#include "ggml.h" #include "llama-util.h" #include #include #include #include #include #include template static std::string to_string(const T & val) { std::stringstream ss; ss << val; return ss.str(); } void gguf_ex_write_str(std::ofstream & fout, const std::string & val) { const int32_t n = val.size(); fout.write((const char *) &n, sizeof(n)); fout.write(val.c_str(), n); } void gguf_ex_write_i32(std::ofstream & fout, int32_t val) { fout.write((const char *) &val, sizeof(val)); } void gguf_ex_write_u64(std::ofstream & fout, size_t val) { fout.write((const char *) &val, sizeof(val)); } template void gguf_ex_write_val(std::ofstream & fout, const std::string & key, enum gguf_type type, const T & val) { gguf_ex_write_str(fout, key); fout.write((const char *) &type, sizeof(type)); fout.write((const char *) &val, sizeof(val)); fprintf(stdout, "%s: write param: %s = %s\n", __func__, key.c_str(), to_string(val).c_str()); } template<> void gguf_ex_write_val(std::ofstream & fout, const std::string & key, enum gguf_type type, const std::string & val) { gguf_ex_write_str(fout, key); fout.write((const char *) &type, sizeof(type)); const int32_t n = val.size(); fout.write((const char *) &n, sizeof(n)); fout.write(val.c_str(), n); fprintf(stdout, "%s: write param: %s = %s\n", __func__, key.c_str(), val.c_str()); } template void gguf_ex_write_arr(std::ofstream & fout, const std::string & key, enum gguf_type type, const std::vector & val) { gguf_ex_write_str(fout, key); { const enum gguf_type tarr = GGUF_TYPE_ARRAY; fout.write((const char *) &tarr, sizeof(tarr)); } const int32_t n = val.size(); fout.write((const char *) &type, sizeof(type)); fout.write((const char *) &n, sizeof(n)); fout.write((const char *) val.data(), n * sizeof(T)); fprintf(stdout, "%s: write param: %s = [", __func__, key.c_str()); for (int i = 0; i < n; ++i) { fprintf(stdout, "%s", to_string(val[i]).c_str()); if (i < n - 1) { fprintf(stdout, ", "); } } fprintf(stdout, "]\n"); } template<> void gguf_ex_write_arr(std::ofstream & fout, const std::string & key, enum gguf_type type, const std::vector & val) { gguf_ex_write_str(fout, key); { const enum gguf_type tarr = GGUF_TYPE_ARRAY; fout.write((const char *) &tarr, sizeof(tarr)); } const int32_t n = val.size(); fout.write((const char *) &type, sizeof(type)); fout.write((const char *) &n, sizeof(n)); for (int i = 0; i < n; ++i) { const int32_t nstr = val[i].size(); fout.write((const char *) &nstr, sizeof(nstr)); fout.write(val[i].c_str(), nstr); } fprintf(stdout, "%s: write param: %s = [", __func__, key.c_str()); for (int i = 0; i < n; ++i) { fprintf(stdout, "%s", val[i].c_str()); if (i < n - 1) { fprintf(stdout, ", "); } } fprintf(stdout, "]\n"); } bool gguf_ex_write(const std::string & fname) { std::ofstream fout(fname.c_str(), std::ios::binary); { const int32_t magic = GGUF_MAGIC; fout.write((const char *) &magic, sizeof(magic)); } { const int32_t version = GGUF_VERSION; fout.write((const char *) &version, sizeof(version)); } // NOTE: these have to match the output below! const int n_tensors = 10; const int n_kv = 12; fout.write((const char*) &n_tensors, sizeof(n_tensors)); fout.write((const char*) &n_kv, sizeof(n_kv)); fprintf(stdout, "%s: write header\n", __func__); // kv data { gguf_ex_write_val< uint8_t>(fout, "some.parameter.uint8", GGUF_TYPE_UINT8, 0x12); gguf_ex_write_val< int8_t>(fout, "some.parameter.int8", GGUF_TYPE_INT8, -0x13); gguf_ex_write_val(fout, "some.parameter.uint16", GGUF_TYPE_UINT16, 0x1234); gguf_ex_write_val< int16_t>(fout, "some.parameter.int16", GGUF_TYPE_INT16, -0x1235); gguf_ex_write_val(fout, "some.parameter.uint32", GGUF_TYPE_UINT32, 0x12345678); gguf_ex_write_val< int32_t>(fout, "some.parameter.int32", GGUF_TYPE_INT32, -0x12345679); gguf_ex_write_val (fout, "some.parameter.float32", GGUF_TYPE_FLOAT32, 0.123456789f); gguf_ex_write_val (fout, "some.parameter.bool", GGUF_TYPE_BOOL, true); gguf_ex_write_val(fout, "some.parameter.string", GGUF_TYPE_STRING, "hello world"); gguf_ex_write_arr (fout, "some.parameter.arr.i16", GGUF_TYPE_INT16, { 1, 2, 3, 4, }); gguf_ex_write_arr (fout, "some.parameter.arr.f32", GGUF_TYPE_FLOAT32, { 3.145f, 2.718f, 1.414f, }); gguf_ex_write_arr(fout, "some.parameter.arr.str", GGUF_TYPE_STRING, { "hello", "world", "!" }); } uint64_t offset_tensor = 0; struct ggml_init_params params = { /*.mem_size =*/ 128ull*1024ull*1024ull, /*.mem_buffer =*/ NULL, /*.no_alloc =*/ false, }; struct ggml_context * ctx_data = ggml_init(params); // tensor infos for (int i = 0; i < n_tensors; ++i) { const std::string name = "tensor_" + to_string(i); int64_t ne[GGML_MAX_DIMS] = { 1 }; int32_t n_dims = rand() % GGML_MAX_DIMS + 1; for (int j = 0; j < n_dims; ++j) { ne[j] = rand() % 10 + 1; } struct ggml_tensor * cur = ggml_new_tensor(ctx_data, GGML_TYPE_F32, n_dims, ne); ggml_set_name(cur, name.c_str()); { float * data = (float *) cur->data; for (int j = 0; j < ggml_nelements(cur); ++j) { data[j] = 100 + i; } } fprintf(stdout, "%s: tensor: %s, %d dims, ne = [", __func__, name.c_str(), n_dims); for (int j = 0; j < 4; ++j) { fprintf(stdout, "%s%3d", j == 0 ? "" : ", ", (int) cur->ne[j]); } fprintf(stdout, "], offset_tensor = %6" PRIu64 "\n", offset_tensor); gguf_ex_write_str(fout, name); gguf_ex_write_i32(fout, n_dims); for (int j = 0; j < n_dims; ++j) { gguf_ex_write_i32(fout, cur->ne[j]); } gguf_ex_write_i32(fout, cur->type); gguf_ex_write_u64(fout, offset_tensor); offset_tensor += GGML_PAD(ggml_nbytes(cur), GGUF_DEFAULT_ALIGNMENT); } const uint64_t offset_data = GGML_PAD((uint64_t) fout.tellp(), GGUF_DEFAULT_ALIGNMENT); fprintf(stdout, "%s: data offset = %" PRIu64 "\n", __func__, offset_data); { const size_t pad = offset_data - fout.tellp(); for (size_t j = 0; j < pad; ++j) { fout.put(0); } } for (int i = 0; i < n_tensors; ++i) { fprintf(stdout, "%s: writing tensor %d data\n", __func__, i); const std::string name = "tensor_" + to_string(i); struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str()); fout.write((const char *) cur->data, ggml_nbytes(cur)); { const size_t pad = GGML_PAD(ggml_nbytes(cur), GGUF_DEFAULT_ALIGNMENT) - ggml_nbytes(cur); for (size_t j = 0; j < pad; ++j) { fout.put(0); } } } fout.close(); fprintf(stdout, "%s: wrote file '%s;\n", __func__, fname.c_str()); ggml_free(ctx_data); return true; } // just read tensor info bool gguf_ex_read_0(const std::string & fname) { struct gguf_init_params params = { /*.no_alloc = */ false, /*.ctx = */ NULL, }; struct gguf_context * ctx = gguf_init_from_file(fname.c_str(), params); fprintf(stdout, "%s: version: %d\n", __func__, gguf_get_version(ctx)); fprintf(stdout, "%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx)); fprintf(stdout, "%s: data offset: %zu\n", __func__, gguf_get_data_offset(ctx)); // kv { const int n_kv = gguf_get_n_kv(ctx); fprintf(stdout, "%s: n_kv: %d\n", __func__, n_kv); for (int i = 0; i < n_kv; ++i) { const char * key = gguf_get_key(ctx, i); fprintf(stdout, "%s: kv[%d]: key = %s\n", __func__, i, key); } } // find kv string { char findkey[32]; sprintf(findkey, "some.parameter.string"); int keyidx = gguf_find_key(ctx, findkey); if (keyidx == -1) { fprintf(stdout, "%s: find key: %s not found.\n", __func__, findkey); } else { const char * key_value = gguf_get_val_str(ctx, keyidx); fprintf(stdout, "%s: find key: %s found, kv[%d] value = %s\n", __func__, findkey, keyidx, key_value); } } // tensor info { const int n_tensors = gguf_get_n_tensors(ctx); fprintf(stdout, "%s: n_tensors: %d\n", __func__, n_tensors); for (int i = 0; i < n_tensors; ++i) { const char * name = gguf_get_tensor_name (ctx, i); const size_t offset = gguf_get_tensor_offset(ctx, i); fprintf(stdout, "%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset); } } gguf_free(ctx); return true; } // read and create ggml_context containing the tensors and their data bool gguf_ex_read_1(const std::string & fname) { struct ggml_context * ctx_data = NULL; struct gguf_init_params params = { /*.no_alloc = */ false, /*.ctx = */ &ctx_data, }; struct gguf_context * ctx = gguf_init_from_file(fname.c_str(), params); fprintf(stdout, "%s: version: %d\n", __func__, gguf_get_version(ctx)); fprintf(stdout, "%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx)); fprintf(stdout, "%s: data offset: %zu\n", __func__, gguf_get_data_offset(ctx)); // kv { const int n_kv = gguf_get_n_kv(ctx); fprintf(stdout, "%s: n_kv: %d\n", __func__, n_kv); for (int i = 0; i < n_kv; ++i) { const char * key = gguf_get_key(ctx, i); fprintf(stdout, "%s: kv[%d]: key = %s\n", __func__, i, key); } } // tensor info { const int n_tensors = gguf_get_n_tensors(ctx); fprintf(stdout, "%s: n_tensors: %d\n", __func__, n_tensors); for (int i = 0; i < n_tensors; ++i) { const char * name = gguf_get_tensor_name (ctx, i); const size_t offset = gguf_get_tensor_offset(ctx, i); fprintf(stdout, "%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset); } } // data { const int n_tensors = gguf_get_n_tensors(ctx); for (int i = 0; i < n_tensors; ++i) { fprintf(stdout, "%s: reading tensor %d data\n", __func__, i); const char * name = gguf_get_tensor_name(ctx, i); struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name); fprintf(stdout, "%s: tensor[%d]: n_dims = %d, name = %s, data = %p\n", __func__, i, cur->n_dims, cur->name, cur->data); // check data { const float * data = (const float *) cur->data; for (int j = 0; j < ggml_nelements(cur); ++j) { if (data[j] != 100 + i) { fprintf(stderr, "%s: tensor[%d]: data[%d] = %f\n", __func__, i, j, data[j]); return false; } } } } } fprintf(stdout, "%s: ctx_data size: %zu\n", __func__, ggml_get_mem_size(ctx_data)); ggml_free(ctx_data); gguf_free(ctx); return true; } // read just the tensor info and mmap the data in user code bool gguf_ex_read_2(const std::string & fname) { struct ggml_context * ctx_data = NULL; struct gguf_init_params params = { /*.no_alloc = */ true, /*.ctx = */ &ctx_data, }; struct gguf_context * ctx = gguf_init_from_file(fname.c_str(), params); // TODO: mmap based on tensor infos struct llama_file file(fname.c_str(), "rb"); llama_mmap data_mmap(&file, 0, false); const int n_tensors = gguf_get_n_tensors(ctx); for (int i = 0; i < n_tensors; ++i) { const char * name = gguf_get_tensor_name(ctx, i); const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i); struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name); cur->data = static_cast(data_mmap.addr) + offset; // print first 10 elements const float * data = (const float *) cur->data; printf("%s data[:10] : ", name); for (int j = 0; j < 10; ++j) { printf("%f ", data[j]); } printf("\n\n"); } fprintf(stdout, "%s: ctx_data size: %zu\n", __func__, ggml_get_mem_size(ctx_data)); ggml_free(ctx_data); gguf_free(ctx); return true; } int main(int argc, char ** argv) { if (argc < 3) { fprintf(stdout, "usage: %s data.gguf r|w\n", argv[0]); return -1; } const std::string fname(argv[1]); const std::string mode (argv[2]); GGML_ASSERT((mode == "r" || mode == "w") && "mode must be r or w"); if (mode == "w") { GGML_ASSERT(gguf_ex_write(fname) && "failed to write gguf file"); } else if (mode == "r") { GGML_ASSERT(gguf_ex_read_0(fname) && "failed to read gguf file"); GGML_ASSERT(gguf_ex_read_1(fname) && "failed to read gguf file"); GGML_ASSERT(gguf_ex_read_2(fname) && "failed to read gguf file"); } return 0; }