#!/usr/bin/env python3 from __future__ import annotations import logging import json import os import struct import sys from pathlib import Path from typing import Any, BinaryIO, Sequence import numpy as np import torch if 'NO_LOCAL_GGUF' not in os.environ: sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf')) import gguf logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger("lora-to-gguf") NUMPY_TYPE_TO_FTYPE: dict[str, int] = {"float32": 0, "float16": 1} def write_file_header(fout: BinaryIO, params: dict[str, Any]) -> None: fout.write(b"ggla"[::-1]) # magic (ggml lora) fout.write(struct.pack("i", 1)) # file version fout.write(struct.pack("i", params["r"])) # https://opendelta.readthedocs.io/en/latest/modules/deltas.html says that `lora_alpha` is an int # but some models ship a float value instead # let's convert to int, but fail if lossless conversion is not possible assert ( int(params["lora_alpha"]) == params["lora_alpha"] ), "cannot convert float to int losslessly" fout.write(struct.pack("i", int(params["lora_alpha"]))) def write_tensor_header(fout: BinaryIO, name: str, shape: Sequence[int], data_type: np.dtype[Any]) -> None: sname = name.encode("utf-8") fout.write( struct.pack( "iii", len(shape), len(sname), NUMPY_TYPE_TO_FTYPE[data_type.name], ) ) fout.write(struct.pack("i" * len(shape), *shape[::-1])) fout.write(sname) fout.seek((fout.tell() + 31) & -32) if __name__ == '__main__': if len(sys.argv) < 2: logger.info(f"Usage: python {sys.argv[0]} [arch]") logger.info("Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'") logger.info(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)") sys.exit(1) input_json = os.path.join(sys.argv[1], "adapter_config.json") input_model = os.path.join(sys.argv[1], "adapter_model.bin") output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin") if os.path.exists(input_model): model = torch.load(input_model, map_location="cpu") else: input_model = os.path.join(sys.argv[1], "adapter_model.safetensors") # lazy import load_file only if lora is in safetensors format. from safetensors.torch import load_file model = load_file(input_model, device="cpu") arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama" if arch_name not in gguf.MODEL_ARCH_NAMES.values(): logger.error(f"Error: unsupported architecture {arch_name}") sys.exit(1) arch = list(gguf.MODEL_ARCH_NAMES.keys())[list(gguf.MODEL_ARCH_NAMES.values()).index(arch_name)] name_map = gguf.TensorNameMap(arch, 200) # 200 layers ought to be enough for anyone with open(input_json, "r") as f: params = json.load(f) if params["peft_type"] != "LORA": logger.error(f"Error: unsupported adapter type {params['peft_type']}, expected LORA") sys.exit(1) if params["fan_in_fan_out"] is True: logger.error("Error: param fan_in_fan_out is not supported") sys.exit(1) if params["bias"] is not None and params["bias"] != "none": logger.error("Error: param bias is not supported") sys.exit(1) # TODO: these seem to be layers that have been trained but without lora. # doesn't seem widely used but eventually should be supported if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0: logger.error("Error: param modules_to_save is not supported") sys.exit(1) with open(output_path, "wb") as fout: fout.truncate() write_file_header(fout, params) for k, v in model.items(): orig_k = k if k.endswith(".default.weight"): k = k.replace(".default.weight", ".weight") if k in ["llama_proj.weight", "llama_proj.bias"]: continue if k.endswith("lora_A.weight"): if v.dtype != torch.float16 and v.dtype != torch.float32: v = v.float() v = v.T else: v = v.float() t = v.detach().numpy() prefix = "base_model.model." if k.startswith(prefix): k = k[len(prefix) :] lora_suffixes = (".lora_A.weight", ".lora_B.weight") if k.endswith(lora_suffixes): suffix = k[-len(lora_suffixes[0]):] k = k[: -len(lora_suffixes[0])] else: logger.error(f"Error: unrecognized tensor name {orig_k}") sys.exit(1) tname = name_map.get_name(k) if tname is None: logger.error(f"Error: could not map tensor name {orig_k}") logger.error(" Note: the arch parameter must be specified if the model is not llama") sys.exit(1) if suffix == ".lora_A.weight": tname += ".weight.loraA" elif suffix == ".lora_B.weight": tname += ".weight.loraB" else: assert False logger.info(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB") write_tensor_header(fout, tname, t.shape, t.dtype) t.tofile(fout) logger.info(f"Converted {input_json} and {input_model} to {output_path}")