#include "common.h" #include "llama.h" #include #include #include #include #include #include #include #include #include #include #include #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif static void print_usage(int argc, char ** argv, const gpt_params & params) { gpt_params_print_usage(argc, argv, params); LOG_TEE("\nexample usage:\n"); LOG_TEE("\n %s \\\n" " -m model.gguf -f some-text.txt [-o imatrix.dat] [--process-output] [--verbosity 1] \\\n" " [--no-ppl] [--chunk 123] [--output-frequency 10] [--save-frequency 0] \\\n" " [--in-file imatrix-prev-0.dat --in-file imatrix-prev-1.dat ...]\n" , argv[0]); LOG_TEE("\n"); } struct Stats { std::vector values; std::vector counts; int ncall = 0; }; class IMatrixCollector { public: IMatrixCollector() = default; void set_params(gpt_params params) { m_params = std::move(params); } bool collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data); void save_imatrix(int ncall = -1) const; bool load_imatrix(const char * file_name); private: std::unordered_map m_stats; gpt_params m_params; std::mutex m_mutex; int m_last_call = 0; std::vector m_src1_data; std::vector m_ids; // the expert ids from ggml_mul_mat_id }; // remove any prefix and suffixes from the name // CUDA0#blk.0.attn_k.weight#0 => blk.0.attn_k.weight static std::string filter_tensor_name(const char * name) { std::string wname; const char * p = strchr(name, '#'); if (p != NULL) { p = p + 1; const char * q = strchr(p, '#'); if (q != NULL) { wname = std::string(p, q - p); } else { wname = p; } } else { wname = name; } return wname; } bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) { GGML_UNUSED(user_data); const struct ggml_tensor * src0 = t->src[0]; const struct ggml_tensor * src1 = t->src[1]; std::string wname = filter_tensor_name(src0->name); // when ask is true, the scheduler wants to know if we are interested in data from this tensor // if we return true, a follow-up call will be made with ask=false in which we can do the actual collection if (ask) { if (t->op == GGML_OP_MUL_MAT_ID) return true; // collect all indirect matrix multiplications if (t->op != GGML_OP_MUL_MAT) return false; // why are small batches ignored (<16 tokens)? if (src1->ne[1] < 16 || src1->type != GGML_TYPE_F32) return false; if (!(wname.substr(0, 4) == "blk." || (m_params.process_output && wname == "output.weight"))) return false; return true; } std::lock_guard lock(m_mutex); // copy the data from the GPU memory if needed const bool is_host = ggml_backend_buffer_is_host(src1->buffer); if (!is_host) { m_src1_data.resize(ggml_nelements(src1)); ggml_backend_tensor_get(src1, m_src1_data.data(), 0, ggml_nbytes(src1)); } const float * data = is_host ? (const float *) src1->data : m_src1_data.data(); // this has been adapted to the new format of storing merged experts in a single 3d tensor // ref: https://github.com/ggerganov/llama.cpp/pull/6387 if (t->op == GGML_OP_MUL_MAT_ID) { // ids -> [n_experts_used, n_tokens] // src1 -> [cols, n_expert_used, n_tokens] const ggml_tensor * ids = t->src[2]; const int n_as = src0->ne[2]; const int n_ids = ids->ne[0]; // the top-k selected expert ids are stored in the ids tensor // for simplicity, always copy ids to host, because it is small // take into account that ids is not contiguous! GGML_ASSERT(ids->ne[1] == src1->ne[2]); m_ids.resize(ggml_nbytes(ids)); ggml_backend_tensor_get(ids, m_ids.data(), 0, ggml_nbytes(ids)); auto & e = m_stats[wname]; ++e.ncall; if (e.values.empty()) { e.values.resize(src1->ne[0]*n_as, 0); e.counts.resize(src1->ne[0]*n_as, 0); } else if (e.values.size() != (size_t)src1->ne[0]*n_as) { fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]*n_as); exit(1); //GGML_ABORT("fatal error"); } if (m_params.verbosity > 1) { printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[2], (int)src1->type); } // loop over all possible experts, regardless if they are used or not in the batch for (int ex = 0; ex < n_as; ++ex) { size_t e_start = ex*src1->ne[0]; for (int idx = 0; idx < n_ids; ++idx) { for (int row = 0; row < (int)src1->ne[2]; ++row) { const int excur = *(const int32_t *) (m_ids.data() + row*ids->nb[1] + idx*ids->nb[0]); GGML_ASSERT(excur >= 0 && excur < n_as); // sanity check if (excur != ex) continue; const int64_t i11 = idx % src1->ne[1]; const int64_t i12 = row; const float * x = (const float *)((const char *)data + i11*src1->nb[1] + i12*src1->nb[2]); for (int j = 0; j < (int)src1->ne[0]; ++j) { e.values[e_start + j] += x[j]*x[j]; e.counts[e_start + j]++; if (!std::isfinite(e.values[e_start + j])) { fprintf(stderr, "%f detected in %s\n", e.values[e_start + j], wname.c_str()); exit(1); } } } } if (e.ncall > m_last_call) { m_last_call = e.ncall; if (m_last_call % m_params.n_out_freq == 0) { save_imatrix(); } if (m_params.n_save_freq > 0 && m_last_call%m_params.n_save_freq == 0) { save_imatrix(m_last_call); } } } } else { auto & e = m_stats[wname]; if (e.values.empty()) { e.values.resize(src1->ne[0], 0); e.counts.resize(src1->ne[0], 0); } else if (e.values.size() != (size_t)src1->ne[0]) { fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]); exit(1); //GGML_ABORT("fatal error"); } ++e.ncall; if (m_params.verbosity > 1) { printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type); } for (int row = 0; row < (int)src1->ne[1]; ++row) { const float * x = data + row * src1->ne[0]; for (int j = 0; j < (int)src1->ne[0]; ++j) { e.values[j] += x[j]*x[j]; e.counts[j]++; if (!std::isfinite(e.values[j])) { fprintf(stderr, "%f detected in %s\n", e.values[j], wname.c_str()); exit(1); } } } if (e.ncall > m_last_call) { m_last_call = e.ncall; if (m_last_call % m_params.n_out_freq == 0) { save_imatrix(); } if (m_params.n_save_freq > 0 && m_last_call%m_params.n_save_freq == 0) { save_imatrix(m_last_call); } } } return true; } void IMatrixCollector::save_imatrix(int ncall) const { auto fname = m_params.out_file; if (fname.empty()) { fname = "imatrix.dat"; } if (ncall > 0) { fname += ".at_"; fname += std::to_string(ncall); } // avoid writing imatrix entries that do not have full data // this can happen with MoE models where some of the experts end up not being exercised by the provided training data int n_entries = 0; std::vector to_store; bool is_first = true; // for printing for (const auto & kv : m_stats) { const int n_all = kv.second.counts.size(); if (n_all == 0) { continue; } int n_zeros = 0; for (const int c : kv.second.counts) { if (c == 0) { n_zeros++; } } if (n_zeros != 0 && is_first) { fprintf(stderr, "\n"); is_first = false; } if (n_zeros == n_all) { fprintf(stderr, "%s: entry '%40s' has no data - skipping\n", __func__, kv.first.c_str()); continue; } if (n_zeros > 0) { fprintf(stderr, "%s: entry '%40s' has partial data (%.2f%%) - skipping\n", __func__, kv.first.c_str(), 100.0f * (n_all - n_zeros) / n_all); continue; } n_entries++; to_store.push_back(kv.first); } if (to_store.size() < m_stats.size()) { fprintf(stderr, "%s: warning: storing only %zu out of %zu entries\n", __func__, to_store.size(), m_stats.size()); } std::ofstream out(fname, std::ios::binary); out.write((const char *) &n_entries, sizeof(n_entries)); for (const auto & name : to_store) { const auto & stat = m_stats.at(name); int len = name.size(); out.write((const char *) &len, sizeof(len)); out.write(name.c_str(), len); out.write((const char *) &stat.ncall, sizeof(stat.ncall)); int nval = stat.values.size(); out.write((const char *) &nval, sizeof(nval)); if (nval > 0) { std::vector tmp(nval); for (int i = 0; i < nval; i++) { tmp[i] = (stat.values[i] / static_cast(stat.counts[i])) * static_cast(stat.ncall); } out.write((const char*)tmp.data(), nval*sizeof(float)); } } // Write the number of call the matrix was computed with out.write((const char *) &m_last_call, sizeof(m_last_call)); // Write the input filename at the end of the file to later on specify it in quantize { int len = m_params.prompt_file.size(); out.write((const char *) &len, sizeof(len)); out.write(m_params.prompt_file.c_str(), len); } if (m_params.verbosity > 0) { fprintf(stderr, "\n%s: stored collected data after %d chunks in %s\n", __func__, m_last_call, fname.c_str()); } } bool IMatrixCollector::load_imatrix(const char * fname) { std::ifstream in(fname, std::ios::binary); if (!in) { printf("%s: failed to open %s\n",__func__, fname); return false; } int n_entries; in.read((char*)&n_entries, sizeof(n_entries)); if (in.fail() || n_entries < 1) { printf("%s: no data in file %s\n", __func__, fname); return false; } for (int i = 0; i < n_entries; ++i) { int len; in.read((char *)&len, sizeof(len)); std::vector name_as_vec(len+1); in.read((char *)name_as_vec.data(), len); if (in.fail()) { printf("%s: failed reading name for entry %d from %s\n",__func__,i+1, fname); return false; } name_as_vec[len] = 0; std::string name{name_as_vec.data()}; auto & e = m_stats[std::move(name)]; int ncall; in.read((char*)&ncall, sizeof(ncall)); int nval; in.read((char *)&nval, sizeof(nval)); if (in.fail() || nval < 1) { printf("%s: failed reading number of values for entry %d\n",__func__,i); m_stats = {}; return false; } if (e.values.empty()) { e.values.resize(nval, 0); e.counts.resize(nval, 0); } std::vector tmp(nval); in.read((char*)tmp.data(), nval*sizeof(float)); if (in.fail()) { printf("%s: failed reading data for entry %d\n",__func__,i); m_stats = {}; return false; } // Recreate the state as expected by save_imatrix(), and corerct for weighted sum. for (int i = 0; i < nval; i++) { e.values[i] += tmp[i]; e.counts[i] += ncall; } e.ncall += ncall; } return true; } static IMatrixCollector g_collector; static bool ik_collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) { return g_collector.collect_imatrix(t, ask, user_data); } struct results_log_softmax { double log_softmax; float logit; float prob; }; static std::vector softmax(const std::vector & logits) { std::vector probs(logits.size()); float max_logit = logits[0]; for (float v : logits) { max_logit = std::max(max_logit, v); } double sum_exp = 0.0; for (size_t i = 0; i < logits.size(); i++) { // Subtract the maximum logit value from the current logit value for numerical stability const float logit = logits[i] - max_logit; const float exp_logit = expf(logit); sum_exp += exp_logit; probs[i] = exp_logit; } for (size_t i = 0; i < probs.size(); i++) { probs[i] /= sum_exp; } return probs; } static results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) { float max_logit = logits[0]; for (int i = 1; i < n_vocab; ++i) { max_logit = std::max(max_logit, logits[i]); } double sum_exp = 0.0; for (int i = 0; i < n_vocab; ++i) { sum_exp += expf(logits[i] - max_logit); } return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp}; } static void process_logits( int n_vocab, const float * logits, const int * tokens, int n_token, std::vector & workers, double & nll, double & nll2, float * logit_history, float * prob_history) { std::mutex mutex; int counter = 0; auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () { double local_nll = 0; double local_nll2 = 0; while (true) { std::unique_lock lock(mutex); int i = counter++; if (i >= n_token) { nll += local_nll; nll2 += local_nll2; break; } lock.unlock(); const results_log_softmax results = log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]); const double v = -results.log_softmax; local_nll += v; local_nll2 += v*v; logit_history[i] = results.logit; prob_history[i] = results.prob; } }; for (auto & w : workers) { w = std::thread(compute); } compute(); for (auto & w : workers) { w.join(); } } static bool compute_imatrix(llama_context * ctx, const gpt_params & params, const int32_t n_ctx) { const bool add_bos = llama_add_bos_token(llama_get_model(ctx)); GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx))); auto tim1 = std::chrono::high_resolution_clock::now(); fprintf(stderr, "%s: tokenizing the input ..\n", __func__); std::vector tokens = ::llama_tokenize(ctx, params.prompt, true); auto tim2 = std::chrono::high_resolution_clock::now(); fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast(tim2-tim1).count()); if (params.i_chunk > 0) { if (size_t((params.i_chunk + 2)*n_ctx) >= tokens.size()) { fprintf(stderr, "%s: there will be not enough tokens left after removing %d chunks\n", __func__, params.i_chunk); return false; } fprintf(stderr, "%s: removing initial %d chunks (%d tokens)\n", __func__, params.i_chunk, params.i_chunk*n_ctx); tokens.erase(tokens.begin(), tokens.begin() + params.i_chunk*n_ctx); } if (int(tokens.size()) < 2*n_ctx) { fprintf(stderr, "%s: you need at least %d tokens for a context of %d tokens\n",__func__,2*n_ctx, n_ctx); fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size()); return false; } std::vector logit_history; std::vector prob_history; if (params.compute_ppl) { logit_history.resize(tokens.size()); prob_history.resize(tokens.size()); } const int n_chunk_max = tokens.size() / n_ctx; const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max); const int n_vocab = llama_n_vocab(llama_get_model(ctx)); const int n_batch = params.n_batch; int count = 0; double nll = 0.0; double nll2 = 0.0; std::vector workers(std::thread::hardware_concurrency() - 1); const int num_batches = (n_ctx + n_batch - 1) / n_batch; const int n_seq = std::max(1, n_batch / n_ctx); GGML_ASSERT(n_batch < n_ctx || n_batch % n_ctx == 0); GGML_ASSERT(params.n_ctx == n_seq * n_ctx); llama_batch batch = llama_batch_init(std::min(n_batch, n_ctx*n_seq), 0, 1); std::vector logits; if (params.compute_ppl && num_batches > 1) { logits.reserve((size_t)n_ctx * n_vocab); } fprintf(stderr, "%s: computing over %d chunks, n_ctx=%d, batch_size=%d, n_seq=%d\n", __func__, n_chunk, n_ctx, n_batch, n_seq); for (int i = 0; i < n_chunk; i += n_seq) { const int start = i * n_ctx; const int end = start + n_ctx; const int n_seq_batch = std::min(n_seq, n_chunk - i); const auto t_start = std::chrono::high_resolution_clock::now(); // clear the KV cache llama_kv_cache_clear(ctx); for (int j = 0; j < num_batches; ++j) { const int batch_start = start + j * n_batch; const int batch_size = std::min(end - batch_start, n_batch); // clear the batch llama_batch_clear(batch); for (int seq = 0; seq < n_seq_batch; seq++) { int seq_start = batch_start + seq*n_ctx; // save original token and restore it after eval const auto token_org = tokens[seq_start]; // add BOS token for the first batch of each chunk if (add_bos && j == 0) { tokens[seq_start] = llama_token_bos(llama_get_model(ctx)); } for (int k = 0; k < batch_size; ++k) { // NOTE: specifying all logits to get activations for the output.weight tensor // and also for the perplexity calculation. // TODO: only get outputs when (params.process_output || params.compute_ppl) // (not possible when this skips FFN computation of the last layer) llama_batch_add(batch, tokens[seq_start + k], j*n_batch + k, { seq }, true); } // restore the original token in case it was set to BOS tokens[seq_start] = token_org; } if (llama_decode(ctx, batch)) { fprintf(stderr, "%s : failed to eval\n", __func__); return false; } if (params.compute_ppl && num_batches > 1) { const auto * batch_logits = llama_get_logits(ctx); logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab); } } if (i == 0) { llama_synchronize(ctx); const auto t_end = std::chrono::high_resolution_clock::now(); const float t_total = std::chrono::duration(t_end - t_start).count(); fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total); int total_seconds = (int)(t_total*n_chunk/n_seq); if (total_seconds >= 60*60) { fprintf(stderr, "%d hours ", total_seconds / (60*60)); total_seconds = total_seconds % (60*60); } fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0); } if (params.compute_ppl) { const int first = n_ctx/2; for (int seq = 0; seq < n_seq_batch; seq++) { const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits_ith(ctx, seq*n_ctx + first); llama_token * tokens_data = tokens.data() + start + seq*n_ctx + first; process_logits(n_vocab, all_logits + first*n_vocab, tokens_data, n_ctx - 1 - first, workers, nll, nll2, logit_history.data() + start + seq*n_ctx + first, prob_history.data() + start + seq*n_ctx + first); count += n_ctx - first - 1; printf("[%d]%.4lf,", i + seq + 1, std::exp(nll / count)); } fflush(stdout); logits.clear(); } } printf("\n"); if (params.compute_ppl) { nll2 /= count; nll /= count; const double ppl = exp(nll); nll2 -= nll * nll; if (nll2 > 0) { nll2 = sqrt(nll2/(count-1)); printf("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl); } else { printf("Unexpected negative standard deviation of log(prob)\n"); } } return true; } int main(int argc, char ** argv) { gpt_params params; params.n_ctx = 512; params.logits_all = true; params.verbosity = 1; if (!gpt_params_parse(argc, argv, params)) { print_usage(argc, argv, params); return 1; } const int32_t n_ctx = params.n_ctx; if (n_ctx <= 0) { fprintf(stderr, "%s: imatrix tool requires '--ctx-size' > 0\n", __func__); return 1; } { const int32_t n_seq = std::max(1, params.n_batch / n_ctx); const int32_t n_kv = n_seq * n_ctx; params.n_parallel = n_seq; params.n_ctx = n_kv; params.n_batch = std::min(params.n_batch, n_kv); } g_collector.set_params(params); for (const auto & in_file : params.in_files) { printf("%s : loading imatrix from '%s'\n", __func__, in_file.c_str()); if (!g_collector.load_imatrix(in_file.c_str())) { fprintf(stderr, "%s : failed to load %s\n", __func__, in_file.c_str()); return 1; } } if (params.in_files.size() > 1) { printf("%s : saving combined imatrix to '%s'\n", __func__, params.out_file.c_str()); g_collector.save_imatrix(); } llama_backend_init(); llama_numa_init(params.numa); // pass the callback to the backend scheduler // it will be executed for each node during the graph computation params.cb_eval = ik_collect_imatrix; params.cb_eval_user_data = NULL; params.warmup = false; // init llama_init_result llama_init = llama_init_from_gpt_params(params); llama_model * model = llama_init.model; llama_context * ctx = llama_init.context; if (model == nullptr || ctx == nullptr) { fprintf(stderr, "%s : failed to init\n", __func__); return 1; } const int n_ctx_train = llama_n_ctx_train(model); if (params.n_ctx > n_ctx_train) { fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, params.n_ctx); } // print system information { fprintf(stderr, "\n"); fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str()); } if (!compute_imatrix(ctx, params, n_ctx)) { return 1; } g_collector.save_imatrix(); llama_print_timings(ctx); llama_free(ctx); llama_free_model(model); llama_backend_free(); return 0; }