#include "ggml.h" #include "gptneox-common.h" #include #include #include #include #include #include #include #include #include #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif // default hparams struct gpt_neox_hparams { size_t n_merges = 0; size_t n_vocab = 0; int32_t n_ctx = 0; int32_t n_embd = 0; int32_t n_head = 0; int32_t n_layer = 0; int32_t n_rot = 0; // rotary_pct * (n_embd / n_head) bool par_res = true; float norm_eps = 1e-5; }; struct gpt_neox_layer { // pre normalization struct ggml_tensor * ln_1_g; struct ggml_tensor * ln_1_b; // attention struct ggml_tensor * c_attn_attn_w; struct ggml_tensor * c_attn_attn_b; struct ggml_tensor * c_attn_proj_w; struct ggml_tensor * c_attn_proj_b; // post normalization struct ggml_tensor * ln_2_g; struct ggml_tensor * ln_2_b; // ff struct ggml_tensor * c_mlp_fc_w; struct ggml_tensor * c_mlp_fc_b; struct ggml_tensor * c_mlp_proj_w; struct ggml_tensor * c_mlp_proj_b; }; struct gpt_neox_model { gpt_neox_hparams hparams; // normalization struct ggml_tensor * ln_f_g; struct ggml_tensor * ln_f_b; struct ggml_tensor * wte; // position embedding struct ggml_tensor * lmh_g; // language model head std::vector layers; // key + value memory struct ggml_tensor * memory_k; struct ggml_tensor * memory_v; // struct gguf_context * ggufctx; struct ggml_context * ctx; struct ggml_context * kvctx; std::map tensors; }; struct ggml_tensor * get_tensor_ex( struct ggml_context * ctx, std::string name){ struct ggml_tensor * cur = ggml_get_tensor(ctx, name.c_str()); if( cur == NULL ) { fprintf(stdout, "%s: tensor '%s' not found!\n", __func__, name.c_str()); } else { // fprintf(stdout, "%s: n_dims = %d, name = '%s'\n", __func__, cur->n_dims, cur->name); } return cur; } // load the model's weights from a file bool gpt_neox_model_load(const std::string & fname, gpt_neox_model & model, gpt_vocab & vocab) { printf("%s: loading model from '%s'..\n", __func__, fname.c_str()); model.ctx = NULL; struct gguf_init_params ggufparams = { /*.no_alloc = */ false, /*.ctx = */ &model.ctx, }; auto & ggufctx = model.ggufctx; ggufctx = gguf_init_from_file(fname.c_str(), ggufparams); if (!ggufctx) { fprintf(stderr, "%s: gguf_init_from_file() failed\n", __func__); return false; } fprintf(stdout, "%s: gguf version = %d\n", __func__, gguf_get_version(ggufctx)); fprintf(stdout, "%s: gguf alignment = %zu\n", __func__, gguf_get_alignment(ggufctx)); fprintf(stdout, "%s: gguf data offset = %zu\n", __func__, gguf_get_data_offset(ggufctx)); // print all kv if( false ) { const int n_kv = gguf_get_n_kv(ggufctx); fprintf(stdout, "%s: n_kv: %d\n", __func__, n_kv); for (int i = 0; i < n_kv; ++i) { const char * key = gguf_get_key(ggufctx, i); fprintf(stdout, "%s: kv[%d]: key = %s\n", __func__, i, key); } } // print some standard metadata { int keyidx; keyidx = gguf_find_key(ggufctx, "general.name"); if (keyidx != -1) { fprintf(stdout, "%s: model name = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } keyidx = gguf_find_key(ggufctx, "general.description"); if (keyidx != -1) { fprintf(stdout, "%s: model description = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } keyidx = gguf_find_key(ggufctx, "general.author"); if (keyidx != -1) { fprintf(stdout, "%s: model author = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } keyidx = gguf_find_key(ggufctx, "general.license"); if (keyidx != -1) { fprintf(stdout, "%s: model license = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } keyidx = gguf_find_key(ggufctx, "general.architecture"); if (keyidx != -1) { fprintf(stdout, "%s: model architecture = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } } // check required metadata { int keyidx; keyidx = gguf_find_key(ggufctx, "general.architecture"); if (keyidx != -1) { if ( strcmp(gguf_get_val_str(ggufctx, keyidx), "gptneox") != 0) { fprintf(stdout, "%s: model architecture not supported!\n", __func__); return false; } } else { fprintf(stdout, "%s: gguf model architecture not found!\n", __func__); return false; } } // load hparams { auto & hparams = model.hparams; bool ok = true; int keyidx; if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.context_length"); if (keyidx != -1) { hparams.n_ctx = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; } } if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.embedding_length"); if (keyidx != -1) { hparams.n_embd = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; } } if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.attention.head_count"); if (keyidx != -1) { hparams.n_head = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; } } if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.layer_count"); if (keyidx != -1) { hparams.n_layer = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; } } if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.rope.dimension_count"); if (keyidx != -1) { hparams.n_rot = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; } } if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.use_parallel_residual"); if (keyidx != -1) { hparams.par_res = gguf_get_val_bool(ggufctx, keyidx); } else { ok = false; } } if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.attention.layer_norm_epsilon"); if (keyidx != -1) { hparams.norm_eps= gguf_get_val_f32(ggufctx, keyidx); } else { ok = false; } } if (!ok) { fprintf(stderr, "%s: required hparam missing!\n", __func__); return false; } printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx); printf("%s: n_embd = %d\n", __func__, hparams.n_embd); printf("%s: n_head = %d\n", __func__, hparams.n_head); printf("%s: n_layer = %d\n", __func__, hparams.n_layer); printf("%s: n_rot = %d\n", __func__, hparams.n_rot); printf("%s: par_res = %d\n", __func__, hparams.par_res); printf("%s: norm_eps = %g\n", __func__, hparams.norm_eps); } // load vocab { // TODO: implement a better bpe tokenizer, utilizing merges and handles unicode auto & hparams = model.hparams; int keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.model"); if (keyidx != -1) { if ( strcmp(gguf_get_val_str(ggufctx, keyidx), "gpt2") != 0) { fprintf(stdout, "%s: tokenizer model not supported!\n", __func__); return false; } } else { fprintf(stdout, "%s: tokenizer model not found!\n", __func__); return false; } int tokens_keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.tokens"); if (tokens_keyidx == -1) { fprintf(stdout, "%s: gpt2 tokenizer vocab not found!\n", __func__); return false; } int merges_keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.merges"); if (merges_keyidx == -1) { fprintf(stdout, "%s: gpt2 tokenizer merges not found!\n", __func__); return false; } hparams.n_vocab = gguf_get_arr_n(ggufctx,tokens_keyidx); hparams.n_merges = gguf_get_arr_n(ggufctx,merges_keyidx); fprintf(stdout, "%s: gpt2 tokenizer vocab = %zu\n", __func__, hparams.n_vocab); fprintf(stdout, "%s: gpt2 tokenizer merges = %zu\n", __func__, hparams.n_merges); for (size_t i = 0; i < hparams.n_vocab; i++) { std::string word = gguf_get_arr_str(ggufctx, tokens_keyidx, i); // TEMP until a better bpe tokenizer is implemented word = replace(word, "Ġ", " "); word = replace(word, "Ċ", "\n"); vocab.token_to_id[word] = i; vocab.id_to_token[i] = word; } keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.bos_token_id"); if( keyidx != -1 ) { printf("bos id = %d\n", gguf_get_val_u32(ggufctx, keyidx) ); } keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.eos_token_id"); if( keyidx != -1 ) { printf("eos id = %d\n", gguf_get_val_u32(ggufctx, keyidx) ); } keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.unknown_token_id"); if( keyidx != -1 ) { printf("unk id = %d\n", gguf_get_val_u32(ggufctx, keyidx) ); } keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.separator_token_id"); if( keyidx != -1 ) { printf("sep id = %d\n", gguf_get_val_u32(ggufctx, keyidx) ); } keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.padding_token_id"); if( keyidx != -1 ) { printf("pad id = %d\n", gguf_get_val_u32(ggufctx, keyidx) ); } } auto & ctx = model.ctx; size_t ctx_size = ggml_get_mem_size(ctx); printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0)); // print tensor info if( false ) { const int n_tensors = gguf_get_n_tensors(ggufctx); fprintf(stdout, "%s: n_tensors: %d\n", __func__, n_tensors); for (int i = 0; i < n_tensors; ++i) { const char * name = gguf_get_tensor_name (ggufctx, i); const size_t offset = gguf_get_tensor_offset(ggufctx, i); fprintf(stdout, "%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset); } } // prepare memory for the weights { const int n_layer = model.hparams.n_layer; model.layers.resize(n_layer); model.wte = ggml_get_tensor(ctx, "gpt_neox.embed_in.weight"); model.ln_f_g = ggml_get_tensor(ctx, "gpt_neox.final_layer_norm.weight"); model.ln_f_b = ggml_get_tensor(ctx, "gpt_neox.final_layer_norm.bias"); model.lmh_g = ggml_get_tensor(ctx, "embed_out.weight"); // map by name model.tensors["gpt_neox.embed_in.weight"] = model.wte; model.tensors["gpt_neox.final_layer_norm.weight"] = model.ln_f_g; model.tensors["gpt_neox.final_layer_norm.bias"] = model.ln_f_b; model.tensors["embed_out.weight"] = model.lmh_g; for (int i = 0; i < n_layer; ++i) { auto & layer = model.layers[i]; layer.ln_1_g = get_tensor_ex(ctx, "gpt_neox.layers." + std::to_string(i) + ".input_layernorm.weight" ); layer.ln_1_b = get_tensor_ex(ctx, "gpt_neox.layers." + std::to_string(i) + ".input_layernorm.bias" ); layer.c_attn_attn_w = get_tensor_ex(ctx, "gpt_neox.layers." + std::to_string(i) + ".attention.query_key_value.weight" ); layer.c_attn_attn_b = get_tensor_ex(ctx, "gpt_neox.layers." + std::to_string(i) + ".attention.query_key_value.bias" ); layer.c_attn_proj_w = get_tensor_ex(ctx, "gpt_neox.layers." + std::to_string(i) + ".attention.dense.weight" ); layer.c_attn_proj_b = get_tensor_ex(ctx, "gpt_neox.layers." + std::to_string(i) + ".attention.dense.bias" ); layer.ln_2_g = get_tensor_ex(ctx, "gpt_neox.layers." + std::to_string(i) + ".post_attention_layernorm.weight" ); layer.ln_2_b = get_tensor_ex(ctx, "gpt_neox.layers." + std::to_string(i) + ".post_attention_layernorm.bias"); layer.c_mlp_fc_w = get_tensor_ex(ctx, "gpt_neox.layers." + std::to_string(i) + ".mlp.dense_h_to_4h.weight" ); layer.c_mlp_fc_b = get_tensor_ex(ctx, "gpt_neox.layers." + std::to_string(i) + ".mlp.dense_h_to_4h.bias" ); layer.c_mlp_proj_w = get_tensor_ex(ctx, "gpt_neox.layers." + std::to_string(i) + ".mlp.dense_4h_to_h.weight" ); layer.c_mlp_proj_b = get_tensor_ex(ctx, "gpt_neox.layers." + std::to_string(i) + ".mlp.dense_4h_to_h.bias" ); // map by name model.tensors["gpt_neox.layers." + std::to_string(i) + ".input_layernorm.weight"] = layer.ln_1_g; model.tensors["gpt_neox.layers." + std::to_string(i) + ".input_layernorm.bias"] = layer.ln_1_b; model.tensors["gpt_neox.layers." + std::to_string(i) + ".attention.query_key_value.weight"] = layer.c_attn_attn_w; model.tensors["gpt_neox.layers." + std::to_string(i) + ".attention.query_key_value.bias"] = layer.c_attn_attn_b; model.tensors["gpt_neox.layers." + std::to_string(i) + ".attention.dense.weight"] = layer.c_attn_proj_w; model.tensors["gpt_neox.layers." + std::to_string(i) + ".attention.dense.bias"] = layer.c_attn_proj_b; model.tensors["gpt_neox.layers." + std::to_string(i) + ".post_attention_layernorm.weight"] = layer.ln_2_g; model.tensors["gpt_neox.layers." + std::to_string(i) + ".post_attention_layernorm.bias"] = layer.ln_2_b; model.tensors["gpt_neox.layers." + std::to_string(i) + ".mlp.dense_h_to_4h.weight"] = layer.c_mlp_fc_w; model.tensors["gpt_neox.layers." + std::to_string(i) + ".mlp.dense_h_to_4h.bias"] = layer.c_mlp_fc_b; model.tensors["gpt_neox.layers." + std::to_string(i) + ".mlp.dense_4h_to_h.weight"] = layer.c_mlp_proj_w; model.tensors["gpt_neox.layers." + std::to_string(i) + ".mlp.dense_4h_to_h.bias"] = layer.c_mlp_proj_b; } } // key + value memory { const auto & kvctx = model.kvctx; const auto & hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_ctx = hparams.n_ctx; const int64_t n_mem = n_layer*n_ctx; const int64_t n_elements = n_embd*n_mem; // create the ggml context { struct ggml_init_params params = { /*.mem_size =*/ size_t(n_elements*4+ggml_tensor_overhead()*2), /*.mem_buffer =*/ NULL, /*.no_alloc =*/ false, }; model.kvctx = ggml_init(params); if (!model.kvctx) { fprintf(stderr, "%s: kv ggml_init() failed\n", __func__); return false; } } model.memory_k = ggml_new_tensor_1d(kvctx, GGML_TYPE_F16, n_elements); model.memory_v = ggml_new_tensor_1d(kvctx, GGML_TYPE_F16, n_elements); const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v); printf("%s: memory_size = %8.2f MB, n_mem = %" PRId64 "\n", __func__, memory_size/1024.0/1024.0, n_mem); } return true; } // feed-forward network ggml_tensor * gpt_neox_ff( const gpt_neox_layer &layer, ggml_context * ctx0, ggml_tensor * inp) { ggml_tensor * cur = ggml_norm(ctx0, inp); cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, layer.ln_2_g, cur), cur), ggml_repeat(ctx0, layer.ln_2_b, cur)); cur = ggml_mul_mat(ctx0, layer.c_mlp_fc_w, cur); cur = ggml_add(ctx0, ggml_repeat(ctx0, layer.c_mlp_fc_b, cur), cur); // GELU activation cur = ggml_gelu(ctx0, cur); // projection // cur = proj_w*cur + proj_b cur = ggml_mul_mat(ctx0, layer.c_mlp_proj_w, cur); cur = ggml_add(ctx0, ggml_repeat(ctx0, layer.c_mlp_proj_b, cur), cur); return cur; } // evaluate the transformer // // - model: the model // - n_threads: number of threads to use // - n_past: the context size so far // - embd_inp: the embeddings of the tokens in the context // - embd_w: the predicted logits for the next token // bool gpt_neox_eval( const gpt_neox_model & model, const int n_threads, const int n_past, const std::vector & embd_inp, std::vector & embd_w, size_t & mem_per_token) { const int N = embd_inp.size(); const auto & hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_ctx = hparams.n_ctx; const int n_head = hparams.n_head; const int n_vocab = hparams.n_vocab; const int n_rot = hparams.n_rot; static size_t buf_size = 256u*1024*1024; static void * buf = malloc(buf_size); // use 2 scratch buffers // TODO: very hacky solution - reimplement in a more elegant way static size_t scr0_size = 256u*1024*1024; static void * scr0 = malloc(scr0_size); static size_t scr1_size = 256u*1024*1024; static void * scr1 = malloc(scr1_size); if (mem_per_token > 0 && mem_per_token*N > buf_size) { const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead //printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new); // reallocate buf_size = buf_size_new; buf = realloc(buf, buf_size); if (buf == nullptr) { fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size); return false; } } struct ggml_init_params params = { /*.mem_size =*/ buf_size, /*.mem_buffer =*/ buf, /*.no_alloc =*/ false, }; struct ggml_context * ctx0 = ggml_init(params); struct ggml_cgraph gf = {}; struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd)); // wte struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.wte, embd); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * cur; ggml_set_scratch(ctx0, { 0, scr0_size, scr0, }); // self-attention { { cur = ggml_norm(ctx0, inpL); cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].ln_1_g, cur), cur), ggml_repeat(ctx0, model.layers[il].ln_1_b, cur)); } // compute QKV { cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_attn_w, cur); cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].c_attn_attn_b, cur), cur); } struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd/n_head, n_head, N, cur->nb[1]/n_head, cur->nb[1], 0*sizeof(float)*n_embd/n_head)); struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd/n_head, n_head, N, cur->nb[1]/n_head, cur->nb[1], 1*sizeof(float)*n_embd/n_head)); struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd/n_head, n_head, N, cur->nb[1]/n_head, cur->nb[1], 2*sizeof(float)*n_embd/n_head)); // using mode = 2 for GPT-NeoX mode Qcur = ggml_rope_inplace(ctx0, Qcur, n_past, n_rot, 2, 0); Kcur = ggml_rope_inplace(ctx0, Kcur, n_past, n_rot, 2, 0); // store key and value to memory { Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd, N)); struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past)); struct ggml_tensor * v = ggml_view_2d(ctx0, model.memory_v, N, n_embd, ( n_ctx)*ggml_element_size(model.memory_v), (il*n_ctx)*ggml_element_size(model.memory_v)*n_embd + n_past*ggml_element_size(model.memory_v)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v)); } // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3) struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3) struct ggml_tensor * K = ggml_permute(ctx0, ggml_reshape_3d(ctx0, ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd), n_embd/n_head, n_head, n_past + N), 0, 2, 1, 3); // K * Q struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); // KQ_scaled = KQ / sqrt(n_embd/n_head) struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head)) ); // KQ_masked = mask_past(KQ_scaled) struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past); // KQ = soft_max(KQ_masked) struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked); // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous() struct ggml_tensor * V = ggml_view_3d(ctx0, model.memory_v, n_past + N, n_embd/n_head, n_head, n_ctx*ggml_element_size(model.memory_v), n_ctx*ggml_element_size(model.memory_v)*n_embd/n_head, il*n_ctx*ggml_element_size(model.memory_v)*n_embd); // KQV = transpose(V) * KQ_soft_max struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); // KQV_merged = KQV.permute(0, 2, 1, 3) struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); // cur = KQV_merged.contiguous().view(n_embd, N) cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); // projection { cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_proj_w, cur); cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].c_attn_proj_b, cur), cur); } } ggml_set_scratch(ctx0, { 0, scr1_size, scr1, }); if (hparams.par_res == 0) { struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpL); cur = gpt_neox_ff(model.layers[il], ctx0, inpFF); // input for next layer inpL = ggml_add(ctx0, cur, inpFF); } else { struct ggml_tensor * inpFF = cur; // this is independent of the self-attention result, so it could be done in parallel to the self-attention // note here we pass inpL instead of cur cur = gpt_neox_ff(model.layers[il], ctx0, inpL); // layer input + FF cur = ggml_add(ctx0, cur, inpFF); // input for next layer inpL = ggml_add(ctx0, cur, inpL); } } ggml_set_scratch(ctx0, { 0, scr0_size, scr0, }); // norm { inpL = ggml_norm(ctx0, inpL); // inpL = ln_f_g*inpL + ln_f_b inpL = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.ln_f_g, inpL), inpL), ggml_repeat(ctx0, model.ln_f_b, inpL)); } ggml_set_scratch(ctx0, { 0, 0, nullptr, }); // lm_head { inpL = ggml_mul_mat(ctx0, model.lmh_g, inpL); //inpL = ggml_add(ctx0, // ggml_repeat(ctx0, model.lmh_b, inpL), // inpL); } // logits -> probs //inpL = ggml_soft_max_inplace(ctx0, inpL); // run the computation ggml_build_forward_expand(&gf, inpL); ggml_graph_compute_with_ctx(ctx0, &gf, n_threads); //if (n_past%100 == 0) { // ggml_graph_print (&gf); // ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot"); //} //embd_w.resize(n_vocab*N); //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N); // return result for just the last token embd_w.resize(n_vocab); memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab); if (mem_per_token == 0) { mem_per_token = ggml_used_mem(ctx0)/N; } //printf("used_mem = %zu\n", ggml_used_mem(ctx0)); ggml_free(ctx0); return true; } int main(int argc, char ** argv) { ggml_time_init(); const int64_t t_main_start_us = ggml_time_us(); gpt_params params; if (gpt_params_parse(argc, argv, params) == false) { return 1; } if (params.seed < 0) { params.seed = time(NULL); } printf("%s: seed = %d\n", __func__, params.seed); std::mt19937 rng(params.seed); if (params.prompt.empty()) { params.prompt = gpt_random_prompt(rng); } int64_t t_load_us = 0; gpt_vocab vocab; gpt_neox_model model; // load the model { const int64_t t_start_us = ggml_time_us(); if (!gpt_neox_model_load(params.model, model, vocab)) { fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str()); return 1; } t_load_us = ggml_time_us() - t_start_us; } int n_past = 0; int64_t t_sample_us = 0; int64_t t_predict_us = 0; std::vector logits; // tokenize the prompt std::vector embd_inp = ::gpt_tokenize(vocab, params.prompt); params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size()); printf("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size()); for (int i = 0; i < embd_inp.size(); i++) { printf("%s: token[%d] = %6d, %s\n", __func__, i, embd_inp[i], vocab.id_to_token.at(embd_inp[i]).c_str()); } printf("\n"); std::vector embd; // determine the required inference memory per token: size_t mem_per_token = 0; gpt_neox_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token); for (int i = embd.size(); i < embd_inp.size() + params.n_predict; i++) { // predict if (embd.size() > 0) { const int64_t t_start_us = ggml_time_us(); if (!gpt_neox_eval(model, params.n_threads, n_past, embd, logits, mem_per_token)) { printf("Failed to predict\n"); return 1; } t_predict_us += ggml_time_us() - t_start_us; } n_past += embd.size(); embd.clear(); if (i >= embd_inp.size()) { // sample next token const int top_k = params.top_k; const float top_p = params.top_p; const float temp = params.temp; const int n_vocab = model.hparams.n_vocab; gpt_vocab::id id = 0; { const int64_t t_start_sample_us = ggml_time_us(); id = gpt_sample_top_k_top_p(vocab, logits.data() + (logits.size() - n_vocab), top_k, top_p, temp, rng); t_sample_us += ggml_time_us() - t_start_sample_us; } // add it to the context embd.push_back(id); } else { // if here, it means we are still processing the input prompt for (int k = i; k < embd_inp.size(); k++) { embd.push_back(embd_inp[k]); if (embd.size() > params.n_batch) { break; } } i += embd.size() - 1; } // display text for (auto id : embd) { printf("%s", vocab.id_to_token[id].c_str()); } fflush(stdout); // end of text token if (embd.back() == 0) { break; } } // report timing { const int64_t t_main_end_us = ggml_time_us(); printf("\n\n"); printf("%s: mem per token = %8zu bytes\n", __func__, mem_per_token); printf("%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f); printf("%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f); printf("%s: predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/n_past); printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f); } ggml_free(model.ctx); return 0; }