#include "convert.cuh" #include "dequantize.cuh" #define CUDA_Q8_0_NE_ALIGN 2048 template static __global__ void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t k) { const int64_t i = (int64_t)2*(blockDim.x*blockIdx.x + threadIdx.x); if (i >= k) { return; } const int64_t ib = i/qk; // block index const int64_t iqs = (i%qk)/qr; // quant index const int64_t iybs = i - i%qk; // y block start index const int64_t y_offset = qr == 1 ? 1 : qk/2; // dequantize dfloat2 v; dequantize_kernel(vx, ib, iqs, v); y[iybs + iqs + 0] = v.x; y[iybs + iqs + y_offset] = v.y; } template static __global__ void dequantize_block_q8_0_f16(const void * __restrict__ vx, half * __restrict__ y, const int64_t k) { #if __CUDA_ARCH__ >= CC_PASCAL constexpr int nint = CUDA_Q8_0_NE_ALIGN/sizeof(int) + WARP_SIZE; const int64_t i0 = CUDA_Q8_0_NE_ALIGN*blockIdx.x; const int * x0 = ((int *) vx) + blockIdx.x * nint; half2 * y2 = (half2 *) (y + i0); __shared__ int vals[nint]; #pragma unroll for (int ix0 = 0; ix0 < nint; ix0 += WARP_SIZE) { if (need_check && i0*sizeof(block_q8_0)/QK8_0 + sizeof(int)*(ix0 + threadIdx.x) >= k*sizeof(block_q8_0)/QK8_0) { break; } const int ix = ix0 + threadIdx.x; vals[ix] = x0[ix]; } __syncthreads(); #pragma unroll for (int iy = 0; iy < CUDA_Q8_0_NE_ALIGN; iy += 2*WARP_SIZE) { if (need_check && i0 + iy + 2*threadIdx.x >= k) { return; } const half * b0 = ((const half *) vals) + (sizeof(block_q8_0)/sizeof(half)) * ((iy + 2*threadIdx.x)/QK8_0); const half d = *b0; const char2 qs = ((const char2 *) (b0 + 1))[threadIdx.x % (QK8_0/2)]; y2[iy/2 + threadIdx.x] = __hmul2(make_half2(qs.x, qs.y), __half2half2(d)); } #else GGML_UNUSED(vx); GGML_UNUSED(y); GGML_UNUSED(k); NO_DEVICE_CODE; #endif // __CUDA_ARCH__ >= CC_PASCAL } template static __global__ void dequantize_block_q4_0(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32) { const int64_t i = blockIdx.x; // assume 32 threads const int64_t tid = threadIdx.x; const int64_t il = tid/8; const int64_t ir = tid%8; const int64_t ib = 8*i + ir; if (ib >= nb32) { return; } dst_t * y = yy + 256*i + 32*ir + 4*il; const block_q4_0 * x = (const block_q4_0 *)vx + ib; const float d = __half2float(x->d); const float dm = -8*d; const uint8_t * q = x->qs + 4*il; for (int l = 0; l < 4; ++l) { y[l+ 0] = d * (q[l] & 0xF) + dm; y[l+16] = d * (q[l] >> 4) + dm; } } template static __global__ void dequantize_block_q4_1(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32) { const int64_t i = blockIdx.x; // assume 32 threads const int64_t tid = threadIdx.x; const int64_t il = tid/8; const int64_t ir = tid%8; const int64_t ib = 8*i + ir; if (ib >= nb32) { return; } dst_t * y = yy + 256*i + 32*ir + 4*il; const block_q4_1 * x = (const block_q4_1 *)vx + ib; const float2 d = __half22float2(x->dm); const uint8_t * q = x->qs + 4*il; for (int l = 0; l < 4; ++l) { y[l+ 0] = d.x * (q[l] & 0xF) + d.y; y[l+16] = d.x * (q[l] >> 4) + d.y; } } //================================== k-quants template static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t * __restrict__ yy) { const int64_t i = blockIdx.x; const block_q2_K * x = (const block_q2_K *) vx; const int64_t tid = threadIdx.x; #if QK_K == 256 const int64_t n = tid/32; const int64_t l = tid - 32*n; const int64_t is = 8*n + l/16; const uint8_t q = x[i].qs[32*n + l]; dst_t * y = yy + i*QK_K + 128*n; float dall = __low2half(x[i].dm); float dmin = __high2half(x[i].dm); y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4); y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4); y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4); y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4); #else const int64_t is = tid/16; // 0 or 1 const int64_t il = tid%16; // 0...15 const uint8_t q = x[i].qs[il] >> (2*is); dst_t * y = yy + i*QK_K + 16*is + il; float dall = __low2half(x[i].dm); float dmin = __high2half(x[i].dm); y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4); y[32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+2] >> 4); #endif } template static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restrict__ yy) { const int64_t i = blockIdx.x; const block_q3_K * x = (const block_q3_K *) vx; #if QK_K == 256 const int64_t r = threadIdx.x/4; const int64_t tid = r/2; const int64_t is0 = r%2; const int64_t l0 = 16*is0 + 4*(threadIdx.x%4); const int64_t n = tid / 4; const int64_t j = tid - 4*n; uint8_t m = 1 << (4*n + j); int64_t is = 8*n + 2*j + is0; int shift = 2*j; int8_t us = is < 4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) : is < 8 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+4] >> 2) & 3) << 4) : is < 12 ? (x[i].scales[is-8] >> 4) | (((x[i].scales[is+0] >> 4) & 3) << 4) : (x[i].scales[is-8] >> 4) | (((x[i].scales[is-4] >> 6) & 3) << 4); float d_all = x[i].d; float dl = d_all * (us - 32); dst_t * y = yy + i*QK_K + 128*n + 32*j; const uint8_t * q = x[i].qs + 32*n; const uint8_t * hm = x[i].hmask; for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4)); #else const int64_t tid = threadIdx.x; const int64_t is = tid/16; // 0 or 1 const int64_t il = tid%16; // 0...15 const int64_t im = il/8; // 0...1 const int64_t in = il%8; // 0...7 dst_t * y = yy + i*QK_K + 16*is + il; const uint8_t q = x[i].qs[il] >> (2*is); const uint8_t h = x[i].hmask[in] >> (2*is + im); const float d = (float)x[i].d; if (is == 0) { y[ 0] = d * ((x[i].scales[0] & 0xF) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4)); y[32] = d * ((x[i].scales[1] & 0xF) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4)); } else { y[ 0] = d * ((x[i].scales[0] >> 4) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4)); y[32] = d * ((x[i].scales[1] >> 4) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4)); } #endif } #if QK_K == 256 static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) { if (j < 4) { d = q[j] & 63; m = q[j + 4] & 63; } else { d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4); m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4); } } #endif template static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy) { const block_q4_K * x = (const block_q4_K *) vx; const int64_t i = blockIdx.x; #if QK_K == 256 // assume 32 threads const int64_t tid = threadIdx.x; const int64_t il = tid/8; const int64_t ir = tid%8; const int64_t is = 2*il; const int64_t n = 4; dst_t * y = yy + i*QK_K + 64*il + n*ir; const float dall = __low2half(x[i].dm); const float dmin = __high2half(x[i].dm); const uint8_t * q = x[i].qs + 32*il + n*ir; uint8_t sc, m; get_scale_min_k4(is + 0, x[i].scales, sc, m); const float d1 = dall * sc; const float m1 = dmin * m; get_scale_min_k4(is + 1, x[i].scales, sc, m); const float d2 = dall * sc; const float m2 = dmin * m; for (int l = 0; l < n; ++l) { y[l + 0] = d1 * (q[l] & 0xF) - m1; y[l +32] = d2 * (q[l] >> 4) - m2; } #else const int64_t tid = threadIdx.x; const uint8_t * q = x[i].qs; dst_t * y = yy + i*QK_K; const float d = (float)x[i].dm[0]; const float m = (float)x[i].dm[1]; y[tid+ 0] = d * (x[i].scales[0] & 0xF) * (q[tid] & 0xF) - m * (x[i].scales[0] >> 4); y[tid+32] = d * (x[i].scales[1] & 0xF) * (q[tid] >> 4) - m * (x[i].scales[1] >> 4); #endif } template static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, dst_t * __restrict__ yy) { const block_q5_K * x = (const block_q5_K *) vx; const int64_t i = blockIdx.x; #if QK_K == 256 // assume 64 threads - this is very slightly better than the one below const int64_t tid = threadIdx.x; const int64_t il = tid/16; // il is in 0...3 const int64_t ir = tid%16; // ir is in 0...15 const int64_t is = 2*il; // is is in 0...6 dst_t * y = yy + i*QK_K + 64*il + 2*ir; const float dall = __low2half(x[i].dm); const float dmin = __high2half(x[i].dm); const uint8_t * ql = x[i].qs + 32*il + 2*ir; const uint8_t * qh = x[i].qh + 2*ir; uint8_t sc, m; get_scale_min_k4(is + 0, x[i].scales, sc, m); const float d1 = dall * sc; const float m1 = dmin * m; get_scale_min_k4(is + 1, x[i].scales, sc, m); const float d2 = dall * sc; const float m2 = dmin * m; uint8_t hm = 1 << (2*il); y[ 0] = d1 * ((ql[ 0] & 0xF) + (qh[ 0] & hm ? 16 : 0)) - m1; y[ 1] = d1 * ((ql[ 1] & 0xF) + (qh[ 1] & hm ? 16 : 0)) - m1; hm <<= 1; y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2; y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2; #else const int64_t tid = threadIdx.x; const uint8_t q = x[i].qs[tid]; const int64_t im = tid/8; // 0...3 const int64_t in = tid%8; // 0...7 const int64_t is = tid/16; // 0 or 1 const uint8_t h = x[i].qh[in] >> im; const float d = x[i].d; dst_t * y = yy + i*QK_K + tid; y[ 0] = d * x[i].scales[is+0] * ((q & 0xF) - ((h >> 0) & 1 ? 0 : 16)); y[32] = d * x[i].scales[is+2] * ((q >> 4) - ((h >> 4) & 1 ? 0 : 16)); #endif } template static __global__ void dequantize_block_q6_K(const void * __restrict__ vx, dst_t * __restrict__ yy) { const block_q6_K * x = (const block_q6_K *) vx; const int64_t i = blockIdx.x; #if QK_K == 256 // assume 64 threads - this is very slightly better than the one below const int64_t tid = threadIdx.x; const int64_t ip = tid/32; // ip is 0 or 1 const int64_t il = tid - 32*ip; // 0...32 const int64_t is = 8*ip + il/16; dst_t * y = yy + i*QK_K + 128*ip + il; const float d = x[i].d; const uint8_t * ql = x[i].ql + 64*ip + il; const uint8_t qh = x[i].qh[32*ip + il]; const int8_t * sc = x[i].scales + is; y[ 0] = d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32); y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32); y[64] = d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32); y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32); #else // assume 32 threads const int64_t tid = threadIdx.x; const int64_t ip = tid/16; // 0 or 1 const int64_t il = tid - 16*ip; // 0...15 dst_t * y = yy + i*QK_K + 16*ip + il; const float d = x[i].d; const uint8_t ql = x[i].ql[16*ip + il]; const uint8_t qh = x[i].qh[il] >> (2*ip); const int8_t * sc = x[i].scales; y[ 0] = d * sc[ip+0] * ((int8_t)((ql & 0xF) | (((qh >> 0) & 3) << 4)) - 32); y[32] = d * sc[ip+2] * ((int8_t)((ql >> 4) | (((qh >> 4) & 3) << 4)) - 32); #endif } template static __global__ void dequantize_block_iq2_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy) { const int64_t i = blockIdx.x; const block_iq2_xxs * x = (const block_iq2_xxs *) vx; const int64_t tid = threadIdx.x; #if QK_K == 256 const int64_t il = tid/8; // 0...3 const int64_t ib = tid%8; // 0...7 dst_t * y = yy + i*QK_K + 32*ib + 8*il; const uint16_t * q2 = x[i].qs + 4*ib; const uint8_t * aux8 = (const uint8_t *)q2; const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[il]); const uint32_t aux32 = q2[2] | (q2[3] << 16); const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.25f; const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127]; for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f); #else NO_DEVICE_CODE; #endif } template static __global__ void dequantize_block_iq2_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) { const int64_t i = blockIdx.x; const block_iq2_xs * x = (const block_iq2_xs *) vx; const int64_t tid = threadIdx.x; #if QK_K == 256 const int64_t il = tid/8; // 0...3 const int64_t ib = tid%8; // 0...7 dst_t * y = yy + i*QK_K + 32*ib + 8*il; const uint16_t * q2 = x[i].qs + 4*ib; const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[il] & 511)); const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f; const uint8_t signs = ksigns_iq2xs[q2[il] >> 9]; for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f); #else NO_DEVICE_CODE; #endif } template static __global__ void dequantize_block_iq2_s(const void * __restrict__ vx, dst_t * __restrict__ yy) { const int64_t i = blockIdx.x; const block_iq2_s * x = (const block_iq2_s *) vx; const int64_t tid = threadIdx.x; #if QK_K == 256 const int64_t il = tid/8; // 0...3 const int64_t ib = tid%8; // 0...7 dst_t * y = yy + i*QK_K + 32*ib + 8*il; const uint8_t * grid = (const uint8_t *)(iq2s_grid + (x[i].qs[4*ib+il] | ((x[i].qh[ib] << (8-2*il)) & 0x300))); const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f; const uint8_t signs = x[i].qs[QK_K/8+4*ib+il]; for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f); #else NO_DEVICE_CODE; #endif } template static __global__ void dequantize_block_iq3_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy) { const int64_t i = blockIdx.x; const block_iq3_xxs * x = (const block_iq3_xxs *) vx; const int64_t tid = threadIdx.x; #if QK_K == 256 const int64_t il = tid/8; // 0...3 const int64_t ib = tid%8; // 0...7 dst_t * y = yy + i*QK_K + 32*ib + 8*il; const uint8_t * q3 = x[i].qs + 8*ib; const uint16_t * gas = (const uint16_t *)(x[i].qs + QK_K/4) + 2*ib; const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*il+0]); const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*il+1]); const uint32_t aux32 = gas[0] | (gas[1] << 16); const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.5f; const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127]; for (int j = 0; j < 4; ++j) { y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f); y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f); } #else NO_DEVICE_CODE; #endif } template static __global__ void dequantize_block_iq3_s(const void * __restrict__ vx, dst_t * __restrict__ yy) { const int64_t i = blockIdx.x; const block_iq3_s * x = (const block_iq3_s *) vx; const int64_t tid = threadIdx.x; #if QK_K == 256 const int64_t il = tid/8; // 0...3 const int64_t ib = tid%8; // 0...7 dst_t * y = yy + i*QK_K + 32*ib + 8*il; const uint8_t * qs = x[i].qs + 8*ib; const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*il+0] | ((x[i].qh[ib] << (8-2*il)) & 256))); const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*il+1] | ((x[i].qh[ib] << (7-2*il)) & 256))); const float d = (float)x[i].d * (1 + 2*((x[i].scales[ib/2] >> 4*(ib%2)) & 0xf)); const uint8_t signs = x[i].signs[4*ib + il]; for (int j = 0; j < 4; ++j) { y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f); y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f); } #else NO_DEVICE_CODE; #endif } template static __global__ void dequantize_block_iq1_s(const void * __restrict__ vx, dst_t * __restrict__ yy) { const int64_t i = blockIdx.x; const block_iq1_s * x = (const block_iq1_s *) vx; const int64_t tid = threadIdx.x; #if QK_K == 256 const int64_t il = tid/8; // 0...3 const int64_t ib = tid%8; // 0...7 dst_t * y = yy + i*QK_K + 32*ib + 8*il; const float delta = x[i].qh[ib] & 0x8000 ? -1 - IQ1S_DELTA : -1 + IQ1S_DELTA; const float d = (float)x[i].d * (2*((x[i].qh[ib] >> 12) & 7) + 1); uint32_t grid32[2]; const int8_t * q = (const int8_t *)grid32; grid32[0] = iq1s_grid_gpu[x[i].qs[4*ib+il] | (((x[i].qh[ib] >> 3*il) & 7) << 8)]; grid32[1] = (grid32[0] >> 4) & 0x0f0f0f0f; grid32[0] &= 0x0f0f0f0f; for (int j = 0; j < 8; ++j) { y[j] = d * (q[j] + delta); } #else NO_DEVICE_CODE; #endif } template static __global__ void dequantize_block_iq1_m(const void * __restrict__ vx, dst_t * __restrict__ yy) { const int64_t i = blockIdx.x; const block_iq1_m * x = (const block_iq1_m *) vx; const int64_t tid = threadIdx.x; #if QK_K == 256 const int64_t il = tid/8; // 0...3 const int64_t ib = tid%8; // 0...7 dst_t * y = yy + i*QK_K + 32*ib + 8*il; const uint16_t * sc = (const uint16_t *)x[i].scales; iq1m_scale_t scale; scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000); const int64_t ib16 = 2*ib + il/2; // sc[ib16/4] >> 3*(ib16%4) -> sc[ib/2] >> 3*((2*ib+il/2)%4); const float d = (float)scale.f16 * (2*((sc[ib16/4] >> 3*(ib16%4)) & 0x7) + 1); const float delta = x[i].qh[2*ib+il/2] & (0x08 << 4*(il%2)) ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA; uint32_t grid32[2]; const int8_t * q = (const int8_t *)grid32; grid32[0] = iq1s_grid_gpu[x[i].qs[4*ib+il] | (((x[i].qh[2*ib+il/2] >> 4*(il%2)) & 7) << 8)]; grid32[1] = (grid32[0] >> 4) & 0x0f0f0f0f; grid32[0] &= 0x0f0f0f0f; for (int j = 0; j < 8; ++j) { y[j] = d * (q[j] + delta); } #else NO_DEVICE_CODE; #endif } template static __global__ void dequantize_block_iq4_nl(const void * __restrict__ vx, dst_t * __restrict__ yy) { const int64_t i = blockIdx.x; const block_iq4_nl * x = (const block_iq4_nl *) vx + i*(QK_K/QK4_NL); const int64_t tid = threadIdx.x; const int64_t il = tid/8; // 0...3 const int64_t ib = tid%8; // 0...7 dst_t * y = yy + i*QK_K + 32*ib + 4*il; const uint8_t * q4 = x[ib].qs + 4*il; const float d = (float)x[ib].d; for (int j = 0; j < 4; ++j) { y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf]; y[j+16] = d * kvalues_iq4nl[q4[j] >> 4]; } } #if QK_K != 64 template static __global__ void dequantize_block_iq4_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) { const int64_t i = blockIdx.x; const block_iq4_xs * x = (const block_iq4_xs *)vx; const int64_t tid = threadIdx.x; const int64_t il = tid/8; // 0...3 const int64_t ib = tid%8; // 0...7 dst_t * y = yy + i*QK_K + 32*ib + 4*il; const uint8_t * q4 = x[i].qs + 16*ib + 4*il; const float d = (float)x[i].d * ((((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4)) - 32); for (int j = 0; j < 4; ++j) { y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf]; y[j+16] = d * kvalues_iq4nl[q4[j] >> 4]; } } #endif template static void dequantize_block_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t k, cudaStream_t stream) { const int num_blocks = (k + 2*CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / (2*CUDA_DEQUANTIZE_BLOCK_SIZE); dequantize_block<<>>(vx, y, k); } static void dequantize_block_q8_0_f16_cuda(const void * __restrict__ vx, half * __restrict__ y, const int64_t k, cudaStream_t stream) { const int num_blocks = (k + CUDA_Q8_0_NE_ALIGN - 1) / CUDA_Q8_0_NE_ALIGN; if (k % CUDA_Q8_0_NE_ALIGN == 0) { const bool need_check = false; dequantize_block_q8_0_f16<<>>(vx, y, k); } else { const bool need_check = true; dequantize_block_q8_0_f16<<>>(vx, y, k); } } template static void dequantize_row_q2_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) { const int nb = k / QK_K; #if QK_K == 256 dequantize_block_q2_K<<>>(vx, y); #else dequantize_block_q2_K<<>>(vx, y); #endif } template static void dequantize_row_q3_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) { const int nb = k / QK_K; #if QK_K == 256 dequantize_block_q3_K<<>>(vx, y); #else dequantize_block_q3_K<<>>(vx, y); #endif } template static void dequantize_row_q4_0_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) { const int nb32 = k / 32; const int nb = (k + 255) / 256; dequantize_block_q4_0<<>>(vx, y, nb32); } template static void dequantize_row_q4_1_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) { const int nb32 = k / 32; const int nb = (k + 255) / 256; dequantize_block_q4_1<<>>(vx, y, nb32); } template static void dequantize_row_q4_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) { const int nb = k / QK_K; dequantize_block_q4_K<<>>(vx, y); } template static void dequantize_row_q5_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) { const int nb = k / QK_K; #if QK_K == 256 dequantize_block_q5_K<<>>(vx, y); #else dequantize_block_q5_K<<>>(vx, y); #endif } template static void dequantize_row_q6_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) { const int nb = k / QK_K; #if QK_K == 256 dequantize_block_q6_K<<>>(vx, y); #else dequantize_block_q6_K<<>>(vx, y); #endif } template static void dequantize_row_iq2_xxs_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) { const int nb = k / QK_K; dequantize_block_iq2_xxs<<>>(vx, y); } template static void dequantize_row_iq2_xs_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) { const int nb = k / QK_K; dequantize_block_iq2_xs<<>>(vx, y); } template static void dequantize_row_iq2_s_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) { const int nb = k / QK_K; dequantize_block_iq2_s<<>>(vx, y); } template static void dequantize_row_iq3_xxs_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) { const int nb = k / QK_K; dequantize_block_iq3_xxs<<>>(vx, y); } template static void dequantize_row_iq3_s_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) { const int nb = k / QK_K; dequantize_block_iq3_s<<>>(vx, y); } template static void dequantize_row_iq1_s_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) { const int nb = k / QK_K; dequantize_block_iq1_s<<>>(vx, y); } template static void dequantize_row_iq4_nl_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) { const int nb = (k + QK_K - 1) / QK_K; dequantize_block_iq4_nl<<>>(vx, y); } template static void dequantize_row_iq1_m_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) { const int nb = k / QK_K; dequantize_block_iq1_m<<>>(vx, y); } template static void dequantize_row_iq4_xs_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) { const int nb = (k + QK_K - 1) / QK_K; #if QK_K == 64 dequantize_block_iq4_nl<<>>(vx, y); #else dequantize_block_iq4_xs<<>>(vx, y); #endif } template static __global__ void convert_unary(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t k) { const int64_t i = (int64_t)blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { return; } const src_t * x = (src_t *) vx; y[i] = x[i]; } template static void convert_unary_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t k, cudaStream_t stream) { const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE; convert_unary<<>>(vx, y, k); } to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) { switch (type) { case GGML_TYPE_Q4_0: return dequantize_row_q4_0_cuda; case GGML_TYPE_Q4_1: return dequantize_row_q4_1_cuda; case GGML_TYPE_Q5_0: return dequantize_block_cuda; case GGML_TYPE_Q5_1: return dequantize_block_cuda; case GGML_TYPE_Q8_0: if (ggml_cuda_info().devices[ggml_cuda_get_device()].cc >= CC_PASCAL) { return dequantize_block_q8_0_f16_cuda; } return dequantize_block_cuda; case GGML_TYPE_Q2_K: return dequantize_row_q2_K_cuda; case GGML_TYPE_Q3_K: return dequantize_row_q3_K_cuda; case GGML_TYPE_Q4_K: return dequantize_row_q4_K_cuda; case GGML_TYPE_Q5_K: return dequantize_row_q5_K_cuda; case GGML_TYPE_Q6_K: return dequantize_row_q6_K_cuda; case GGML_TYPE_IQ2_XXS: return dequantize_row_iq2_xxs_cuda; case GGML_TYPE_IQ2_XS: return dequantize_row_iq2_xs_cuda; case GGML_TYPE_IQ2_S: return dequantize_row_iq2_s_cuda; case GGML_TYPE_IQ3_XXS: return dequantize_row_iq3_xxs_cuda; case GGML_TYPE_IQ1_S: return dequantize_row_iq1_s_cuda; case GGML_TYPE_IQ1_M: return dequantize_row_iq1_m_cuda; case GGML_TYPE_IQ4_NL: return dequantize_row_iq4_nl_cuda; case GGML_TYPE_IQ4_XS: return dequantize_row_iq4_xs_cuda; case GGML_TYPE_IQ3_S: return dequantize_row_iq3_s_cuda; case GGML_TYPE_F32: return convert_unary_cuda; default: return nullptr; } } to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) { switch (type) { case GGML_TYPE_Q4_0: return dequantize_row_q4_0_cuda; case GGML_TYPE_Q4_1: return dequantize_row_q4_1_cuda; case GGML_TYPE_Q5_0: return dequantize_block_cuda; case GGML_TYPE_Q5_1: return dequantize_block_cuda; case GGML_TYPE_Q8_0: return dequantize_block_cuda; case GGML_TYPE_Q2_K: return dequantize_row_q2_K_cuda; case GGML_TYPE_Q3_K: return dequantize_row_q3_K_cuda; case GGML_TYPE_Q4_K: return dequantize_row_q4_K_cuda; case GGML_TYPE_Q5_K: return dequantize_row_q5_K_cuda; case GGML_TYPE_Q6_K: return dequantize_row_q6_K_cuda; case GGML_TYPE_IQ2_XXS: return dequantize_row_iq2_xxs_cuda; case GGML_TYPE_IQ2_XS: return dequantize_row_iq2_xs_cuda; case GGML_TYPE_IQ2_S: return dequantize_row_iq2_s_cuda; case GGML_TYPE_IQ3_XXS: return dequantize_row_iq3_xxs_cuda; case GGML_TYPE_IQ1_S: return dequantize_row_iq1_s_cuda; case GGML_TYPE_IQ1_M: return dequantize_row_iq1_m_cuda; case GGML_TYPE_IQ4_NL: return dequantize_row_iq4_nl_cuda; case GGML_TYPE_IQ4_XS: return dequantize_row_iq4_xs_cuda; case GGML_TYPE_IQ3_S: return dequantize_row_iq3_s_cuda; case GGML_TYPE_F16: return convert_unary_cuda; default: return nullptr; } }