#pragma once // GGML internal header #include "ggml.h" #include #include #include // load `stdlib.h` before other headers to work around MinGW bug: https://sourceforge.net/p/mingw-w64/bugs/192/ #include #include #include #ifdef __ARM_FEATURE_SVE #include #endif // __ARM_FEATURE_SVE #if defined(__ARM_NEON) && !defined(__CUDACC__) // if YCM cannot find , make a symbolic link to it, for example: // // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/ // #include #endif #if defined(__F16C__) #include #endif #ifdef __cplusplus extern "C" { #endif #ifndef MIN # define MIN(a, b) ((a) < (b) ? (a) : (b)) #endif #ifndef MAX # define MAX(a, b) ((a) > (b) ? (a) : (b)) #endif // required for mmap as gguf only guarantees 32-byte alignment #define TENSOR_ALIGNMENT 32 // static_assert should be a #define, but if it's not, // fall back to the _Static_assert C11 keyword. // if C99 - static_assert is noop // ref: https://stackoverflow.com/a/53923785/4039976 #ifndef __cplusplus #ifndef static_assert #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L) #define static_assert(cond, msg) _Static_assert(cond, msg) #else #define static_assert(cond, msg) struct global_scope_noop_trick #endif #endif #endif static inline int ggml_up32(int n) { return (n + 31) & ~31; } //static inline int ggml_up64(int n) { // return (n + 63) & ~63; //} static inline int ggml_up(int n, int m) { // assert m is a power of 2 GGML_ASSERT((m & (m - 1)) == 0); return (n + m - 1) & ~(m - 1); } // // logging // GGML_ATTRIBUTE_FORMAT(2, 3) GGML_API void ggml_log_internal (enum ggml_log_level level, const char * format, ...); GGML_API void ggml_log_callback_default(enum ggml_log_level level, const char * text, void * user_data); #define GGML_LOG(...) ggml_log_internal(GGML_LOG_LEVEL_NONE , __VA_ARGS__) #define GGML_LOG_INFO(...) ggml_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__) #define GGML_LOG_WARN(...) ggml_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__) #define GGML_LOG_ERROR(...) ggml_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__) #define GGML_LOG_DEBUG(...) ggml_log_internal(GGML_LOG_LEVEL_DEBUG, __VA_ARGS__) #define GGML_LOG_CONT(...) ggml_log_internal(GGML_LOG_LEVEL_CONT , __VA_ARGS__) #define GGML_DEBUG 0 #if (GGML_DEBUG >= 1) #define GGML_PRINT_DEBUG(...) GGML_LOG_DEBUG(__VA_ARGS__) #else #define GGML_PRINT_DEBUG(...) #endif #if (GGML_DEBUG >= 5) #define GGML_PRINT_DEBUG_5(...) GGML_LOG_DEBUG(__VA_ARGS__) #else #define GGML_PRINT_DEBUG_5(...) #endif #if (GGML_DEBUG >= 10) #define GGML_PRINT_DEBUG_10(...) GGML_LOG_DEBUG(__VA_ARGS__) #else #define GGML_PRINT_DEBUG_10(...) #endif // tensor params static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) { GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings assert(params_size <= GGML_MAX_OP_PARAMS); memcpy(tensor->op_params, params, params_size); } static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) { assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t)); return ((const int32_t *)(tensor->op_params))[i]; } static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) { assert(i < GGML_MAX_OP_PARAMS / sizeof(float)); return ((const float *)(tensor->op_params))[i]; } static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) { assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t)); ((int32_t *)(tensor->op_params))[i] = value; } static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) { assert(i < GGML_MAX_OP_PARAMS / sizeof(float)); ((float *)(tensor->op_params))[i] = value; } struct ggml_map_custom1_op_params { ggml_custom1_op_t fun; int n_tasks; void * userdata; }; struct ggml_map_custom2_op_params { ggml_custom2_op_t fun; int n_tasks; void * userdata; }; struct ggml_map_custom3_op_params { ggml_custom3_op_t fun; int n_tasks; void * userdata; }; // bitset typedef uint32_t ggml_bitset_t; static_assert(sizeof(ggml_bitset_t) == 4, "bitset_t constants must be updated"); #define BITSET_SHR 5 // log2(sizeof(ggml_bitset_t)*8) #define BITSET_MASK (sizeof(ggml_bitset_t)*8 - 1) static size_t ggml_bitset_size(size_t n) { return (n + BITSET_MASK) >> BITSET_SHR; } static inline bool ggml_bitset_get(const ggml_bitset_t * bitset, size_t i) { return !!(bitset[i >> BITSET_SHR] & (1u << (i & BITSET_MASK))); } static inline void ggml_bitset_set(ggml_bitset_t * bitset, size_t i) { bitset[i >> BITSET_SHR] |= (1u << (i & BITSET_MASK)); } static inline void ggml_bitset_clear(ggml_bitset_t * bitset, size_t i) { bitset[i >> BITSET_SHR] &= ~(1u << (i & BITSET_MASK)); } // hash set #define GGML_HASHSET_FULL ((size_t)-1) #define GGML_HASHSET_ALREADY_EXISTS ((size_t)-2) struct ggml_hash_set { size_t size; ggml_bitset_t * used; // whether or not the keys are in use i.e. set struct ggml_tensor ** keys; // actual tensors in the set, keys[i] is only defined if ggml_bitset_get(used, i) }; struct ggml_hash_set ggml_hash_set_new(size_t size); void ggml_hash_set_free(struct ggml_hash_set * hash_set); // returns the minimum size for a hash set that can hold min_sz elements size_t ggml_hash_size(size_t min_sz); // remove all elements from the hash set void ggml_hash_set_reset(struct ggml_hash_set * hash_set); // returns true if key is in the hash set static bool ggml_hash_contains(const struct ggml_hash_set * hash_set, struct ggml_tensor * key); // returns GGML_HASHSET_FULL if table is full, otherwise the current index of the key or where it should be inserted static size_t ggml_hash_find(const struct ggml_hash_set * hash_set, const struct ggml_tensor * key); // returns GGML_HASHSET_ALREADY_EXISTS if key already exists, index otherwise, asserts if table is full static size_t ggml_hash_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key); // return index, asserts if table is full static size_t ggml_hash_find_or_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key); // hash function for ggml_tensor static inline size_t ggml_hash(const struct ggml_tensor * p) { // the last 4 bits are always zero due to alignment return (size_t)(uintptr_t)p >> 4; } static size_t ggml_hash_find(const struct ggml_hash_set * hash_set, const struct ggml_tensor * key) { size_t h = ggml_hash(key) % hash_set->size; // linear probing size_t i = h; while (ggml_bitset_get(hash_set->used, i) && hash_set->keys[i] != key) { i = (i + 1) % hash_set->size; if (i == h) { // visited all hash table entries -> not found return GGML_HASHSET_FULL; } } return i; } static bool ggml_hash_contains(const struct ggml_hash_set * hash_set, struct ggml_tensor * key) { size_t i = ggml_hash_find(hash_set, key); return i != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, i); } static size_t ggml_hash_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key) { size_t h = ggml_hash(key) % hash_set->size; // linear probing size_t i = h; do { if (!ggml_bitset_get(hash_set->used, i)) { ggml_bitset_set(hash_set->used, i); hash_set->keys[i] = key; return i; } if (hash_set->keys[i] == key) { return GGML_HASHSET_ALREADY_EXISTS; } i = (i + 1) % hash_set->size; } while (i != h); // visited all hash table entries -> not found GGML_ABORT("fatal error"); } static size_t ggml_hash_find_or_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key) { size_t h = ggml_hash(key) % hash_set->size; // linear probing size_t i = h; do { if (!ggml_bitset_get(hash_set->used, i)) { ggml_bitset_set(hash_set->used, i); hash_set->keys[i] = key; return i; } if (hash_set->keys[i] == key) { return i; } i = (i + 1) % hash_set->size; } while (i != h); // visited all hash table entries -> not found GGML_ABORT("fatal error"); } // computation graph enum ggml_cgraph_eval_order { GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0, GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT, GGML_CGRAPH_EVAL_ORDER_COUNT }; struct ggml_cgraph { int size; // maximum number of nodes/leafs/grads/grad_accs int n_nodes; // number of nodes currently in use int n_leafs; // number of leafs currently in use struct ggml_tensor ** nodes; // tensors with data that can change if the graph is evaluated struct ggml_tensor ** grads; // the outputs of these tensors are the gradients of the nodes struct ggml_tensor ** grad_accs; // accumulators for node gradients struct ggml_tensor ** leafs; // tensors with constant data struct ggml_hash_set visited_hash_set; enum ggml_cgraph_eval_order order; }; // returns a slice of cgraph with nodes [i0, i1) // the slice does not have leafs or gradients // if you need the gradients, get them from the original graph struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph, int i0, int i1); // Memory allocation GGML_API void * ggml_aligned_malloc(size_t size); GGML_API void ggml_aligned_free(void * ptr, size_t size); // FP16 to FP32 conversion #if defined(__ARM_NEON) #if defined(_MSC_VER) || (defined(__CUDACC__) && __CUDACC_VER_MAJOR__ <= 11) typedef uint16_t ggml_fp16_internal_t; #else typedef __fp16 ggml_fp16_internal_t; #endif #endif #if defined(__ARM_NEON) && !defined(_MSC_VER) && !(defined(__CUDACC__) && __CUDACC_VER_MAJOR__ <= 11) #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x) #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x) #define GGML_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x) static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) { ggml_fp16_internal_t tmp; memcpy(&tmp, &h, sizeof(ggml_fp16_t)); return (float)tmp; } static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) { ggml_fp16_t res; ggml_fp16_internal_t tmp = f; memcpy(&res, &tmp, sizeof(ggml_fp16_t)); return res; } #elif defined(__F16C__) #ifdef _MSC_VER #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x))) #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0) #else #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x) #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0) #endif #elif defined(__POWER9_VECTOR__) #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x) #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x) /* the inline asm below is about 12% faster than the lookup method */ #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x) #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x) static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) { register float f; register double d; __asm__( "mtfprd %0,%2\n" "xscvhpdp %0,%0\n" "frsp %1,%0\n" : /* temp */ "=d"(d), /* out */ "=f"(f): /* in */ "r"(h)); return f; } static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) { register double d; register ggml_fp16_t r; __asm__( /* xscvdphp can work on double or single precision */ "xscvdphp %0,%2\n" "mffprd %1,%0\n" : /* temp */ "=d"(d), /* out */ "=r"(r): /* in */ "f"(f)); return r; } #else // FP16 <-> FP32 // ref: https://github.com/Maratyszcza/FP16 static inline float fp32_from_bits(uint32_t w) { union { uint32_t as_bits; float as_value; } fp32; fp32.as_bits = w; return fp32.as_value; } static inline uint32_t fp32_to_bits(float f) { union { float as_value; uint32_t as_bits; } fp32; fp32.as_value = f; return fp32.as_bits; } static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) { const uint32_t w = (uint32_t) h << 16; const uint32_t sign = w & UINT32_C(0x80000000); const uint32_t two_w = w + w; const uint32_t exp_offset = UINT32_C(0xE0) << 23; #if (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)) && (!defined(__cplusplus) || __cplusplus >= 201703L) const float exp_scale = 0x1.0p-112f; #else const float exp_scale = fp32_from_bits(UINT32_C(0x7800000)); #endif const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale; const uint32_t magic_mask = UINT32_C(126) << 23; const float magic_bias = 0.5f; const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias; const uint32_t denormalized_cutoff = UINT32_C(1) << 27; const uint32_t result = sign | (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value)); return fp32_from_bits(result); } static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) { #if (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)) && (!defined(__cplusplus) || __cplusplus >= 201703L) const float scale_to_inf = 0x1.0p+112f; const float scale_to_zero = 0x1.0p-110f; #else const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000)); const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000)); #endif float base = (fabsf(f) * scale_to_inf) * scale_to_zero; const uint32_t w = fp32_to_bits(f); const uint32_t shl1_w = w + w; const uint32_t sign = w & UINT32_C(0x80000000); uint32_t bias = shl1_w & UINT32_C(0xFF000000); if (bias < UINT32_C(0x71000000)) { bias = UINT32_C(0x71000000); } base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base; const uint32_t bits = fp32_to_bits(base); const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00); const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF); const uint32_t nonsign = exp_bits + mantissa_bits; return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign); } #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x) #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x) #endif // defined(__ARM_NEON) && (!defined(__MSC_VER) // precomputed f32 table for f16 (256 KB) // defined in ggml.c, initialized in ggml_init() GGML_API float ggml_table_f32_f16[1 << 16]; // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32, // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON. // This is also true for POWER9. #if !defined(GGML_FP16_TO_FP32) inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) { uint16_t s; memcpy(&s, &f, sizeof(uint16_t)); return ggml_table_f32_f16[s]; } #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x) #endif #if !defined(GGML_FP32_TO_FP16) #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x) #endif /** * Converts brain16 to float32. * * The bfloat16 floating point format has the following structure: * * ┌sign * │ * │ ┌exponent * │ │ * │ │ ┌mantissa * │ │ │ * │┌──┴───┐┌─┴───┐ * 0b0000000000000000 brain16 * * Since bf16 has the same number of exponent bits as a 32bit float, * encoding and decoding numbers becomes relatively straightforward. * * ┌sign * │ * │ ┌exponent * │ │ * │ │ ┌mantissa * │ │ │ * │┌──┴───┐┌─┴───────────────────┐ * 0b00000000000000000000000000000000 IEEE binary32 * * For comparison, the standard fp16 format has fewer exponent bits. * * ┌sign * │ * │ ┌exponent * │ │ * │ │ ┌mantissa * │ │ │ * │┌─┴─┐┌─┴──────┐ * 0b0000000000000000 IEEE binary16 * * @see IEEE 754-2008 */ static inline float ggml_compute_bf16_to_fp32(ggml_bf16_t h) { union { float f; uint32_t i; } u; u.i = (uint32_t)h.bits << 16; return u.f; } /** * Converts float32 to brain16. * * This is binary identical with Google Brain float conversion. * Floats shall round to nearest even, and NANs shall be quiet. * Subnormals aren't flushed to zero, except perhaps when used. * This code should vectorize nicely if using modern compilers. */ static inline ggml_bf16_t ggml_compute_fp32_to_bf16(float s) { ggml_bf16_t h; union { float f; uint32_t i; } u; u.f = s; if ((u.i & 0x7fffffff) > 0x7f800000) { /* nan */ h.bits = (u.i >> 16) | 64; /* force to quiet */ return h; } h.bits = (u.i + (0x7fff + ((u.i >> 16) & 1))) >> 16; return h; } #define GGML_FP32_TO_BF16(x) ggml_compute_fp32_to_bf16(x) #define GGML_BF16_TO_FP32(x) ggml_compute_bf16_to_fp32(x) // expose GGUF internals for test code GGML_API size_t gguf_type_size(enum gguf_type type); GGML_API struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params); struct gguf_buf { void * data; size_t size; size_t offset; }; GGML_API struct gguf_buf gguf_buf_init(size_t size); GGML_API void gguf_buf_free(struct gguf_buf buf); GGML_API void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta); #ifdef __cplusplus } #endif