#pragma once // GGML internal header #include "ggml.h" #include #include // load `stdlib.h` before other headers to work around MinGW bug: https://sourceforge.net/p/mingw-w64/bugs/192/ #include #include #include #ifdef __cplusplus extern "C" { #endif #undef MIN #undef MAX #define MIN(a, b) ((a) < (b) ? (a) : (b)) #define MAX(a, b) ((a) > (b) ? (a) : (b)) // required for mmap as gguf only guarantees 32-byte alignment #define TENSOR_ALIGNMENT 32 // static_assert should be a #define, but if it's not, // fall back to the _Static_assert C11 keyword. // if C99 - static_assert is noop // ref: https://stackoverflow.com/a/53923785/4039976 #ifndef __cplusplus #ifndef static_assert #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L) #define static_assert(cond, msg) _Static_assert(cond, msg) #else #define static_assert(cond, msg) struct global_scope_noop_trick #endif #endif #endif static inline int ggml_up32(int n) { return (n + 31) & ~31; } //static inline int ggml_up64(int n) { // return (n + 63) & ~63; //} static inline int ggml_up(int n, int m) { // assert m is a power of 2 GGML_ASSERT((m & (m - 1)) == 0); return (n + m - 1) & ~(m - 1); } // // logging // GGML_ATTRIBUTE_FORMAT(2, 3) void ggml_log_internal (enum ggml_log_level level, const char * format, ...); void ggml_log_callback_default(enum ggml_log_level level, const char * text, void * user_data); #define GGML_LOG(...) ggml_log_internal(GGML_LOG_LEVEL_NONE , __VA_ARGS__) #define GGML_LOG_INFO(...) ggml_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__) #define GGML_LOG_WARN(...) ggml_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__) #define GGML_LOG_ERROR(...) ggml_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__) #define GGML_LOG_DEBUG(...) ggml_log_internal(GGML_LOG_LEVEL_DEBUG, __VA_ARGS__) #define GGML_LOG_CONT(...) ggml_log_internal(GGML_LOG_LEVEL_CONT , __VA_ARGS__) // tensor params static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) { GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings assert(params_size <= GGML_MAX_OP_PARAMS); memcpy(tensor->op_params, params, params_size); } static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) { assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t)); return ((const int32_t *)(tensor->op_params))[i]; } static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) { assert(i < GGML_MAX_OP_PARAMS / sizeof(float)); return ((const float *)(tensor->op_params))[i]; } static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) { assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t)); ((int32_t *)(tensor->op_params))[i] = value; } static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) { assert(i < GGML_MAX_OP_PARAMS / sizeof(float)); ((float *)(tensor->op_params))[i] = value; } struct ggml_map_custom1_op_params { ggml_custom1_op_t fun; int n_tasks; void * userdata; }; struct ggml_map_custom2_op_params { ggml_custom2_op_t fun; int n_tasks; void * userdata; }; struct ggml_map_custom3_op_params { ggml_custom3_op_t fun; int n_tasks; void * userdata; }; // bitset typedef uint32_t ggml_bitset_t; static_assert(sizeof(ggml_bitset_t) == 4, "bitset_t constants must be updated"); #define BITSET_SHR 5 // log2(sizeof(ggml_bitset_t)*8) #define BITSET_MASK (sizeof(ggml_bitset_t)*8 - 1) static size_t ggml_bitset_size(size_t n) { return (n + BITSET_MASK) >> BITSET_SHR; } static inline bool ggml_bitset_get(const ggml_bitset_t * bitset, size_t i) { return !!(bitset[i >> BITSET_SHR] & (1u << (i & BITSET_MASK))); } static inline void ggml_bitset_set(ggml_bitset_t * bitset, size_t i) { bitset[i >> BITSET_SHR] |= (1u << (i & BITSET_MASK)); } static inline void ggml_bitset_clear(ggml_bitset_t * bitset, size_t i) { bitset[i >> BITSET_SHR] &= ~(1u << (i & BITSET_MASK)); } // hash set #define GGML_HASHSET_FULL ((size_t)-1) #define GGML_HASHSET_ALREADY_EXISTS ((size_t)-2) struct ggml_hash_set { size_t size; ggml_bitset_t * used; // whether or not the keys are in use i.e. set struct ggml_tensor ** keys; // actual tensors in the set, keys[i] is only defined if ggml_bitset_get(used, i) }; struct ggml_hash_set ggml_hash_set_new(size_t size); void ggml_hash_set_free(struct ggml_hash_set * hash_set); // returns the minimum size for a hash set that can hold min_sz elements size_t ggml_hash_size(size_t min_sz); // remove all elements from the hash set void ggml_hash_set_reset(struct ggml_hash_set * hash_set); // returns true if key is in the hash set static bool ggml_hash_contains(const struct ggml_hash_set * hash_set, struct ggml_tensor * key); // returns GGML_HASHSET_FULL if table is full, otherwise the current index of the key or where it should be inserted static size_t ggml_hash_find(const struct ggml_hash_set * hash_set, struct ggml_tensor * key); // returns GGML_HASHSET_ALREADY_EXISTS if key already exists, index otherwise, asserts if table is full static size_t ggml_hash_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key); // return index, asserts if table is full static size_t ggml_hash_find_or_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key); // hash function for ggml_tensor static inline size_t ggml_hash(const struct ggml_tensor * p) { // the last 4 bits are always zero due to alignment return (size_t)(uintptr_t)p >> 4; } static size_t ggml_hash_find(const struct ggml_hash_set * hash_set, struct ggml_tensor * key) { size_t h = ggml_hash(key) % hash_set->size; // linear probing size_t i = h; while (ggml_bitset_get(hash_set->used, i) && hash_set->keys[i] != key) { i = (i + 1) % hash_set->size; if (i == h) { // visited all hash table entries -> not found return GGML_HASHSET_FULL; } } return i; } static bool ggml_hash_contains(const struct ggml_hash_set * hash_set, struct ggml_tensor * key) { size_t i = ggml_hash_find(hash_set, key); return i != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, i); } static size_t ggml_hash_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key) { size_t h = ggml_hash(key) % hash_set->size; // linear probing size_t i = h; do { if (!ggml_bitset_get(hash_set->used, i)) { ggml_bitset_set(hash_set->used, i); hash_set->keys[i] = key; return i; } if (hash_set->keys[i] == key) { return GGML_HASHSET_ALREADY_EXISTS; } i = (i + 1) % hash_set->size; } while (i != h); // visited all hash table entries -> not found GGML_ABORT("fatal error"); } static size_t ggml_hash_find_or_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key) { size_t h = ggml_hash(key) % hash_set->size; // linear probing size_t i = h; do { if (!ggml_bitset_get(hash_set->used, i)) { ggml_bitset_set(hash_set->used, i); hash_set->keys[i] = key; return i; } if (hash_set->keys[i] == key) { return i; } i = (i + 1) % hash_set->size; } while (i != h); // visited all hash table entries -> not found GGML_ABORT("fatal error"); } // computation graph enum ggml_cgraph_eval_order { GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0, GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT, GGML_CGRAPH_EVAL_ORDER_COUNT }; struct ggml_cgraph { int size; int n_nodes; int n_leafs; struct ggml_tensor ** nodes; struct ggml_tensor ** grads; struct ggml_tensor ** leafs; struct ggml_hash_set visited_hash_set; enum ggml_cgraph_eval_order order; }; struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph, int i0, int i1); // Memory allocation void * ggml_aligned_malloc(size_t size); void ggml_aligned_free(void * ptr, size_t size); // TODO: move to threading file void ggml_critical_section_start(void); void ggml_critical_section_end(void); #ifdef __cplusplus } #endif