import argparse from typing import Dict import torch import numpy as np from gguf import * from transformers import ( Qwen2VLForConditionalGeneration, Qwen2VLProcessor, AutoProcessor, Qwen2VLConfig ) VISION = "clip.vision" def k(raw_key: str, arch: str) -> str: return raw_key.format(arch=arch) def to_gguf_name(name: str) -> str: og = name name = name.replace("text_model", "t").replace("vision_model", "v") name = name.replace("blocks", "blk").replace("embeddings.", "") name = name.replace("attn.", "attn_") name = name.replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("proj.", "out.") # name = name.replace("layrnorm", "ln").replace("layer_norm", "ln").replace("layernorm", "ln") name = name.replace("norm1", "ln1").replace("norm2", "ln2") name = name.replace("merger.mlp", 'mm') print(f"[to_gguf_name] {og} --> {name}") return name def find_vision_tensors(qwen2vl, dtype) -> Dict[str, np.ndarray]: vision_model = qwen2vl.visual tensor_map = {} for name, ten in vision_model.state_dict().items(): ten = ten.numpy() if 'qkv' in name: if ten.ndim == 2: # weight c3, _ = ten.shape else: # bias c3 = ten.shape[0] assert c3 % 3 == 0 c = c3 // 3 wq = ten[:c] wk = ten[c: c * 2] wv = ten[c * 2:] tensor_map[to_gguf_name(f"vision_model.{name}").replace("qkv", "q")] = wq tensor_map[to_gguf_name(f"vision_model.{name}").replace("qkv", "k")] = wk tensor_map[to_gguf_name(f"vision_model.{name}").replace("qkv", "v")] = wv elif 'merger' in name: if name.endswith("ln_q.weight"): tensor_map['v.post_ln.weight'] = ten elif name.endswith("ln_q.bias"): tensor_map['v.post_ln.bias'] = ten else: # "merger.mlp.%d.weight/bias" --> "mm.%d.weight/bias" tensor_map[to_gguf_name(name)] = ten elif 'patch_embed.proj.weight' in name: # NOTE: split Conv3D into Conv2Ds c1, c2, kt, kh, kw = ten.shape assert kt == 2, "Current implmentation only support temporal_patch_size of 2" tensor_map["v.patch_embd.weight"] = ten[:, :, 0, ...] tensor_map["v.patch_embd.weight.1"] = ten[:, :, 1, ...] else: tensor_map[to_gguf_name(f"vision_model.{name}")] = ten for new_name, ten in tensor_map.items(): if ten.ndim <= 1 or new_name.endswith("_norm.weight"): tensor_map[new_name] = ten.astype(np.float32) else: tensor_map[new_name] = ten.astype(dtype) tensor_map["v.position_embd.weight"] = np.zeros([10, 10], dtype=np.float32) # dummy tensor, just here as a placeholder return tensor_map def main(args): if args.data_type == 'fp32': dtype = torch.float32 np_dtype = np.float32 ftype = 0 elif args.data_type == 'fp16': dtype = torch.float32 np_dtype = np.float16 ftype = 1 else: raise ValueError() model_name = args.model_name print("model_name: ", model_name) qwen2vl = Qwen2VLForConditionalGeneration.from_pretrained( model_name, torch_dtype=dtype, device_map="cpu" ) cfg: Qwen2VLConfig = qwen2vl.config # type: ignore[reportAssignmentType] vcfg = cfg.vision_config if os.path.isdir(model_name): if model_name.endswith(os.sep): model_name = model_name[:-1] model_name = os.path.basename(model_name) fname_out = f"{model_name.replace('/', '-').lower()}-vision.gguf" fout = GGUFWriter(path=fname_out, arch="clip") fout.add_description("image encoder for Qwen2VL") fout.add_file_type(ftype) fout.add_bool("clip.has_text_encoder", False) fout.add_bool("clip.has_vision_encoder", True) fout.add_bool("clip.has_qwen2vl_merger", True) fout.add_string("clip.projector_type", "qwen2vl_merger") print(cfg.vision_config) if 'silu' in cfg.vision_config.hidden_act.lower(): fout.add_bool("clip.use_silu", True) fout.add_bool("clip.use_gelu", False) elif 'gelu' in cfg.vision_config.hidden_act.lower(): fout.add_bool("clip.use_silu", False) fout.add_bool("clip.use_gelu", 'quick' not in cfg.vision_config.hidden_act.lower()) else: raise ValueError() tensor_map = find_vision_tensors(qwen2vl, np_dtype) for name, data in tensor_map.items(): fout.add_tensor(name, data) fout.add_uint32("clip.vision.patch_size", vcfg.patch_size) fout.add_uint32("clip.vision.image_size", 14 * 40) # some reasonable size that is divable by (14*2) fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), vcfg.embed_dim) fout.add_uint32("clip.vision.projection_dim", vcfg.hidden_size) fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), vcfg.num_heads) fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6) fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), vcfg.depth) fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, VISION), 0) # not sure what this does, put 0 here as a placeholder fout.add_name(model_name) """ HACK: Since vision rope related parameter aren't stored in the `Qwen2VLConfig, it will be hardcoded in the `clip_image_build_graph` from `clip.cpp`. """ processor: Qwen2VLProcessor = AutoProcessor.from_pretrained(model_name) fout.add_array("clip.vision.image_mean", processor.image_processor.image_mean) # type: ignore[reportAttributeAccessIssue] fout.add_array("clip.vision.image_std", processor.image_processor.image_std) # type: ignore[reportAttributeAccessIssue] fout.write_header_to_file() fout.write_kv_data_to_file() fout.write_tensors_to_file() fout.close() print("save model as: ", fname_out) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("model_name", nargs='?', default="Qwen/Qwen2-VL-2B-Instruct") parser.add_argument("--data_type", nargs='?', choices=['fp32', 'fp16'], default="fp32") args = parser.parse_args() main(args)