#include "common.h" #include "llama.h" #include "build-info.h" #include #include #include #include #include #include #include #include #include #include #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) #include #include #elif defined (_WIN32) #define WIN32_LEAN_AND_MEAN #ifndef NOMINMAX # define NOMINMAX #endif #include #include #endif // Used for debugging to print out beam tokens. struct ostream_beam_view { llama_context * ctx; llama_beam_view beam_view; }; std::ostream& operator<<(std::ostream& os, const ostream_beam_view & obv) { os << "p(" << obv.beam_view.p << ") eob(" << std::boolalpha << obv.beam_view.eob << ") tokens("; for (size_t i = 0 ; i < obv.beam_view.n_tokens ; ++i) { os << llama_token_to_piece(obv.ctx, obv.beam_view.tokens[i]); } return os << ')'; } // Put here anything you want back in beam_search_callback(). struct beam_search_callback_data { llama_context * ctx; std::vector response; }; // In this case, end-of-beam (eob) is equivalent to end-of-sentence (eos) but this need not always be the same. // For example, eob can be flagged due to maximum token length, stop words, etc. bool is_at_eob(const beam_search_callback_data & callback_data, const llama_token * tokens, const size_t n_tokens) { return n_tokens && tokens[n_tokens-1] == llama_token_eos(callback_data.ctx); } // Function matching type llama_beam_search_callback_fn_t. // Custom callback example is called each time the beams lengths increase: // * Show progress by printing ',' following by number of convergent beam tokens if any. // * When all beams converge to a common prefix, they are made available in beams_state.beams[0]. // This is also called when the stop condition is met. // Collect tokens into std::vector response which is pointed to by callback_data. void beam_search_callback(void * callback_data_ptr, llama_beams_state beams_state) { auto& callback_data = *static_cast(callback_data_ptr); // Mark beams as EOS as needed. for (size_t i = 0 ; i < beams_state.n_beams ; ++i) { llama_beam_view& beam_view = beams_state.beam_views[i]; if (!beam_view.eob && is_at_eob(callback_data, beam_view.tokens, beam_view.n_tokens)) { beam_view.eob = true; } } printf(","); // Show progress if (const size_t n = beams_state.common_prefix_length) { callback_data.response.resize(callback_data.response.size() + n); assert(0u < beams_state.n_beams); const llama_token * tokens = beams_state.beam_views[0].tokens; std::copy(tokens, tokens + n, callback_data.response.end() - n); printf("%zu", n); } fflush(stdout); #if 1 // DEBUG: print current beams for this iteration std::cout << "\n\nCurrent beams (last_call=" << beams_state.last_call << "):\n"; for (size_t i = 0 ; i < beams_state.n_beams ; ++i) { std::cout << "beams["< 3 ) { params.prompt = argv[3]; } if ( params.prompt.empty() ) { params.prompt = "### Request:\nHow many countries are there?\n\n### Response:\n"; } //--------------------------------- // Init LLM : //--------------------------------- llama_backend_init(params.numa); llama_model * model; llama_context * ctx; std::tie(model, ctx) = llama_init_from_gpt_params( params ); if ( model == NULL ) { fprintf( stderr , "%s: error: unable to load model\n" , __func__ ); return 1; } //--------------------------------- // Tokenize the prompt : //--------------------------------- std::vector tokens_list = llama_tokenize(ctx, params.prompt, true); const size_t max_context_size = llama_n_ctx( ctx ); const size_t max_tokens_list_size = max_context_size - 4 ; if (tokens_list.size() > max_tokens_list_size) { fprintf( stderr , "%s: error: prompt too long (%zu tokens, max %zu)\n" , __func__ , tokens_list.size() , max_tokens_list_size ); return 1; } fprintf( stderr, "\n\n" ); // Print the tokens from the prompt : for( auto id : tokens_list ) { std::cout << llama_token_to_piece(ctx, id); } std::cout << std::flush; int n_past = 0; if (llama_eval(ctx, tokens_list.data(), tokens_list.size(), n_past, params.n_threads)) { fprintf(stderr, "%s : failed to eval prompt.\n" , __func__ ); return 1; } n_past += tokens_list.size(); beam_search_callback_data callback_data{ctx, {}}; size_t const beam_width = static_cast(params.n_beams); int const n_predict = 256; llama_beam_search(ctx, beam_search_callback, &callback_data, beam_width, n_past, n_predict, params.n_threads); std::cout << "\n\n"; for (llama_token const token_id : callback_data.response) { std::cout << llama_token_to_piece(ctx,token_id); } std::cout << std::endl; llama_free( ctx ); llama_free_model( model ); llama_backend_free(); return 0; }