1); const int y1 = std::min(y0 + 1, ny - 1); const float dx = sx - x0; const float dy = sy - y0; const int j00 = 3 * (y0 * nx + x0) + c; const int j01 = 3 * (y0 * nx + x1) + c; const int j10 = 3 * (y1 * nx + x0) + c; const int j11 = 3 * (y1 * nx + x1) + c; const float v00 = temp->buf[j00]; const float v01 = temp->buf[j01]; const float v10 = temp->buf[j10]; const float v11 = temp->buf[j11]; const float v0 = v00 * (1.0f - dx) + v01 * dx; const float v1 = v10 * (1.0f - dx) + v11 * dx; const float v = v0 * (1.0f - dy) + v1 * dy; const uint8_t v2 = std::min(std::max(std::round(v), 0.0f), 255.0f); const int i = 3 * (y * nx3 + x) + c; res->buf[i] = ((float(v2) / 255.0f) - m3[c]) / s3[c]; } } } clip_image_u8_free(temp); // { // clip_image_u8 * temp2 = clip_image_u8_init(); // clip_image_convert_f32_to_u8(*res, *temp2); // clip_image_save_to_bmp(*temp2, "resized_normalized_f32_vanilla.bmp"); // clip_image_u8_free(temp2); // } // res_imgs.push_back(res); res_imgs->size = 1; res_imgs->data = new clip_image_f32[res_imgs->size]; res_imgs->data[0] = *res; clip_image_f32_free(res); return true; } ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) { return ctx->vision_model.image_newline; } void clip_free(clip_ctx * ctx) { ggml_free(ctx->ctx_data); gguf_free(ctx->ctx_gguf); ggml_backend_buffer_free(ctx->params_buffer); ggml_backend_free(ctx->backend); ggml_gallocr_free(ctx->compute_alloc); delete ctx; } size_t clip_embd_nbytes(const struct clip_ctx * ctx) { return clip_n_patches(ctx) * clip_n_mmproj_embd(ctx) * sizeof(float); } int32_t clip_image_size(const struct clip_ctx * ctx) { return ctx->vision_model.hparams.image_size; } int32_t clip_patch_size(const struct clip_ctx * ctx) { return ctx->vision_model.hparams.patch_size; } int32_t clip_hidden_size(const struct clip_ctx * ctx) { return ctx->vision_model.hparams.hidden_size; } const char * clip_patch_merge_type(const struct clip_ctx * ctx) { return ctx->vision_model.hparams.mm_patch_merge_type; } const int32_t * clip_image_grid(const struct clip_ctx * ctx) { return ctx->vision_model.hparams.image_grid_pinpoints; } int clip_n_patches(const struct clip_ctx * ctx) { const auto & params = ctx->vision_model.hparams; int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size); if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2) { n_patches /= 4; } else if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) { if (ctx->minicpmv_version == 2) { n_patches = 96; } else if (ctx->minicpmv_version == 3) { n_patches = 64; } } return n_patches; } static std::vector>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector> & pos) { assert(embed_dim % 2 == 0); int H = pos.size(); int W = pos[0].size(); std::vector omega(embed_dim / 2); for (int i = 0; i < embed_dim / 2; ++i) { omega[i] = 1.0 / pow(10000.0, static_cast(i) / (embed_dim / 2)); } std::vector>> emb(H, std::vector>(W, std::vector(embed_dim))); for (int h = 0; h < H; ++h) { for (int w = 0; w < W; ++w) { for (int d = 0; d < embed_dim / 2; ++d) { float out_value = pos[h][w] * omega[d]; emb[h][w][d] = sin(out_value); emb[h][w][d + embed_dim / 2] = cos(out_value); } } } return emb; } static std::vector>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector>> & grid) { assert(embed_dim % 2 == 0); std::vector>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2) std::vector>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2) int H = emb_h.size(); int W = emb_h[0].size(); std::vector>> emb(H, std::vector>(W, std::vector(embed_dim))); for (int h = 0; h < H; ++h) { for (int w = 0; w < W; ++w) { for (int d = 0; d < embed_dim / 2; ++d) { emb[h][w][d] = emb_h[h][w][d]; emb[h][w][d + embed_dim / 2] = emb_w[h][w][d]; } } } return emb; } static std::vector> get_2d_sincos_pos_embed(int embed_dim, const std::pair image_size) { int grid_h_size = image_size.first; int grid_w_size = image_size.second; std::vector grid_h(grid_h_size); std::vector grid_w(grid_w_size); for (int i = 0; i < grid_h_size; ++i) { grid_h[i] = static_cast(i); } for (int i = 0; i < grid_w_size; ++i) { grid_w[i] = static_cast(i); } std::vector> grid(grid_h_size, std::vector(grid_w_size)); for (int h = 0; h < grid_h_size; ++h) { for (int w = 0; w < grid_w_size; ++w) { grid[h][w] = grid_w[w]; } } std::vector>> grid_2d = {grid, grid}; for (int h = 0; h < grid_h_size; ++h) { for (int w = 0; w < grid_w_size; ++w) { grid_2d[0][h][w] = grid_h[h]; grid_2d[1][h][w] = grid_w[w]; } } std::vector>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d); int H = image_size.first; int W = image_size.second; std::vector> pos_embed_2d(H * W, std::vector(embed_dim)); for (int h = 0; h < H; ++h) { for (int w = 0; w < W; ++w) { pos_embed_2d[w * H + h] = pos_embed_3d[h][w]; } } return pos_embed_2d; } bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) { if (!ctx->has_vision_encoder) { LOG_ERR("This gguf file seems to have no vision encoder\n"); return false; } clip_image_f32_batch imgs{}; imgs.size = 1; imgs.data = img; return clip_image_batch_encode(ctx, n_threads, &imgs, vec); } bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec) { if (!ctx->has_vision_encoder) { LOG_ERR("This gguf file seems to have no vision encoder\n"); return false; } int batch_size = imgs->size; if (ctx->has_llava_projector) { GGML_ASSERT(batch_size == 1); // TODO: support multiple images } if (ctx->has_minicpmv_projector) { GGML_ASSERT(batch_size == 1); } // build the inference graph ggml_cgraph * gf = clip_image_build_graph(ctx, imgs, ctx->load_image_size, true); ggml_gallocr_alloc_graph(ctx->compute_alloc, gf); // set inputs const auto & model = ctx->vision_model; const auto & hparams = model.hparams; const int image_size = hparams.image_size; int image_size_width = image_size; int image_size_height = image_size; if (ctx->has_minicpmv_projector) { image_size_width = imgs->data[0].nx; image_size_height = imgs->data[0].ny; } const int patch_size = hparams.patch_size; const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size)); const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0); if(ctx->load_image_size==nullptr){ ctx->load_image_size= clip_image_size_init(); } const int pos_w = ctx->load_image_size->width/patch_size; const int pos_h = ctx->load_image_size->height/patch_size; { struct ggml_tensor * inp_raw = ggml_graph_get_tensor(gf, "inp_raw"); float * data = (float *)malloc(ggml_nbytes(inp_raw)); for (size_t i = 0; i < imgs->size; i++) { const int nx = imgs->data[i].nx; const int ny = imgs->data[i].ny; if (!ctx->has_minicpmv_projector) { GGML_ASSERT(nx == image_size && ny == image_size); } const int n = nx * ny; for (int b = 0; b < batch_size; b++) { for (int k = 0; k < 3; k++) { for (int y = 0; y < ny; y++) { for (int x = 0; x < nx; x++) { data[(b * 3 * n) + k * n + y * nx + x] = imgs->data[b].buf[3 * (y * nx + x) + k]; } } } } } ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw)); free(data); } if (ctx->has_minicpmv_projector) { { // inspired from siglip: // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316 struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions"); int* positions_data = (int*)malloc(ggml_nbytes(positions)); int bucket_coords_h[70]; int bucket_coords_w[70]; for (int i = 0; i < pos_h; i++){ bucket_coords_h[i] = std::floor(70.0*i/pos_h); } for (int i = 0; i < pos_w; i++){ bucket_coords_w[i] = std::floor(70.0*i/pos_w); } for (int i = 0, id = 0; i < pos_h; i++){ for (int j = 0; j < pos_w; j++){ positions_data[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j]; } } ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions)); free(positions_data); } { // inspired from resampler of Qwen-VL: // -> https://huggingface.co/Qwen/Qwen-VL/tree/main // -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23 struct ggml_tensor * pos_embed = ggml_graph_get_tensor(gf, "pos_embed"); int embed_dim = 4096; if (ctx->minicpmv_version == 2) { embed_dim = 4096; } else if (ctx->minicpmv_version == 3) { embed_dim = 3584; } auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h)); float * pos_embed_data = (float *)malloc(ggml_nbytes(pos_embed)); for(int i=0;ihas_class_embedding) { struct ggml_tensor * embeddings = ggml_graph_get_tensor(gf, "embeddings"); void* zero_mem = malloc(ggml_nbytes(embeddings)); memset(zero_mem, 0, ggml_nbytes(embeddings)); ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings)); free(zero_mem); } } { struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions"); int* positions_data = (int*)malloc(ggml_nbytes(positions)); for (int i = 0; i < num_positions; i++) { positions_data[i] = i; } ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions)); free(positions_data); } { struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches"); int* patches_data = (int*)malloc(ggml_nbytes(patches)); for (int i = 0; i < num_patches; i++) { patches_data[i] = i + 1; } ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches)); free(patches_data); } } if (ggml_backend_is_cpu(ctx->backend)) { ggml_backend_cpu_set_n_threads(ctx->backend, n_threads); } ggml_backend_graph_compute(ctx->backend, gf); // the last node is the embedding tensor struct ggml_tensor * embeddings = ggml_graph_node(gf, -1); // copy the embeddings to the location passed by the user ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings)); return true; } bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype) { ggml_type type = GGML_TYPE_Q4_1; assert(itype < GGML_TYPE_COUNT); type = static_cast(itype); auto * ctx_clip = clip_model_load(fname_inp, 2); const auto & ctx_src = ctx_clip->ctx_gguf; const auto & ctx_data = ctx_clip->ctx_data; auto * ctx_out = gguf_init_empty(); gguf_set_kv(ctx_out, ctx_src); gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION); gguf_set_val_u32(ctx_out, "general.file_type", itype); auto fout = std::ofstream(fname_out, std::ios::binary); const int n_tensors = gguf_get_n_tensors(ctx_src); for (int i = 0; i < n_tensors; ++i) { const char * name = gguf_get_tensor_name(ctx_src, i); struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name); gguf_add_tensor(ctx_out, cur); } const size_t meta_size = gguf_get_meta_size(ctx_out); for (size_t i = 0; i < meta_size; ++i) { fout.put(0); } // regexes of tensor names to be quantized const std::vector k_names = { ".*weight", }; std::vector work(512); std::vector conv_buf(512); size_t total_size_org = 0; size_t total_size_new = 0; for (int i = 0; i < n_tensors; ++i) { const std::string name = gguf_get_tensor_name(ctx_src, i); struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str()); enum ggml_type new_type; void * new_data; size_t new_size; bool quantize = false; for (const auto & s : k_names) { if (std::regex_match(name, std::regex(s))) { quantize = true; break; } } // quantize only 2D tensors quantize &= (ggml_n_dims(cur) == 2); if (quantize) { new_type = type; if (new_type >= GGML_TYPE_Q2_K && name.find("embd") != std::string::npos) { new_type = GGML_TYPE_Q8_0; // ggml_get_rows needs non K type // LOG_ERR("%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type)); } const size_t n_elms = ggml_nelements(cur); float * f32_data; switch (cur->type) { case GGML_TYPE_F32: f32_data = (float *)cur->data; break; case GGML_TYPE_F16: if (conv_buf.size() < n_elms) { conv_buf.resize(n_elms); } for (size_t j = 0; j < n_elms; ++j) { conv_buf[j] = ggml_fp16_to_fp32(((ggml_fp16_t *)cur->data)[j]); } f32_data = (float *)conv_buf.data(); break; default: LOG_ERR("Please use an input file in f32 or f16\n"); gguf_free(ctx_out); return false; } if (work.size() < n_elms * 4) { work.resize(n_elms * 4); } new_data = work.data(); new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, n_elms/cur->ne[0], cur->ne[0], nullptr); } else { new_type = cur->type; new_data = cur->data; new_size = ggml_nbytes(cur); } const size_t orig_size = ggml_nbytes(cur); total_size_org += orig_size; total_size_new += new_size; gguf_set_tensor_type(ctx_out, name.c_str(), new_type); GGML_ASSERT(gguf_get_tensor_size(ctx_out, gguf_find_tensor(ctx_out, name.c_str())) == new_size); gguf_set_tensor_data(ctx_out, name.c_str(), new_data); fout.write((const char *)new_data, new_size); size_t pad = GGML_PAD(new_size, gguf_get_alignment(ctx_out)) - new_size; for (size_t j = 0; j < pad; ++j) { fout.put(0); } LOG_INF("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize, orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0); } // go back to beginning of file and write the updated metadata fout.seekp(0, std::ios::beg); std::vector meta(meta_size); gguf_get_meta_data(ctx_out, meta.data()); fout.write((const char *)meta.data(), meta_size); fout.close(); clip_free(ctx_clip); gguf_free(ctx_out); { LOG_INF("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0); LOG_INF("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0); } return true; } int clip_n_mmproj_embd(const struct clip_ctx * ctx) { if (ctx->proj_type == PROJECTOR_TYPE_LDP) { return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0]; } if (ctx->proj_type == PROJECTOR_TYPE_LDPV2) { return ctx->vision_model.mm_model_peg_0_b->ne[0]; } if (ctx->proj_type == PROJECTOR_TYPE_MLP) { return ctx->vision_model.mm_2_b->ne[0]; } if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) { return ctx->vision_model.mm_3_b->ne[0]; } if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) { if (ctx->minicpmv_version == 2) { return 4096; } else if (ctx->minicpmv_version == 3) { return 3584; } } std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type]; throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str())); } int clip_is_minicpmv(const struct clip_ctx * ctx) { if (ctx->has_minicpmv_projector) { return ctx->minicpmv_version; } return 0; }