#include "ggml-cuda.h" #include "ggml.h" #include "ggml-backend-impl.h" #include "ggml-cuda/common.cuh" #include "ggml-cuda/acc.cuh" #include "ggml-cuda/alibi.cuh" #include "ggml-cuda/arange.cuh" #include "ggml-cuda/argsort.cuh" #include "ggml-cuda/binbcast.cuh" #include "ggml-cuda/clamp.cuh" #include "ggml-cuda/concat.cuh" #include "ggml-cuda/convert.cuh" #include "ggml-cuda/cpy.cuh" #include "ggml-cuda/diagmask.cuh" #include "ggml-cuda/dmmv.cuh" #include "ggml-cuda/getrows.cuh" #include "ggml-cuda/im2col.cuh" #include "ggml-cuda/mmq.cuh" #include "ggml-cuda/mmvq.cuh" #include "ggml-cuda/norm.cuh" #include "ggml-cuda/pad.cuh" #include "ggml-cuda/pool2d.cuh" #include "ggml-cuda/quantize.cuh" #include "ggml-cuda/rope.cuh" #include "ggml-cuda/scale.cuh" #include "ggml-cuda/softmax.cuh" #include "ggml-cuda/sumrows.cuh" #include "ggml-cuda/tsembd.cuh" #include "ggml-cuda/unary.cuh" #include "ggml-cuda/upscale.cuh" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size"); [[noreturn]] void ggml_cuda_error(const char * stmt, const char * func, const char * file, int line, const char * msg) { int id = -1; // in case cudaGetDevice fails cudaGetDevice(&id); fprintf(stderr, "CUDA error: %s\n", msg); fprintf(stderr, " current device: %d, in function %s at %s:%d\n", id, func, file, line); fprintf(stderr, " %s\n", stmt); // abort with GGML_ASSERT to get a stack trace GGML_ASSERT(!"CUDA error"); } // this is faster on Windows // probably because the Windows CUDA libraries forget to make this check before invoking the drivers void ggml_cuda_set_device(int device) { int current_device; CUDA_CHECK(cudaGetDevice(¤t_device)); if (device == current_device) { return; } CUDA_CHECK(cudaSetDevice(device)); } int ggml_cuda_get_device() { int id; CUDA_CHECK(cudaGetDevice(&id)); return id; } static ggml_cuda_device_info ggml_cuda_init() { #ifdef __HIP_PLATFORM_AMD__ // Workaround for a rocBLAS bug when using multiple graphics cards: // https://github.com/ROCmSoftwarePlatform/rocBLAS/issues/1346 rocblas_initialize(); CUDA_CHECK(cudaDeviceSynchronize()); #endif ggml_cuda_device_info info = {}; cudaError_t err = cudaGetDeviceCount(&info.device_count); if (err != cudaSuccess) { fprintf(stderr, "%s: failed to initialize " GGML_CUDA_NAME ": %s\n", __func__, cudaGetErrorString(err)); return info; } GGML_ASSERT(info.device_count <= GGML_CUDA_MAX_DEVICES); int64_t total_vram = 0; #if defined(GGML_CUDA_FORCE_MMQ) fprintf(stderr, "%s: GGML_CUDA_FORCE_MMQ: yes\n", __func__); #else fprintf(stderr, "%s: GGML_CUDA_FORCE_MMQ: no\n", __func__); #endif #if defined(CUDA_USE_TENSOR_CORES) fprintf(stderr, "%s: CUDA_USE_TENSOR_CORES: yes\n", __func__); #else fprintf(stderr, "%s: CUDA_USE_TENSOR_CORES: no\n", __func__); #endif fprintf(stderr, "%s: found %d " GGML_CUDA_NAME " devices:\n", __func__, info.device_count); for (int id = 0; id < info.device_count; ++id) { int device_vmm = 0; #if !defined(GGML_USE_HIPBLAS) CUdevice device; CU_CHECK(cuDeviceGet(&device, id)); CU_CHECK(cuDeviceGetAttribute(&device_vmm, CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED, device)); if (device_vmm) { CUmemAllocationProp alloc_prop = {}; alloc_prop.type = CU_MEM_ALLOCATION_TYPE_PINNED; alloc_prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE; alloc_prop.location.id = id; CU_CHECK(cuMemGetAllocationGranularity(&info.devices[id].vmm_granularity, &alloc_prop, CU_MEM_ALLOC_GRANULARITY_RECOMMENDED)); } #endif // !defined(GGML_USE_HIPBLAS) info.devices[id].vmm = !!device_vmm; cudaDeviceProp prop; CUDA_CHECK(cudaGetDeviceProperties(&prop, id)); fprintf(stderr, " Device %d: %s, compute capability %d.%d, VMM: %s\n", id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no"); info.default_tensor_split[id] = total_vram; total_vram += prop.totalGlobalMem; #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) info.devices[id].cc = 100*prop.major + 10*prop.minor + CC_OFFSET_AMD; #else info.devices[id].cc = 100*prop.major + 10*prop.minor; #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) info.devices[id].smpb = prop.sharedMemPerBlock; } for (int id = 0; id < info.device_count; ++id) { info.default_tensor_split[id] /= total_vram; } // configure logging to stdout // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr)); return info; } const ggml_cuda_device_info & ggml_cuda_info() { static ggml_cuda_device_info info = ggml_cuda_init(); return info; } // #define DEBUG_CUDA_MALLOC // buffer pool for cuda (legacy) struct ggml_cuda_pool_leg : public ggml_cuda_pool { static const int MAX_BUFFERS = 256; int device; struct ggml_cuda_buffer { void * ptr = nullptr; size_t size = 0; }; ggml_cuda_buffer buffer_pool[MAX_BUFFERS] = {}; size_t pool_size = 0; explicit ggml_cuda_pool_leg(int device) : device(device) { } ~ggml_cuda_pool_leg() { ggml_cuda_set_device(device); for (int i = 0; i < MAX_BUFFERS; ++i) { ggml_cuda_buffer & b = buffer_pool[i]; if (b.ptr != nullptr) { CUDA_CHECK(cudaFree(b.ptr)); pool_size -= b.size; } } GGML_ASSERT(pool_size == 0); } void * alloc(size_t size, size_t * actual_size) override { #ifdef DEBUG_CUDA_MALLOC int nnz = 0; size_t max_size = 0; #endif size_t best_diff = 1ull << 36; int ibest = -1; for (int i = 0; i < MAX_BUFFERS; ++i) { ggml_cuda_buffer& b = buffer_pool[i]; if (b.ptr != nullptr) { #ifdef DEBUG_CUDA_MALLOC ++nnz; if (b.size > max_size) max_size = b.size; #endif if (b.size >= size) { size_t diff = b.size - size; if (diff < best_diff) { best_diff = diff; ibest = i; if (!best_diff) { void * ptr = b.ptr; *actual_size = b.size; b.ptr = nullptr; b.size = 0; return ptr; } } } } } if (ibest >= 0) { ggml_cuda_buffer& b = buffer_pool[ibest]; void * ptr = b.ptr; *actual_size = b.size; b.ptr = nullptr; b.size = 0; return ptr; } void * ptr; size_t look_ahead_size = (size_t) (1.05 * size); look_ahead_size = 256 * ((look_ahead_size + 255)/256); ggml_cuda_set_device(device); CUDA_CHECK(cudaMalloc((void **) &ptr, look_ahead_size)); *actual_size = look_ahead_size; pool_size += look_ahead_size; #ifdef DEBUG_CUDA_MALLOC fprintf(stderr, "%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, requested %u MB\n", __func__, device, nnz, (uint32_t)(max_size/1024/1024), (uint32_t)(pool_size/1024/1024), (uint32_t)(size/1024/1024)); #endif return ptr; } void free(void * ptr, size_t size) override { for (int i = 0; i < MAX_BUFFERS; ++i) { ggml_cuda_buffer& b = buffer_pool[i]; if (b.ptr == nullptr) { b.ptr = ptr; b.size = size; return; } } fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n"); ggml_cuda_set_device(device); CUDA_CHECK(cudaFree(ptr)); pool_size -= size; } }; // pool with virtual memory #if !defined(GGML_USE_HIPBLAS) struct ggml_cuda_pool_vmm : public ggml_cuda_pool { static const size_t CUDA_POOL_VMM_MAX_SIZE = 1ull << 35; // 32 GB int device; CUdeviceptr pool_addr = 0; size_t pool_used = 0; size_t pool_size = 0; size_t granularity; explicit ggml_cuda_pool_vmm(int device) : device(device), granularity(ggml_cuda_info().devices[device].vmm_granularity) { } ~ggml_cuda_pool_vmm() { if (pool_addr != 0) { CU_CHECK(cuMemUnmap(pool_addr, pool_size)); CU_CHECK(cuMemAddressFree(pool_addr, CUDA_POOL_VMM_MAX_SIZE)); } } void * alloc(size_t size, size_t * actual_size) override { // round up the allocation size to the alignment to ensure that all allocations are aligned for all data types const size_t alignment = 128; size = alignment * ((size + alignment - 1) / alignment); size_t avail = pool_size - pool_used; if (size > avail) { // round up to the next multiple of the granularity size_t reserve_size = size - avail; reserve_size = granularity * ((reserve_size + granularity - 1) / granularity); GGML_ASSERT(pool_size + reserve_size <= CUDA_POOL_VMM_MAX_SIZE); // allocate more physical memory CUmemAllocationProp prop = {}; prop.type = CU_MEM_ALLOCATION_TYPE_PINNED; prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE; prop.location.id = device; CUmemGenericAllocationHandle handle; CU_CHECK(cuMemCreate(&handle, reserve_size, &prop, 0)); // reserve virtual address space (if not already reserved) if (pool_addr == 0) { CU_CHECK(cuMemAddressReserve(&pool_addr, CUDA_POOL_VMM_MAX_SIZE, 0, 0, 0)); } // map at the end of the pool CU_CHECK(cuMemMap(pool_addr + pool_size, reserve_size, 0, handle, 0)); // the memory allocation handle is no longer needed after mapping CU_CHECK(cuMemRelease(handle)); // set access CUmemAccessDesc access = {}; access.location.type = CU_MEM_LOCATION_TYPE_DEVICE; access.location.id = device; access.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE; CU_CHECK(cuMemSetAccess(pool_addr + pool_size, reserve_size, &access, 1)); // add to the pool pool_size += reserve_size; //printf("cuda pool[%d]: size increased to %llu MB (reserved %llu MB)\n", // device, (unsigned long long) (pool_size/1024/1024), // (unsigned long long) (reserve_size/1024/1024)); } GGML_ASSERT(pool_addr != 0); void * ptr = (void *) (pool_addr + pool_used); *actual_size = size; pool_used += size; #ifdef DEBUG_CUDA_MALLOC printf("cuda pool[%d]: allocated %llu bytes at %llx\n", device, (unsigned long long) size, ptr); #endif return ptr; } void free(void * ptr, size_t size) override { #ifdef DEBUG_CUDA_MALLOC printf("cuda pool[%d]: freed %llu bytes at %llx\n", device, (unsigned long long) size, ptr); #endif pool_used -= size; // all deallocations must be in reverse order of the allocations GGML_ASSERT(ptr == (void *) (pool_addr + pool_used)); } }; #endif // !defined(GGML_USE_HIPBLAS) std::unique_ptr ggml_backend_cuda_context::new_pool_for_device(int device) { #if !defined(GGML_USE_HIPBLAS) if (ggml_cuda_info().devices[device].vmm) { return std::unique_ptr(new ggml_cuda_pool_vmm(device)); } #endif return std::unique_ptr(new ggml_cuda_pool_leg(device)); } // cuda buffer struct ggml_backend_cuda_buffer_context { int device; void * dev_ptr = nullptr; std::string name; ggml_backend_cuda_buffer_context(int device, void * dev_ptr) : device(device), dev_ptr(dev_ptr), name(GGML_CUDA_NAME + std::to_string(device)) { } ~ggml_backend_cuda_buffer_context() { CUDA_CHECK(cudaFree(dev_ptr)); } }; GGML_CALL static const char * ggml_backend_cuda_buffer_get_name(ggml_backend_buffer_t buffer) { ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; return ctx->name.c_str(); } GGML_CALL static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) { return buffer->iface.get_name == ggml_backend_cuda_buffer_get_name; } GGML_CALL static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) { ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; delete ctx; } GGML_CALL static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t buffer) { ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; return ctx->dev_ptr; } GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) { ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; if (tensor->view_src != NULL) { assert(tensor->view_src->buffer->buft == buffer->buft); return; } if (ggml_is_quantized(tensor->type)) { // initialize padding to 0 to avoid possible NaN values size_t original_size = ggml_nbytes(tensor); size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor); if (padded_size > original_size && tensor->view_src == nullptr) { ggml_cuda_set_device(ctx->device); CUDA_CHECK(cudaMemset((char *)tensor->data + original_size, 0, padded_size - original_size)); } } } GGML_CALL static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; ggml_cuda_set_device(ctx->device); CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cudaStreamPerThread)); CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread)); } GGML_CALL static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; ggml_cuda_set_device(ctx->device); CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cudaStreamPerThread)); CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread)); } GGML_CALL static bool ggml_backend_cuda_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) { if (ggml_backend_buffer_is_cuda(src->buffer)) { ggml_backend_cuda_buffer_context * src_ctx = (ggml_backend_cuda_buffer_context *)src->buffer->context; ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *)dst->buffer->context; if (src_ctx->device == dst_ctx->device) { CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(src), cudaMemcpyDeviceToDevice, cudaStreamPerThread)); } else { #ifdef GGML_CUDA_NO_PEER_COPY return false; #else CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, dst_ctx->device, src->data, src_ctx->device, ggml_nbytes(src), cudaStreamPerThread)); #endif } CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread)); return true; } return false; GGML_UNUSED(buffer); } GGML_CALL static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; ggml_cuda_set_device(ctx->device); CUDA_CHECK(cudaDeviceSynchronize()); CUDA_CHECK(cudaMemset(ctx->dev_ptr, value, buffer->size)); CUDA_CHECK(cudaDeviceSynchronize()); } static ggml_backend_buffer_i ggml_backend_cuda_buffer_interface = { /* .get_name = */ ggml_backend_cuda_buffer_get_name, /* .free_buffer = */ ggml_backend_cuda_buffer_free_buffer, /* .get_base = */ ggml_backend_cuda_buffer_get_base, /* .init_tensor = */ ggml_backend_cuda_buffer_init_tensor, /* .set_tensor = */ ggml_backend_cuda_buffer_set_tensor, /* .get_tensor = */ ggml_backend_cuda_buffer_get_tensor, /* .cpy_tensor = */ ggml_backend_cuda_buffer_cpy_tensor, /* .clear = */ ggml_backend_cuda_buffer_clear, /* .reset = */ NULL, }; // cuda buffer type struct ggml_backend_cuda_buffer_type_context { int device; std::string name; }; GGML_CALL static const char * ggml_backend_cuda_buffer_type_name(ggml_backend_buffer_type_t buft) { ggml_backend_cuda_buffer_type_context * ctx = (ggml_backend_cuda_buffer_type_context *)buft->context; return ctx->name.c_str(); } GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context; ggml_cuda_set_device(buft_ctx->device); size = std::max(size, (size_t)1); // cudaMalloc returns null for size 0 void * dev_ptr; cudaError_t err = cudaMalloc(&dev_ptr, size); if (err != cudaSuccess) { fprintf(stderr, "%s: allocating %.2f MiB on device %d: cudaMalloc failed: %s\n", __func__, size/1024.0/1024.0, buft_ctx->device, cudaGetErrorString(err)); return nullptr; } ggml_backend_cuda_buffer_context * ctx = new ggml_backend_cuda_buffer_context(buft_ctx->device, dev_ptr); return ggml_backend_buffer_init(buft, ggml_backend_cuda_buffer_interface, ctx, size); } GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { return 128; GGML_UNUSED(buft); } GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) { size_t size = ggml_nbytes(tensor); int64_t ne0 = tensor->ne[0]; if (ggml_is_quantized(tensor->type)) { if (ne0 % MATRIX_ROW_PADDING != 0) { size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING); } } return size; GGML_UNUSED(buft); } GGML_CALL static bool ggml_backend_cuda_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) { if (!ggml_backend_is_cuda(backend)) { return false; } ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context; ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; return buft_ctx->device == cuda_ctx->device; } static ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = { /* .get_name = */ ggml_backend_cuda_buffer_type_name, /* .alloc_buffer = */ ggml_backend_cuda_buffer_type_alloc_buffer, /* .get_alignment = */ ggml_backend_cuda_buffer_type_get_alignment, /* .get_max_size = */ NULL, // defaults to SIZE_MAX /* .get_alloc_size = */ ggml_backend_cuda_buffer_type_get_alloc_size, /* .supports_backend = */ ggml_backend_cuda_buffer_type_supports_backend, /* .is_host = */ NULL, }; GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) { static std::mutex mutex; std::lock_guard lock(mutex); if (device >= ggml_backend_cuda_get_device_count()) { return nullptr; } static ggml_backend_buffer_type ggml_backend_cuda_buffer_types[GGML_CUDA_MAX_DEVICES]; static bool ggml_backend_cuda_buffer_type_initialized = false; if (!ggml_backend_cuda_buffer_type_initialized) { for (int i = 0; i < GGML_CUDA_MAX_DEVICES; i++) { ggml_backend_cuda_buffer_types[i] = { /* .iface = */ ggml_backend_cuda_buffer_type_interface, /* .context = */ new ggml_backend_cuda_buffer_type_context{i, GGML_CUDA_NAME + std::to_string(i)}, }; } ggml_backend_cuda_buffer_type_initialized = true; } return &ggml_backend_cuda_buffer_types[device]; } // cuda split buffer static int64_t get_row_rounding(ggml_type type, const std::array & tensor_split) { int64_t min_compute_capability = INT_MAX; int64_t max_compute_capability = INT_MIN; for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { if (tensor_split[id] < (id + 1 < ggml_backend_cuda_get_device_count() ? tensor_split[id + 1] : 1.0f)) { if (min_compute_capability > ggml_cuda_info().devices[id].cc) { min_compute_capability = ggml_cuda_info().devices[id].cc; } if (max_compute_capability < ggml_cuda_info().devices[id].cc) { max_compute_capability = ggml_cuda_info().devices[id].cc; } } } #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) switch(type) { case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: return max_compute_capability >= CC_RDNA2 ? 128 : 64; case GGML_TYPE_F16: case GGML_TYPE_F32: return 1; case GGML_TYPE_Q2_K: return max_compute_capability >= CC_RDNA2 ? 128 : 32; case GGML_TYPE_Q3_K: return min_compute_capability < CC_RDNA2 ? 128 : 64; case GGML_TYPE_Q4_K: case GGML_TYPE_Q5_K: case GGML_TYPE_Q6_K: case GGML_TYPE_IQ2_XXS: case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ2_S: case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ1_S: case GGML_TYPE_IQ1_M: case GGML_TYPE_IQ4_NL: case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ3_S: return max_compute_capability >= CC_RDNA2 ? 128 : 64; default: GGML_ASSERT(false); } #else switch(type) { case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: return max_compute_capability >= CC_VOLTA ? 128 : 64; case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: return 64; case GGML_TYPE_F16: case GGML_TYPE_F32: return 1; case GGML_TYPE_Q2_K: case GGML_TYPE_Q3_K: case GGML_TYPE_Q4_K: case GGML_TYPE_Q5_K: case GGML_TYPE_IQ2_XXS: case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ2_S: case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ1_S: case GGML_TYPE_IQ1_M: case GGML_TYPE_IQ4_NL: case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ3_S: return max_compute_capability >= CC_VOLTA ? 128 : 64; case GGML_TYPE_Q6_K: return 64; default: GGML_ASSERT(false); } #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) } static void get_row_split(int64_t * row_low, int64_t * row_high, const ggml_tensor * tensor, const std::array & tensor_split, int id) { const int64_t nrows = ggml_nrows(tensor); const int64_t rounding = get_row_rounding(tensor->type, tensor_split); *row_low = id == 0 ? 0 : nrows*tensor_split[id]; *row_low -= *row_low % rounding; if (id == ggml_backend_cuda_get_device_count() - 1) { *row_high = nrows; } else { *row_high = nrows*tensor_split[id + 1]; *row_high -= *row_high % rounding; } } static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) { static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]); } struct ggml_backend_cuda_split_buffer_type_context { std::array tensor_split; }; struct ggml_backend_cuda_split_buffer_context { ~ggml_backend_cuda_split_buffer_context() { for (ggml_tensor_extra_gpu * extra : tensor_extras) { for (int id = 0; id < GGML_CUDA_MAX_DEVICES; ++id) { for (int64_t is = 0; is < GGML_CUDA_MAX_STREAMS; ++is) { if (extra->events[id][is] != nullptr) { CUDA_CHECK(cudaEventDestroy(extra->events[id][is])); } } if (extra->data_device[id] != nullptr) { CUDA_CHECK(cudaFree(extra->data_device[id])); } } delete extra; } } std::vector tensor_extras; }; GGML_CALL static const char * ggml_backend_cuda_split_buffer_get_name(ggml_backend_buffer_t buffer) { return GGML_CUDA_NAME "_Split"; GGML_UNUSED(buffer); } static bool ggml_backend_buffer_is_cuda_split(ggml_backend_buffer_t buffer) { return buffer->iface.get_name == ggml_backend_cuda_split_buffer_get_name; GGML_UNUSED(ggml_backend_buffer_is_cuda_split); // only used in debug builds currently, avoid unused function warning in release builds } GGML_CALL static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) { ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context; delete ctx; } GGML_CALL static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buffer) { // the pointers are stored in the tensor extras, this is just a dummy address and never dereferenced return (void *)0x1000; GGML_UNUSED(buffer); } GGML_CALL static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) { GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context; ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context; const int64_t ne0 = tensor->ne[0]; ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu{}; ctx->tensor_extras.push_back(extra); for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { int64_t row_low, row_high; get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id); int64_t nrows_split = row_high - row_low; if (nrows_split == 0) { continue; } size_t size = ggml_nbytes_split(tensor, nrows_split); const size_t original_size = size; // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses if (ne0 % MATRIX_ROW_PADDING != 0) { size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING); } // FIXME: do not crash if cudaMalloc fails // currently, init_tensor cannot fail, it needs to be fixed in ggml-backend first ggml_cuda_set_device(id); char * buf; CUDA_CHECK(cudaMalloc(&buf, size)); // set padding to 0 to avoid possible NaN values if (size > original_size) { CUDA_CHECK(cudaMemset(buf + original_size, 0, size - original_size)); } extra->data_device[id] = buf; for (int64_t is = 0; is < GGML_CUDA_MAX_STREAMS; ++is) { CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id][is], cudaEventDisableTiming)); } } tensor->extra = extra; } GGML_CALL static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { // split tensors must always be set in their entirety at once GGML_ASSERT(offset == 0); GGML_ASSERT(size == ggml_nbytes(tensor)); ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context; const int64_t ne0 = tensor->ne[0]; const size_t nb1 = tensor->nb[1]; ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra; for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { int64_t row_low, row_high; get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id); int64_t nrows_split = row_high - row_low; if (nrows_split == 0) { continue; } const size_t offset_split = row_low*nb1; size_t size = ggml_nbytes_split(tensor, nrows_split); const size_t original_size = size; // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses if (ne0 % MATRIX_ROW_PADDING != 0) { size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING); } const char * buf_host = (const char *)data + offset_split; CUDA_CHECK(cudaMemcpyAsync(extra->data_device[id], buf_host, original_size, cudaMemcpyHostToDevice, cudaStreamPerThread)); } for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread)); } } GGML_CALL static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { // split tensors must always be set in their entirety at once GGML_ASSERT(offset == 0); GGML_ASSERT(size == ggml_nbytes(tensor)); ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context; const int64_t ne0 = tensor->ne[0]; const size_t nb1 = tensor->nb[1]; ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra; for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { int64_t row_low, row_high; get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id); int64_t nrows_split = row_high - row_low; if (nrows_split == 0) { continue; } const size_t offset_split = row_low*nb1; size_t size = ggml_nbytes_split(tensor, nrows_split); const size_t original_size = size; // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses if (ne0 % MATRIX_ROW_PADDING != 0) { size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING); } char * buf_host = (char *)data + offset_split; CUDA_CHECK(cudaMemcpyAsync(buf_host, extra->data_device[id], original_size, cudaMemcpyDeviceToHost, cudaStreamPerThread)); } for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread)); } } GGML_CALL static void ggml_backend_cuda_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { GGML_UNUSED(buffer); GGML_UNUSED(value); } static struct ggml_backend_buffer_i ggml_backend_cuda_split_buffer_interface = { /* .get_name = */ ggml_backend_cuda_split_buffer_get_name, /* .free_buffer = */ ggml_backend_cuda_split_buffer_free_buffer, /* .get_base = */ ggml_backend_cuda_split_buffer_get_base, /* .init_tensor = */ ggml_backend_cuda_split_buffer_init_tensor, /* .set_tensor = */ ggml_backend_cuda_split_buffer_set_tensor, /* .get_tensor = */ ggml_backend_cuda_split_buffer_get_tensor, /* .cpy_tensor = */ NULL, /* .clear = */ ggml_backend_cuda_split_buffer_clear, /* .reset = */ NULL, }; // cuda split buffer type GGML_CALL static const char * ggml_backend_cuda_split_buffer_type_name(ggml_backend_buffer_type_t buft) { return GGML_CUDA_NAME "_Split"; GGML_UNUSED(buft); } GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { // since we don't know the exact split after rounding, we cannot allocate the device buffers at this point // instead, we allocate them for each tensor separately in init_tensor // however, the size still represents the maximum cumulative size of all the device buffers after the tensors are allocated, // as returned by get_alloc_size. this limit is enforced during tensor allocation by ggml-alloc, so it must be correct. ggml_backend_cuda_split_buffer_context * ctx = new ggml_backend_cuda_split_buffer_context(); return ggml_backend_buffer_init(buft, ggml_backend_cuda_split_buffer_interface, ctx, size); } GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { return 128; GGML_UNUSED(buft); } GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) { ggml_backend_cuda_split_buffer_type_context * ctx = (ggml_backend_cuda_split_buffer_type_context *)buft->context; size_t total_size = 0; const int64_t ne0 = tensor->ne[0]; for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { int64_t row_low, row_high; get_row_split(&row_low, &row_high, tensor, ctx->tensor_split, id); int64_t nrows_split = row_high - row_low; if (nrows_split == 0) { continue; } total_size += ggml_nbytes_split(tensor, nrows_split); // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses if (ne0 % MATRIX_ROW_PADDING != 0) { total_size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING); } } return total_size; } GGML_CALL static bool ggml_backend_cuda_split_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) { return ggml_backend_is_cuda(backend); GGML_UNUSED(buft); } GGML_CALL static bool ggml_backend_cuda_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) { return false; GGML_UNUSED(buft); } static ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_interface = { /* .get_name = */ ggml_backend_cuda_split_buffer_type_name, /* .alloc_buffer = */ ggml_backend_cuda_split_buffer_type_alloc_buffer, /* .get_alignment = */ ggml_backend_cuda_split_buffer_type_get_alignment, /* .get_max_size = */ NULL, // defaults to SIZE_MAX /* .get_alloc_size = */ ggml_backend_cuda_split_buffer_type_get_alloc_size, /* .supports_backend = */ ggml_backend_cuda_split_buffer_type_supports_backend, /* .is_host = */ ggml_backend_cuda_split_buffer_type_is_host, }; GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split) { static std::mutex mutex; std::lock_guard lock(mutex); static std::map, struct ggml_backend_buffer_type> buft_map; std::array tensor_split_arr = {}; bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + GGML_CUDA_MAX_DEVICES, [](float x) { return x == 0.0f; }); if (all_zero) { tensor_split_arr = ggml_cuda_info().default_tensor_split; } else { float split_sum = 0.0f; for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) { tensor_split_arr[i] = split_sum; split_sum += tensor_split[i]; } for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) { tensor_split_arr[i] /= split_sum; } } auto it = buft_map.find(tensor_split_arr); if (it != buft_map.end()) { return &it->second; } struct ggml_backend_buffer_type buft { /* .iface = */ ggml_backend_cuda_split_buffer_type_interface, /* .context = */ new ggml_backend_cuda_split_buffer_type_context{tensor_split_arr}, }; auto result = buft_map.emplace(tensor_split_arr, buft); return &result.first->second; } // host buffer type GGML_CALL static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_type_t buft) { return GGML_CUDA_NAME "_Host"; GGML_UNUSED(buft); } GGML_CALL static const char * ggml_backend_cuda_host_buffer_name(ggml_backend_buffer_t buffer) { return GGML_CUDA_NAME "_Host"; GGML_UNUSED(buffer); } GGML_CALL static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) { CUDA_CHECK(cudaFreeHost(buffer->context)); } static void * ggml_cuda_host_malloc(size_t size) { if (getenv("GGML_CUDA_NO_PINNED") != nullptr) { return nullptr; } void * ptr = nullptr; cudaError_t err = cudaMallocHost((void **) &ptr, size); if (err != cudaSuccess) { // clear the error cudaGetLastError(); fprintf(stderr, "%s: warning: failed to allocate %.2f MiB of pinned memory: %s\n", __func__, size/1024.0/1024.0, cudaGetErrorString(err)); return nullptr; } return ptr; } GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { void * ptr = ggml_cuda_host_malloc(size); if (ptr == nullptr) { // fallback to cpu buffer return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size); } ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size); buffer->buft = buft; buffer->iface.get_name = ggml_backend_cuda_host_buffer_name; buffer->iface.free_buffer = ggml_backend_cuda_host_buffer_free_buffer; return buffer; } GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() { static struct ggml_backend_buffer_type ggml_backend_cuda_buffer_type_host = { /* .iface = */ { /* .get_name = */ ggml_backend_cuda_host_buffer_type_name, /* .alloc_buffer = */ ggml_backend_cuda_host_buffer_type_alloc_buffer, /* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment, /* .get_max_size = */ NULL, // defaults to SIZE_MAX /* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size, /* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend, /* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host, }, /* .context = */ nullptr, }; return &ggml_backend_cuda_buffer_type_host; } //static bool ggml_backend_buffer_is_cuda_host(ggml_backend_buffer_t buffer) { // return buffer->buft->iface.get_name == ggml_backend_cuda_host_buffer_type_name; //} /// kernels typedef void (*ggml_cuda_op_mul_mat_t)( ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i, const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols, const int64_t src1_padded_row_size, cudaStream_t stream); #ifndef GGML_CUDA_PEER_MAX_BATCH_SIZE #define GGML_CUDA_PEER_MAX_BATCH_SIZE 128 #endif // GGML_CUDA_PEER_MAX_BATCH_SIZE #define MUL_MAT_SRC1_COL_STRIDE 128 static __global__ void mul_mat_p021_f16_f32( const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y) { const half * x = (const half *) vx; const int row_x = blockDim.y*blockIdx.y + threadIdx.y; const int channel = blockDim.z*blockIdx.z + threadIdx.z; const int channel_x = channel / (nchannels_y / nchannels_x); const int nrows_y = ncols_x; const int nrows_dst = nrows_x; const int row_dst = row_x; float tmp = 0.0f; for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) { const int col_x = col_x0 + threadIdx.x; if (col_x >= ncols_x) { break; } // x is transposed and permuted const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x; const float xi = __half2float(x[ix]); const int row_y = col_x; // y is not transposed but permuted const int iy = channel*nrows_y + row_y; tmp += xi * y[iy]; } // dst is not transposed and not permuted const int idst = channel*nrows_dst + row_dst; // sum up partial sums and write back result tmp = warp_reduce_sum(tmp); if (threadIdx.x == 0) { dst[idst] = tmp; } } static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int row_stride_x, const int channel_stride_x, const int channel_x_divisor) { const half * x = (const half *) vx; const int row_x = blockDim.y*blockIdx.y + threadIdx.y; const int channel = blockDim.z*blockIdx.z + threadIdx.z; const int channel_x = channel / channel_x_divisor; const int nrows_y = ncols_x; const int nrows_dst = nrows_x; const int row_dst = row_x; const int idst = channel*nrows_dst + row_dst; float tmp = 0.0f; for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) { const int col_x = col_x0 + threadIdx.x; if (col_x >= ncols_x) { break; } const int row_y = col_x; const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x; const int iy = channel*nrows_y + row_y; const float xi = __half2float(x[ix]); tmp += xi * y[iy]; } // sum up partial sums and write back result tmp = warp_reduce_sum(tmp); if (threadIdx.x == 0) { dst[idst] = tmp; } } static void ggml_mul_mat_p021_f16_f32_cuda( const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y, cudaStream_t stream) { const dim3 block_nums(1, nrows_x, nchannels_y); const dim3 block_dims(WARP_SIZE, 1, 1); mul_mat_p021_f16_f32<<>>(vx, y, dst, ncols_x, nrows_x, nchannels_x, nchannels_y); } static void ggml_mul_mat_vec_nc_f16_f32_cuda( const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int row_stride_x, const int nchannels_x, const int nchannels_y, const int channel_stride_x, cudaStream_t stream) { const dim3 block_nums(1, nrows_x, nchannels_y); const dim3 block_dims(WARP_SIZE, 1, 1); mul_mat_vec_nc_f16_f32<<>> (vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x, nchannels_y/nchannels_x); } static cudaError_t ggml_cuda_cpy_tensor_2d( void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) { GGML_ASSERT(ggml_backend_buffer_is_cuda(src->buffer)); char * src_ptr = (char *) src->data; char * dst_ptr = (char *) dst; const int64_t ne0 = src->ne[0]; const int64_t nb0 = src->nb[0]; const int64_t nb1 = src->nb[1]; const int64_t nb2 = src->nb[2]; const int64_t nb3 = src->nb[3]; const enum ggml_type type = src->type; const int64_t ts = ggml_type_size(type); const int64_t bs = ggml_blck_size(type); int64_t i1_diff = i1_high - i1_low; const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3; if (nb0 == ts && nb1 == ts*ne0/bs) { return cudaMemcpyAsync(dst_ptr, x, i1_diff*nb1, cudaMemcpyDeviceToDevice, stream); } else if (nb0 == ts) { return cudaMemcpy2DAsync(dst_ptr, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, cudaMemcpyDeviceToDevice, stream); } else { for (int64_t i1 = 0; i1 < i1_diff; i1++) { const void * rx = (const void *) ((const char *) x + i1*nb1); void * rd = (void *) (dst_ptr + i1*ts*ne0/bs); // pretend the row is a matrix with cols=1 cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyDeviceToDevice, stream); if (r != cudaSuccess) { return r; } } return cudaSuccess; } } static void ggml_cuda_op_mul_mat_cublas( ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i, const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols, const int64_t src1_padded_row_size, cudaStream_t stream) { GGML_ASSERT(src0_dd_i != nullptr); GGML_ASSERT(src1_ddf_i != nullptr); GGML_ASSERT(dst_dd_i != nullptr); const int64_t ne00 = src0->ne[0]; const int64_t ne10 = src1->ne[0]; const int64_t ne0 = dst->ne[0]; const int64_t row_diff = row_high - row_low; int id = ggml_cuda_get_device(); // the main device has a larger memory buffer to hold the results from all GPUs // ldc == nrows of the matrix that cuBLAS writes into int64_t ldc = id == ctx.device ? ne0 : row_diff; const int compute_capability = ggml_cuda_info().devices[id].cc; if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) { // convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32 ggml_cuda_pool_alloc src0_as_f16(ctx.pool(id)); if (src0->type != GGML_TYPE_F16) { const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src0->type); GGML_ASSERT(to_fp16_cuda != nullptr); size_t ne = row_diff*ne00; src0_as_f16.alloc(ne); to_fp16_cuda(src0_dd_i, src0_as_f16.get(), ne, stream); } const half * src0_ptr = src0->type == GGML_TYPE_F16 ? (const half *) src0_dd_i : src0_as_f16.get(); ggml_cuda_pool_alloc src1_as_f16(ctx.pool(id)); if (src1->type != GGML_TYPE_F16) { const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type); GGML_ASSERT(to_fp16_cuda != nullptr); size_t ne = src1_ncols*ne10; src1_as_f16.alloc(ne); to_fp16_cuda(src1_ddf_i, src1_as_f16.get(), ne, stream); } const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16.get(); ggml_cuda_pool_alloc dst_f16(ctx.pool(id), row_diff*src1_ncols); const half alpha_f16 = 1.0f; const half beta_f16 = 0.0f; CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream)); CUBLAS_CHECK( cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N, row_diff, src1_ncols, ne10, &alpha_f16, src0_ptr, CUDA_R_16F, ne00, src1_ptr, CUDA_R_16F, ne10, &beta_f16, dst_f16.get(), CUDA_R_16F, ldc, CUBLAS_COMPUTE_16F, CUBLAS_GEMM_DEFAULT_TENSOR_OP)); const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16); to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream); } else { ggml_cuda_pool_alloc src0_ddq_as_f32(ctx.pool(id)); ggml_cuda_pool_alloc src1_ddq_as_f32(ctx.pool(id)); if (src0->type != GGML_TYPE_F32) { const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type); GGML_ASSERT(to_fp32_cuda != nullptr); src0_ddq_as_f32.alloc(row_diff*ne00); to_fp32_cuda(src0_dd_i, src0_ddq_as_f32.get(), row_diff*ne00, stream); } if (src1->type != GGML_TYPE_F32) { const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src1->type); GGML_ASSERT(to_fp32_cuda != nullptr); src1_ddq_as_f32.alloc(src1_ncols*ne10); to_fp32_cuda(src1_ddf_i, src1_ddq_as_f32.get(), src1_ncols*ne10, stream); } const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get(); const float * src1_ddf1_i = src1->type == GGML_TYPE_F32 ? (const float *) src1_ddf_i : src1_ddq_as_f32.get(); const float alpha = 1.0f; const float beta = 0.0f; CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream)); CUBLAS_CHECK( cublasSgemm(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N, row_diff, src1_ncols, ne10, &alpha, src0_ddf_i, ne00, src1_ddf1_i, ne10, &beta, dst_dd_i, ldc)); } GGML_UNUSED(dst); GGML_UNUSED(src1_ddq_i); GGML_UNUSED(src1_padded_row_size); } static void ggml_cuda_set_peer_access(const int n_tokens, int main_device) { static bool peer_access_enabled = false; const bool enable_peer_access = n_tokens <= GGML_CUDA_PEER_MAX_BATCH_SIZE; if (peer_access_enabled == enable_peer_access) { return; } #ifdef NDEBUG for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { ggml_cuda_set_device(id); CUDA_CHECK(cudaDeviceSynchronize()); } for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { ggml_cuda_set_device(id); for (int id_other = 0; id_other < ggml_backend_cuda_get_device_count(); ++id_other) { if (id == id_other) { continue; } if (id != main_device && id_other != main_device) { continue; } int can_access_peer; CUDA_CHECK(cudaDeviceCanAccessPeer(&can_access_peer, id, id_other)); if (can_access_peer) { if (enable_peer_access) { cudaError_t err = cudaDeviceEnablePeerAccess(id_other, 0); if (err != cudaErrorPeerAccessAlreadyEnabled) { CUDA_CHECK(err); } } else { cudaError_t err = cudaDeviceDisablePeerAccess(id_other); if (err != cudaErrorPeerAccessNotEnabled) { CUDA_CHECK(err); } } } } } ggml_cuda_set_device(main_device); #endif // NDEBUG peer_access_enabled = enable_peer_access; GGML_UNUSED(main_device); } static void ggml_cuda_op_mul_mat( ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_cuda_op_mul_mat_t op, const bool convert_src1_to_q8_1) { const int64_t ne00 = src0->ne[0]; const int64_t ne01 = src0->ne[1]; const int64_t ne02 = src0->ne[2]; const int64_t ne03 = src0->ne[3]; const int64_t ne10 = src1->ne[0]; const int64_t ne11 = src1->ne[1]; const int64_t ne12 = src1->ne[2]; const int64_t ne13 = src1->ne[3]; const int64_t nrows1 = ggml_nrows(src1); GGML_ASSERT(ne03 == ne13); const int64_t ne0 = dst->ne[0]; const int64_t ne1 = dst->ne[1]; const int64_t nb2 = dst->nb[2]; const int64_t nb3 = dst->nb[3]; GGML_ASSERT(ggml_backend_buffer_is_cuda(dst->buffer)); GGML_ASSERT(ggml_backend_buffer_is_cuda(src1->buffer)); ggml_backend_cuda_buffer_context * src1_ctx = (ggml_backend_cuda_buffer_context *) src1->buffer->context; ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *) dst->buffer->context; GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1)); GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0); const int64_t i02_divisor = ne12 / ne02; const size_t src0_ts = ggml_type_size(src0->type); const size_t src0_bs = ggml_blck_size(src0->type); const size_t q8_1_ts = sizeof(block_q8_1); const size_t q8_1_bs = QK8_1; const bool src0_is_contiguous = ggml_is_contiguous(src0); const bool src1_is_contiguous = ggml_is_contiguous(src1); const int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING); const bool split = ggml_backend_buffer_is_cuda_split(src0->buffer); GGML_ASSERT(!(split && ne02 > 1)); GGML_ASSERT(!(split && ne03 > 1)); GGML_ASSERT(!(split && ne02 < ne12)); ggml_tensor_extra_gpu * src0_extra = split ? (ggml_tensor_extra_gpu *) src0->extra : nullptr; std::array tensor_split; if (split) { ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context; tensor_split = buft_ctx->tensor_split; } struct dev_data { ggml_cuda_pool_alloc src0_dd_alloc; ggml_cuda_pool_alloc src1_ddf_alloc; ggml_cuda_pool_alloc src1_ddq_alloc; ggml_cuda_pool_alloc dst_dd_alloc; char * src0_dd = nullptr; float * src1_ddf = nullptr; // float char * src1_ddq = nullptr; // q8_1 float * dst_dd = nullptr; int64_t row_low; int64_t row_high; }; dev_data dev[GGML_CUDA_MAX_DEVICES]; int used_devices = 0; for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { // by default, use all rows dev[id].row_low = 0; dev[id].row_high = ne01; // for multi GPU, get the row boundaries from tensor split // and round to mul_mat_q tile sizes if (split) { const int64_t rounding = get_row_rounding(src0->type, tensor_split); if (id != 0) { dev[id].row_low = ne01*tensor_split[id]; if (dev[id].row_low < ne01) { dev[id].row_low -= dev[id].row_low % rounding; } } if (id != ggml_backend_cuda_get_device_count() - 1) { dev[id].row_high = ne01*tensor_split[id + 1]; if (dev[id].row_high < ne01) { dev[id].row_high -= dev[id].row_high % rounding; } } } } for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { if ((!split && id != ctx.device) || dev[id].row_low == dev[id].row_high) { continue; } used_devices++; const bool src1_on_device = id == src1_ctx->device; const bool dst_on_device = id == dst_ctx->device; ggml_cuda_set_device(id); cudaStream_t stream = ctx.stream(id, 0); if (src0_is_contiguous) { dev[id].src0_dd = split ? (char *) src0_extra->data_device[id] : (char *) src0->data; } else { dev[id].src0_dd = dev[id].src0_dd_alloc.alloc(ctx.pool(id), ggml_nbytes(src0)); } if (src1_on_device && src1_is_contiguous) { dev[id].src1_ddf = (float *) src1->data; } else { dev[id].src1_ddf = dev[id].src1_ddf_alloc.alloc(ctx.pool(id), ggml_nelements(src1)); } if (convert_src1_to_q8_1) { dev[id].src1_ddq = dev[id].src1_ddq_alloc.alloc(ctx.pool(id), nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs); if (src1_on_device && src1_is_contiguous) { quantize_row_q8_1_cuda(dev[id].src1_ddf, dev[id].src1_ddq, ne10, nrows1, src1_padded_col_size, stream); CUDA_CHECK(cudaGetLastError()); } } if (dst_on_device) { dev[id].dst_dd = (float *) dst->data; } else { const size_t size_dst_ddf = split ? (dev[id].row_high - dev[id].row_low)*ne1 : ggml_nelements(dst); dev[id].dst_dd = dev[id].dst_dd_alloc.alloc(ctx.pool(id), size_dst_ddf); } } // if multiple devices are used they need to wait for the main device // here an event is recorded that signals that the main device has finished calculating the input data if (split && used_devices > 1) { ggml_cuda_set_device(ctx.device); CUDA_CHECK(cudaEventRecord(src0_extra->events[ctx.device][0], ctx.stream())); } const int64_t src1_col_stride = split && used_devices > 1 ? MUL_MAT_SRC1_COL_STRIDE : ne11; for (int64_t src1_col_0 = 0; src1_col_0 < ne11; src1_col_0 += src1_col_stride) { const int64_t is = split ? (src1_col_0/src1_col_stride) % GGML_CUDA_MAX_STREAMS : 0; const int64_t src1_ncols = src1_col_0 + src1_col_stride > ne11 ? ne11 - src1_col_0 : src1_col_stride; for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { if ((!split && id != ctx.device) || dev[id].row_low == dev[id].row_high) { continue; } const bool src1_on_device = id == src1_ctx->device; const bool dst_on_device = id == dst_ctx->device; const int64_t row_diff = dev[id].row_high - dev[id].row_low; ggml_cuda_set_device(id); cudaStream_t stream = ctx.stream(id, is); // wait for main GPU data if necessary if (split && (id != ctx.device || is != 0)) { CUDA_CHECK(cudaStreamWaitEvent(stream, src0_extra->events[ctx.device][0], 0)); } for (int64_t i0 = 0; i0 < ne13*ne12; ++i0) { const int64_t i03 = i0 / ne12; const int64_t i02 = i0 % ne12; const size_t src1_ddq_i_offset = (i0*ne11 + src1_col_0) * src1_padded_col_size*q8_1_ts/q8_1_bs; // for split tensors the data begins at i0 == i0_offset_low char * src0_dd_i = dev[id].src0_dd + (i0/i02_divisor) * (ne01*ne00*src0_ts)/src0_bs; float * src1_ddf_i = dev[id].src1_ddf + (i0*ne11 + src1_col_0) * ne10; char * src1_ddq_i = dev[id].src1_ddq + src1_ddq_i_offset; float * dst_dd_i = dev[id].dst_dd + (i0*ne1 + src1_col_0) * (dst_on_device ? ne0 : row_diff); // the main device memory buffer can be on VRAM scratch, with space for all partial results // in that case an offset on dst_ddf_i is needed if (id == ctx.device) { dst_dd_i += dev[id].row_low; // offset is 0 if no tensor split } // copy src0, src1 to device if necessary if (src1_is_contiguous) { if (id != ctx.device) { if (convert_src1_to_q8_1) { char * src1_ddq_i_source = dev[ctx.device].src1_ddq + src1_ddq_i_offset; CUDA_CHECK(cudaMemcpyPeerAsync(src1_ddq_i, id, src1_ddq_i_source, ctx.device, src1_ncols*src1_padded_col_size*q8_1_ts/q8_1_bs, stream)); } else { float * src1_ddf_i_source = (float *) src1->data; src1_ddf_i_source += (i0*ne11 + src1_col_0) * ne10; CUDA_CHECK(cudaMemcpyPeerAsync(src1_ddf_i, id, src1_ddf_i_source, ctx.device, src1_ncols*ne10*sizeof(float), stream)); } } } else if (src1_on_device && !src1_is_contiguous) { CUDA_CHECK(ggml_cuda_cpy_tensor_2d( src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream)); } else { GGML_ASSERT(false); } if (convert_src1_to_q8_1 && !src1_is_contiguous) { quantize_row_q8_1_cuda(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream); CUDA_CHECK(cudaGetLastError()); } if (src1_col_0 == 0 && !src0_is_contiguous && i02 % i02_divisor == 0) { CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_dd_i, src0, i03, i02/i02_divisor, dev[id].row_low, dev[id].row_high, stream)); } // do the computation op(ctx, src0, src1, dst, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i, dev[id].row_low, dev[id].row_high, src1_ncols, src1_padded_col_size, stream); CUDA_CHECK(cudaGetLastError()); // copy dst to host or other device if necessary if (!dst_on_device) { void * dst_off_device = dst->data; if (split) { // src0 = weight matrix is saved as a transposed matrix for better memory layout. // dst is NOT transposed. // The outputs of matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU. // Instead they need to be copied to the correct slice in ne0 = dst row index. // If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results. float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3); GGML_ASSERT(dst->nb[1] == ne0*sizeof(float)); dhf_dst_i += src1_col_0*ne0 + dev[id].row_low; #if !defined(GGML_USE_HIPBLAS) // cudaMemcpy2DAsync may fail with copies between vmm pools of different devices cudaMemcpy3DPeerParms p = {}; p.dstDevice = ctx.device; p.dstPtr = make_cudaPitchedPtr(dhf_dst_i, ne0*sizeof(float), row_diff, src1_ncols); p.srcDevice = id; p.srcPtr = make_cudaPitchedPtr(dst_dd_i, row_diff*sizeof(float), row_diff, src1_ncols); p.extent = make_cudaExtent(row_diff*sizeof(float), src1_ncols, 1); CUDA_CHECK(cudaMemcpy3DPeerAsync(&p, stream)); #else // HIP does not support cudaMemcpy3DPeerAsync or vmm pools CUDA_CHECK(cudaMemcpy2DAsync(dhf_dst_i, ne0*sizeof(float), dst_dd_i, row_diff*sizeof(float), row_diff*sizeof(float), src1_ncols, cudaMemcpyDeviceToDevice, stream)); #endif } else { float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3); GGML_ASSERT(dst->nb[1] == ne0*sizeof(float)); dhf_dst_i += src1_col_0*ne0; CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_dd_i, src1_ncols*ne0*sizeof(float), cudaMemcpyDeviceToDevice, stream)); } } // add event for the main device to wait on until other device is done if (split && (id != ctx.device || is != 0)) { CUDA_CHECK(cudaEventRecord(src0_extra->events[id][is], stream)); } } } } // main device waits for all other devices to be finished if (split && ggml_backend_cuda_get_device_count() > 1) { int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE; is_max = is_max <= GGML_CUDA_MAX_STREAMS ? is_max : GGML_CUDA_MAX_STREAMS; ggml_cuda_set_device(ctx.device); for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { if (dev[id].row_low == dev[id].row_high) { continue; } for (int64_t is = 0; is < is_max; ++is) { CUDA_CHECK(cudaStreamWaitEvent(ctx.stream(), src0_extra->events[id][is], 0)); } } } } static void ggml_cuda_mul_mat_vec_p021(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){ GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1)); GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer)); GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); const int64_t ne00 = src0->ne[0]; const int64_t ne01 = src0->ne[1]; const int64_t ne02 = src0->ne[2]; const int64_t ne12 = src1->ne[2]; cudaStream_t main_stream = ctx.stream(); void * src0_ddq = src0->data; float * src1_ddf = (float *) src1->data; float * dst_ddf = (float *) dst->data; ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream); } static void ggml_cuda_mul_mat_vec_nc(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){ GGML_ASSERT(!ggml_is_transposed(src0)); GGML_ASSERT(!ggml_is_transposed(src1)); GGML_ASSERT(!ggml_is_permuted(src0)); GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer)); GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); const int64_t ne00 = src0->ne[0]; const int64_t ne01 = src0->ne[1]; const int64_t ne02 = src0->ne[2]; const int64_t nb01 = src0->nb[1]; const int64_t nb02 = src0->nb[2]; const int64_t ne12 = src1->ne[2]; cudaStream_t main_stream = ctx.stream(); void * src0_ddq = src0->data; float * src1_ddf = (float *) src1->data; float * dst_ddf = (float *) dst->data; const int64_t row_stride_x = nb01 / sizeof(half); const int64_t channel_stride_x = nb02 / sizeof(half); ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream); } static __global__ void k_compute_batched_ptrs( const half * src0_as_f16, const half * src1_as_f16, char * dst, const void ** ptrs_src, void ** ptrs_dst, int64_t ne12, int64_t ne13, int64_t ne23, size_t nb02, size_t nb03, size_t nb12, size_t nb13, size_t nbd2, size_t nbd3, int64_t r2, int64_t r3) { int64_t i13 = blockIdx.x * blockDim.x + threadIdx.x; int64_t i12 = blockIdx.y * blockDim.y + threadIdx.y; if (i13 >= ne13 || i12 >= ne12) { return; } int64_t i03 = i13 / r3; int64_t i02 = i12 / r2; ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03; ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12 + i13*nb13; ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst + i12*nbd2 + i13*nbd3; } static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_ASSERT(!ggml_is_transposed(src0)); GGML_ASSERT(!ggml_is_transposed(src1)); GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer)); GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_TENSOR_BINARY_OP_LOCALS const int64_t ne_dst = ggml_nelements(dst); cudaStream_t main_stream = ctx.stream(); CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(), main_stream)); void * src0_ddq = src0->data; half * src0_f16 = (half *) src0_ddq; float * src1_ddf = (float *) src1->data; float * dst_ddf = (float *) dst->data; // convert src1 to fp16 ggml_cuda_pool_alloc src1_f16_alloc(ctx.pool()); if (src1->type != GGML_TYPE_F16) { const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type); const int64_t ne_src1 = ggml_nelements(src1); src1_f16_alloc.alloc(ne_src1); GGML_ASSERT(to_fp16_cuda != nullptr); to_fp16_cuda(src1_ddf, src1_f16_alloc.get(), ne_src1, main_stream); } half * src1_f16 = src1->type == GGML_TYPE_F16 ? (half *) src1_ddf : src1_f16_alloc.get(); ggml_cuda_pool_alloc dst_f16(ctx.pool()); char * dst_t; cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F; cudaDataType_t cu_data_type = CUDA_R_16F; // dst strides size_t nbd2 = dst->nb[2]; size_t nbd3 = dst->nb[3]; const half alpha_f16 = 1.0f; const half beta_f16 = 0.0f; const float alpha_f32 = 1.0f; const float beta_f32 = 0.0f; const void * alpha = &alpha_f16; const void * beta = &beta_f16; if (dst->op_params[0] == GGML_PREC_DEFAULT) { dst_t = (char *) dst_f16.alloc(ne_dst); nbd2 /= sizeof(float) / sizeof(half); nbd3 /= sizeof(float) / sizeof(half); } else { dst_t = (char *) dst_ddf; cu_compute_type = CUBLAS_COMPUTE_32F; cu_data_type = CUDA_R_32F; alpha = &alpha_f32; beta = &beta_f32; } GGML_ASSERT(ne12 % ne02 == 0); GGML_ASSERT(ne13 % ne03 == 0); // broadcast factors const int64_t r2 = ne12/ne02; const int64_t r3 = ne13/ne03; #if 0 // use cublasGemmEx { for (int i13 = 0; i13 < ne13; ++i13) { for (int i12 = 0; i12 < ne12; ++i12) { int i03 = i13 / r3; int i02 = i12 / r2; CUBLAS_CHECK( cublasGemmEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N, ne01, ne11, ne10, alpha, (const char *) src0_as_f16 + i02*src0->nb[2] + i03*src0->nb[3] , CUDA_R_16F, nb01/sizeof(half), (const char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2, CUDA_R_16F, nb11/sizeof(float), beta, ( char *) dst_t + i12*nbd2 + i13*nbd3, cu_data_type, ne01, cu_compute_type, CUBLAS_GEMM_DEFAULT_TENSOR_OP)); } } } #else if (r2 == 1 && r3 == 1 && src0->nb[2]*src0->ne[2] == src0->nb[3] && src1->nb[2]*src1->ne[2] == src1->nb[3]) { // there is no broadcast and src0, src1 are contiguous across dims 2, 3 // use cublasGemmStridedBatchedEx CUBLAS_CHECK( cublasGemmStridedBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N, ne01, ne11, ne10, alpha, (const char *) src0_f16, CUDA_R_16F, nb01/nb00, nb02/nb00, // strideA (const char *) src1_f16, CUDA_R_16F, nb11/nb10, nb12/nb10, // strideB beta, ( char *) dst_t, cu_data_type, ne01, nb2/nb0, // strideC ne12*ne13, cu_compute_type, CUBLAS_GEMM_DEFAULT_TENSOR_OP)); } else { // use cublasGemmBatchedEx const int ne23 = ne12*ne13; ggml_cuda_pool_alloc ptrs_src(ctx.pool(), 2*ne23); ggml_cuda_pool_alloc< void *> ptrs_dst(ctx.pool(), 1*ne23); dim3 block_dims(ne13, ne12); k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>( src0_f16, src1_f16, dst_t, ptrs_src.get(), ptrs_dst.get(), ne12, ne13, ne23, nb02, nb03, src1->type == GGML_TYPE_F16 ? nb12 : nb12/2, src1->type == GGML_TYPE_F16 ? nb13 : nb13/2, nbd2, nbd3, r2, r3); CUDA_CHECK(cudaGetLastError()); CUBLAS_CHECK( cublasGemmBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N, ne01, ne11, ne10, alpha, (const void **) (ptrs_src.get() + 0*ne23), CUDA_R_16F, nb01/nb00, (const void **) (ptrs_src.get() + 1*ne23), CUDA_R_16F, nb11/nb10, beta, ( void **) (ptrs_dst.get() + 0*ne23), cu_data_type, ne01, ne23, cu_compute_type, CUBLAS_GEMM_DEFAULT_TENSOR_OP)); } #endif if (dst->op_params[0] == GGML_PREC_DEFAULT) { const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16); to_fp32_cuda(dst_f16.get(), dst_ddf, ne_dst, main_stream); } } static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { const bool split = ggml_backend_buffer_is_cuda_split(src0->buffer); int64_t min_compute_capability = INT_MAX; bool any_pascal_with_slow_fp16 = false; if (split) { ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context; auto & tensor_split = buft_ctx->tensor_split; for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { // skip devices that are not going to do any work: if (tensor_split[id] >= (id + 1 < ggml_backend_cuda_get_device_count() ? tensor_split[id + 1] : 1.0f)) { continue; } if (min_compute_capability > ggml_cuda_info().devices[id].cc) { min_compute_capability = ggml_cuda_info().devices[id].cc; } if (ggml_cuda_info().devices[id].cc == 610) { any_pascal_with_slow_fp16 = true; } } } else { min_compute_capability = ggml_cuda_info().devices[ctx.device].cc; any_pascal_with_slow_fp16 = ggml_cuda_info().devices[ctx.device].cc == 610; } // check data types and tensor shapes for custom matrix multiplication kernels: bool use_dequantize_mul_mat_vec = (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 && src0->ne[0] % GGML_CUDA_DMMV_X == 0 && src1->ne[1] == 1; bool use_mul_mat_vec_q = ggml_is_quantized(src0->type) && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 && src1->ne[1] <= MMVQ_MAX_BATCH_SIZE; bool use_mul_mat_q = ggml_cuda_supports_mmq(src0->type) && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32; #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) const bool fp16_performance_good = min_compute_capability >= CC_RDNA1; #ifdef CUDA_USE_TENSOR_CORES use_mul_mat_q = use_mul_mat_q && min_compute_capability < CC_RDNA3; #endif // CUDA_USE_TENSOR_CORES #else // fp16 performance is good on Volta or newer and on P100 (compute capability 6.0) const bool fp16_performance_good = min_compute_capability >= CC_PASCAL && !any_pascal_with_slow_fp16; // mmvq and mmq need the __dp4a instruction which on NVIDIA is only available for CC >= 6.1 use_mul_mat_vec_q = use_mul_mat_vec_q && min_compute_capability >= MIN_CC_DP4A; use_mul_mat_q = use_mul_mat_q && min_compute_capability >= MIN_CC_DP4A; #ifdef CUDA_USE_TENSOR_CORES // when tensor cores are available, use them for large batch size // ref: https://github.com/ggerganov/llama.cpp/pull/3776 use_mul_mat_q = use_mul_mat_q && (!fp16_performance_good || src1->ne[1] <= MMQ_MAX_BATCH_SIZE); #endif // CUDA_USE_TENSOR_CORES #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) // if mmvq is available it's a better choice than dmmv: #ifndef GGML_CUDA_FORCE_DMMV use_dequantize_mul_mat_vec = use_dequantize_mul_mat_vec && !use_mul_mat_vec_q; #endif // GGML_CUDA_FORCE_DMMV // debug helpers //printf("src0: %8d %8d %8d %8d\n", src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]); //printf(" %8d %8d %8d %8d\n", src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]); //printf("src1: %8d %8d %8d %8d\n", src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]); //printf(" %8d %8d %8d %8d\n", src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]); //printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name); //printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name); if (!split && !fp16_performance_good && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) { // KQ single-batch ggml_cuda_mul_mat_vec_p021(ctx, src0, src1, dst); } else if (!split && !fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) { // KQV single-batch ggml_cuda_mul_mat_vec_nc(ctx, src0, src1, dst); } else if (!split && src0->type == GGML_TYPE_F16 && (src1->type == GGML_TYPE_F16 || fp16_performance_good) && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) { // KQ + KQV multi-batch ggml_cuda_mul_mat_batched_cublas(ctx, src0, src1, dst); } else if (use_dequantize_mul_mat_vec) { ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_dequantize_mul_mat_vec, false); } else if (use_mul_mat_vec_q) { ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_vec_q, true); } else if (use_mul_mat_q) { ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_q, true); } else { ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_cublas, false); } } struct mmid_row_mapping { int32_t i1; int32_t i2; }; static __global__ void k_copy_src1_to_contiguous(const char * __restrict__ src1_original, char * __restrict__ src1_contiguous, int * __restrict__ cur_src1_row, mmid_row_mapping * __restrict__ row_mapping, const char * __restrict ids, int64_t i02, size_t ids_nb1, size_t ids_nb0, int64_t ne11, int64_t ne10, size_t nb11, size_t nb12) { int32_t iid1 = blockIdx.x; int32_t id = blockIdx.y; const int32_t row_id_i = *(const int32_t *) (ids + iid1*ids_nb1 + id*ids_nb0); if (row_id_i != i02) { return; } const int64_t i11 = id % ne11; const int64_t i12 = iid1; __shared__ int src1_row; if (threadIdx.x == 0) { src1_row = atomicAdd(cur_src1_row, 1); row_mapping[src1_row] = {id, iid1}; } __syncthreads(); const float * src1_row_original = (const float *)(src1_original + i11*nb11 + i12*nb12); float * src1_row_contiguous = (float *)(src1_contiguous + src1_row*nb11); for (int i = threadIdx.x; i < ne10; i += blockDim.x) { src1_row_contiguous[i] = src1_row_original[i]; } } static __global__ void k_copy_dst_from_contiguous(char * __restrict__ dst_original, const char * __restrict__ dst_contiguous, const mmid_row_mapping * __restrict__ row_mapping, int64_t ne0, size_t nb1, size_t nb2) { int32_t i = blockIdx.x; const int32_t i1 = row_mapping[i].i1; const int32_t i2 = row_mapping[i].i2; const float * dst_row_contiguous = (const float *)(dst_contiguous + i*nb1); float * dst_row_original = (float *)(dst_original + i1*nb1 + i2*nb2); for (int j = threadIdx.x; j < ne0; j += blockDim.x) { dst_row_original[j] = dst_row_contiguous[j]; } } static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; const ggml_tensor * ids = dst->src[2]; GGML_TENSOR_BINARY_OP_LOCALS GGML_ASSERT(!ggml_backend_buffer_is_cuda_split(src0->buffer) && "mul_mat_id does not support split buffers"); cudaStream_t stream = ctx.stream(); const int64_t n_as = ne02; const int64_t n_ids = ids->ne[0]; std::vector ids_host(ggml_nbytes(ids)); const char * ids_dev = (const char *) ids->data; CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream)); CUDA_CHECK(cudaStreamSynchronize(stream)); ggml_tensor src0_row = *src0; ggml_tensor src1_row = *src1; ggml_tensor dst_row = *dst; char * src0_original = (char *) src0->data; char * src1_original = (char *) src1->data; char * dst_original = (char *) dst->data; src0_row.ne[2] = 1; src0_row.ne[3] = 1; src0_row.nb[3] = nb02; src1_row.ne[1] = 1; src1_row.ne[2] = 1; src1_row.ne[3] = 1; src1_row.nb[2] = nb11; src1_row.nb[3] = nb11; dst_row.ne[1] = 1; dst_row.ne[2] = 1; dst_row.ne[3] = 1; dst_row.nb[2] = nb1; dst_row.nb[3] = nb1; if (ne12 == 1) { for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) { for (int64_t id = 0; id < n_ids; id++) { const int32_t i02 = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]); GGML_ASSERT(i02 >= 0 && i02 < n_as); const int64_t i11 = id % ne11; const int64_t i12 = iid1; const int64_t i1 = id; const int64_t i2 = i12; src0_row.data = src0_original + i02*nb02; src1_row.data = src1_original + i11*nb11 + i12*nb12; dst_row.data = dst_original + i1*nb1 + i2*nb2; ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row); } } } else { ggml_cuda_pool_alloc src1_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(src1)); ggml_cuda_pool_alloc dst_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(dst)); src1_row.data = src1_contiguous.get(); dst_row.data = dst_contiguous.get(); for (int64_t i02 = 0; i02 < n_as; i02++) { int64_t num_src1_rows = 0; for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) { for (int64_t id = 0; id < n_ids; id++) { const int32_t row_id_i = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]); GGML_ASSERT(row_id_i >= 0 && row_id_i < n_as); if (row_id_i != i02) { continue; } num_src1_rows++; } } if (num_src1_rows == 0) { continue; } ggml_cuda_pool_alloc dev_cur_src1_row(ctx.pool(), 1); ggml_cuda_pool_alloc dev_row_mapping(ctx.pool(), num_src1_rows); CUDA_CHECK(cudaMemsetAsync(dev_cur_src1_row.get(), 0, sizeof(int), stream)); { dim3 block_dims(std::min((unsigned int)ne10, 768u)); dim3 grid_dims(ids->ne[1], n_ids); k_copy_src1_to_contiguous<<>>( src1_original, src1_contiguous.get(), dev_cur_src1_row.get(), dev_row_mapping.get(), ids_dev, i02, ids->nb[1], ids->nb[0], ne11, ne10, nb11, nb12); CUDA_CHECK(cudaGetLastError()); } src0_row.data = src0_original + i02*nb02; GGML_ASSERT(nb11 == sizeof(float)*ne10); GGML_ASSERT(nb1 == sizeof(float)*ne0); src1_row.ne[1] = num_src1_rows; src1_row.nb[1] = nb11; src1_row.nb[2] = num_src1_rows*nb11; src1_row.nb[3] = num_src1_rows*nb11; dst_row.ne[1] = num_src1_rows; dst_row.nb[1] = nb1; dst_row.nb[2] = num_src1_rows*nb1; dst_row.nb[3] = num_src1_rows*nb1; ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row); { dim3 block_dims(std::min((unsigned int)ne0, 768u)); dim3 grid_dims(num_src1_rows); k_copy_dst_from_contiguous<<>>( dst_original, dst_contiguous.get(), dev_row_mapping.get(), ne0, nb1, nb2); CUDA_CHECK(cudaGetLastError()); } } } } static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct ggml_tensor * dst) { // why is this here instead of mul_mat? if (dst->src[0] != nullptr && ggml_backend_buffer_is_cuda_split(dst->src[0]->buffer)) { ggml_cuda_set_peer_access(dst->src[1]->ne[1], ctx.device); } switch (dst->op) { case GGML_OP_REPEAT: ggml_cuda_op_repeat(ctx, dst); break; case GGML_OP_GET_ROWS: ggml_cuda_op_get_rows(ctx, dst); break; case GGML_OP_DUP: ggml_cuda_dup(ctx, dst); break; case GGML_OP_CPY: ggml_cuda_cpy(ctx, dst->src[0], dst->src[1]); break; case GGML_OP_CONT: ggml_cuda_dup(ctx, dst); break; case GGML_OP_ADD: ggml_cuda_op_add(ctx, dst); break; case GGML_OP_ACC: ggml_cuda_op_acc(ctx, dst); break; case GGML_OP_MUL: ggml_cuda_op_mul(ctx, dst); break; case GGML_OP_DIV: ggml_cuda_op_div(ctx, dst); break; case GGML_OP_UNARY: switch (ggml_get_unary_op(dst)) { case GGML_UNARY_OP_GELU: ggml_cuda_op_gelu(ctx, dst); break; case GGML_UNARY_OP_SILU: ggml_cuda_op_silu(ctx, dst); break; case GGML_UNARY_OP_GELU_QUICK: ggml_cuda_op_gelu_quick(ctx, dst); break; case GGML_UNARY_OP_TANH: ggml_cuda_op_tanh(ctx, dst); break; case GGML_UNARY_OP_RELU: ggml_cuda_op_relu(ctx, dst); break; case GGML_UNARY_OP_HARDSIGMOID: ggml_cuda_op_hardsigmoid(ctx, dst); break; case GGML_UNARY_OP_HARDSWISH: ggml_cuda_op_hardswish(ctx, dst); break; default: return false; } break; case GGML_OP_NORM: ggml_cuda_op_norm(ctx, dst); break; case GGML_OP_GROUP_NORM: ggml_cuda_op_group_norm(ctx, dst); break; case GGML_OP_CONCAT: ggml_cuda_op_concat(ctx, dst); break; case GGML_OP_UPSCALE: ggml_cuda_op_upscale(ctx, dst); break; case GGML_OP_PAD: ggml_cuda_op_pad(ctx, dst); break; case GGML_OP_ARANGE: ggml_cuda_op_arange(ctx, dst); break; case GGML_OP_TIMESTEP_EMBEDDING: ggml_cuda_op_timestep_embedding(ctx, dst); break; case GGML_OP_LEAKY_RELU: ggml_cuda_op_leaky_relu(ctx, dst); break; case GGML_OP_RMS_NORM: ggml_cuda_op_rms_norm(ctx, dst); break; case GGML_OP_MUL_MAT: if (dst->src[0]->ne[3] != dst->src[1]->ne[3]) { fprintf(stderr, "%s: cannot compute %s: src0->ne[3] = %" PRId64 ", src1->ne[3] = %" PRId64 " - fallback to CPU\n", __func__, dst->name, dst->src[0]->ne[3], dst->src[1]->ne[3]); return false; } else { ggml_cuda_mul_mat(ctx, dst->src[0], dst->src[1], dst); } break; case GGML_OP_MUL_MAT_ID: ggml_cuda_mul_mat_id(ctx, dst); break; case GGML_OP_SCALE: ggml_cuda_op_scale(ctx, dst); break; case GGML_OP_SQR: ggml_cuda_op_sqr(ctx, dst); break; case GGML_OP_CLAMP: ggml_cuda_op_clamp(ctx, dst); break; case GGML_OP_NONE: case GGML_OP_RESHAPE: case GGML_OP_VIEW: case GGML_OP_PERMUTE: case GGML_OP_TRANSPOSE: break; case GGML_OP_DIAG_MASK_INF: ggml_cuda_op_diag_mask_inf(ctx, dst); break; case GGML_OP_SOFT_MAX: ggml_cuda_op_soft_max(ctx, dst); break; case GGML_OP_ROPE: ggml_cuda_op_rope(ctx, dst); break; case GGML_OP_ALIBI: ggml_cuda_op_alibi(ctx, dst); break; case GGML_OP_IM2COL: ggml_cuda_op_im2col(ctx, dst); break; case GGML_OP_POOL_2D: ggml_cuda_op_pool2d(ctx, dst); break; case GGML_OP_SUM_ROWS: ggml_cuda_op_sum_rows(ctx, dst); break; case GGML_OP_ARGSORT: ggml_cuda_op_argsort(ctx, dst); break; default: return false; } cudaError_t err = cudaGetLastError(); if (err != cudaSuccess) { fprintf(stderr, "%s: %s failed\n", __func__, ggml_op_desc(dst)); CUDA_CHECK(err); } return true; } //////////////////////////////////////////////////////////////////////////////// // backend GGML_CALL static const char * ggml_backend_cuda_name(ggml_backend_t backend) { ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; return cuda_ctx->name.c_str(); } GGML_CALL static void ggml_backend_cuda_free(ggml_backend_t backend) { ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; delete cuda_ctx; delete backend; } GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cuda_get_default_buffer_type(ggml_backend_t backend) { ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; return ggml_backend_cuda_buffer_type(cuda_ctx->device); } GGML_CALL static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer; GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type"); CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cuda_ctx->stream())); } GGML_CALL static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer; GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type"); CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cuda_ctx->stream())); } GGML_CALL static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, const ggml_tensor * src, ggml_tensor * dst) { GGML_ASSERT(ggml_backend_is_cuda(backend_src) || ggml_backend_is_cuda(backend_dst)); ggml_backend_buffer_t buf_src = src->view_src ? src->view_src->buffer : src->buffer; ggml_backend_buffer_t buf_dst = dst->view_src ? dst->view_src->buffer : dst->buffer; if (!ggml_backend_buffer_is_cuda(src->buffer)) { return false; } if (!ggml_backend_buffer_is_cuda(dst->buffer)) { return false; } // device -> device ggml_backend_cuda_context * cuda_ctx_src = (ggml_backend_cuda_context *)backend_src->context; ggml_backend_cuda_context * cuda_ctx_dst = (ggml_backend_cuda_context *)backend_dst->context; if (backend_src != backend_dst) { ggml_backend_cuda_buffer_context * buf_ctx_src = (ggml_backend_cuda_buffer_context *)buf_src->context; ggml_backend_cuda_buffer_context * buf_ctx_dst = (ggml_backend_cuda_buffer_context *)buf_dst->context; GGML_ASSERT(cuda_ctx_src->device == buf_ctx_src->device); GGML_ASSERT(cuda_ctx_dst->device == buf_ctx_dst->device); // copy on src stream if (cuda_ctx_src->device == cuda_ctx_dst->device) { CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_dst->stream())); } else { #ifdef GGML_CUDA_NO_PEER_COPY return false; #else CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, cuda_ctx_dst->device, src->data, cuda_ctx_src->device, ggml_nbytes(dst), cuda_ctx_src->stream())); #endif } // record event on src stream if (!cuda_ctx_src->copy_event) { ggml_cuda_set_device(cuda_ctx_src->device); CUDA_CHECK(cudaEventCreateWithFlags(&cuda_ctx_src->copy_event, cudaEventDisableTiming)); } CUDA_CHECK(cudaEventRecord(cuda_ctx_src->copy_event, cuda_ctx_src->stream())); // wait on dst stream for the copy to complete CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx_dst->stream(), cuda_ctx_src->copy_event, 0)); } else { // src and dst are on the same backend CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_dst->stream())); } return true; } GGML_CALL static void ggml_backend_cuda_synchronize(ggml_backend_t backend) { ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; CUDA_CHECK(cudaStreamSynchronize(cuda_ctx->stream())); GGML_UNUSED(backend); } #if (CUDART_VERSION >= 12000) && defined(GGML_ALLOW_CUDA_GRAPHS) #define USE_CUDA_GRAPH #endif struct ggml_graph_node_properties { void * node_address; int node_op; int64_t ne[GGML_MAX_DIMS]; size_t nb[GGML_MAX_DIMS]; void * src_address[GGML_MAX_SRC]; }; #ifdef USE_CUDA_GRAPH #define MAX_NODES_IN_CUDA_GRAPH 10000 struct ggml_cuda_graph { int count = 0; cudaGraph_t graph = nullptr; cudaGraphExec_t instance = nullptr; size_t num_nodes = 0; cudaGraphNode_t nodes[MAX_NODES_IN_CUDA_GRAPH]; cudaKernelNodeParams params[MAX_NODES_IN_CUDA_GRAPH]; bool disable_due_to_gpu_arch = false; bool disable_due_to_too_many_updates = false; int number_consecutive_updates = 0; ggml_graph_node_properties ggml_graph_properties[MAX_NODES_IN_CUDA_GRAPH]; }; #endif const bool disable_cuda_graphs = (getenv("LLAMACPP_DISABLE_CUDA_GRAPHS") != nullptr); GGML_CALL static void set_ggml_graph_node_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) { graph_node_properties->node_address = node; graph_node_properties->node_op = node->op; for(int i=0; ine[i] = node->ne[i]; graph_node_properties->nb[i] = node->nb[i]; } for(int i=0; isrc_address[i] = node->src[i]; } } GGML_CALL static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) { if(node != graph_node_properties->node_address) return false; if(node->op != graph_node_properties->node_op) return false; for(int i=0; ine[i] != graph_node_properties->ne[i]) return false; if(node->nb[i] != graph_node_properties->nb[i]) return false; } for(int i=0; isrc[i] != graph_node_properties->src_address[i]) return false; } return true; } GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) { ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; ggml_cuda_set_device(cuda_ctx->device); #ifdef USE_CUDA_GRAPH // Objects required for CUDA Graph static ggml_cuda_graph cuda_graph; bool use_cuda_graph = (cuda_graph.count >= 7); //avoid CUDA graphs on first few steps due to incompatible initialisations. char ** updated_kernel_arg[MAX_NODES_IN_CUDA_GRAPH]; bool cuda_graph_update_required = false; // pointer to CUDA cpy kernel, which is required to identify // kernel parameters which need updated in the graph for each token void * ggml_cuda_cpy_fn_ptr = nullptr; if(cuda_graph.count == 0){ if (ggml_cuda_info().devices[cuda_ctx->device].cc < 800){ cuda_graph.disable_due_to_gpu_arch=true; } } // Disable CUDA graphs in presence of env var, old GPU or use-case which is changing too rapidly. // Also disable for multi-gpu for now. TO DO investigate if(disable_cuda_graphs || cuda_graph.disable_due_to_gpu_arch || cuda_graph.disable_due_to_too_many_updates || ggml_backend_cuda_get_device_count() > 1){ use_cuda_graph = false; } if(use_cuda_graph) { if(cuda_graph.instance == nullptr) cuda_graph_update_required=true; // Loop over nodes in GGML graph to determine if CUDA graph update is required // and store properties to allow this comparison for the next token for (int i = 0; i < cgraph->n_nodes; i++) { bool has_matching_properties = true; if(!cuda_graph_update_required) { has_matching_properties = ggml_graph_node_has_matching_properties(cgraph->nodes[i], &cuda_graph.ggml_graph_properties[i]); } if(!has_matching_properties) cuda_graph_update_required = true; set_ggml_graph_node_properties(cgraph->nodes[i], &cuda_graph.ggml_graph_properties[i]); } // Loop over nodes in GGML graph to obtain info needed for CUDA graph int k=0; for (int i = 0; i < cgraph->n_nodes; i++) { ggml_tensor * node = cgraph->nodes[i]; if(node->op == GGML_OP_SOFT_MAX) { if(node->src[1]->ne[1] > 1){ use_cuda_graph = false; // disable CUDA graphs for batch size > 1 for now. TO DO investigate } } if(node->op == GGML_OP_CPY) { // store the copy op parameter which changes with each token. updated_kernel_arg[k++]=(char **) &(node->src[1]->data); if(ggml_cuda_cpy_fn_ptr == nullptr){ // store a pointer to the copy op CUDA kernel to identify it later ggml_cuda_cpy_fn_ptr = ggml_cuda_cpy_fn(node->src[0], node->src[1]); } } } // Disable CUDA graphs (from the next token) if the use-case is demanding too many consecutive graph updates. if(cuda_graph_update_required) { cuda_graph.number_consecutive_updates++; } else { cuda_graph.number_consecutive_updates = 0; } if (cuda_graph.number_consecutive_updates >= 4) cuda_graph.disable_due_to_too_many_updates = true; } if(use_cuda_graph && cuda_graph_update_required) { // Start CUDA graph capture CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeGlobal)); } #else bool use_cuda_graph = false; bool cuda_graph_update_required = false; #endif // USE_CUDA_GRAPH // Only perform the graph execution if CUDA graphs are not enabled, or we are capturing the graph. // With the use of CUDA graphs, the execution will be performed by the graph launch. if(!use_cuda_graph || cuda_graph_update_required) { //temporarily avoid indenting here to make code review easier for (int i = 0; i < cgraph->n_nodes; i++) { ggml_tensor * node = cgraph->nodes[i]; if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) { continue; } #ifndef NDEBUG assert(node->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device)); for (int j = 0; j < GGML_MAX_SRC; j++) { if (node->src[j] != nullptr) { assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) || ggml_backend_buffer_is_cuda_split(node->src[j]->buffer)); } } #endif bool ok = ggml_cuda_compute_forward(*cuda_ctx, node); if (!ok) { fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op)); } GGML_ASSERT(ok); } } #ifdef USE_CUDA_GRAPH if(use_cuda_graph && (cuda_graph_update_required)) { // End CUDA graph capture CUDA_CHECK(cudaStreamEndCapture(cuda_ctx->stream(), &cuda_graph.graph)); } if(use_cuda_graph){ if(cuda_graph.instance == nullptr) { // Create executable graph from captured graph. CUDA_CHECK(cudaGraphInstantiate(&cuda_graph.instance, cuda_graph.graph, NULL, NULL, 0)); } // Perform update to graph (if required for this token), and change copy parameter (required for every token) if(cuda_graph_update_required) { // Extract nodes from graph if(cuda_graph.num_nodes == 0) { // First call with null argument gets number of nodes in graph CUDA_CHECK(cudaGraphGetNodes(cuda_graph.graph, nullptr, &cuda_graph.num_nodes)); } // Subsequent call with non-null argument gets nodes CUDA_CHECK(cudaGraphGetNodes(cuda_graph.graph, cuda_graph.nodes, &cuda_graph.num_nodes)); // Loop over nodes, and extract kernel parameters from each node for(size_t i=0; istream())); } cuda_graph.count++; #endif // USE_CUDA_GRAPH return GGML_STATUS_SUCCESS; } GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, const ggml_tensor * op) { switch (op->op) { case GGML_OP_UNARY: switch (ggml_get_unary_op(op)) { case GGML_UNARY_OP_GELU: case GGML_UNARY_OP_SILU: case GGML_UNARY_OP_RELU: case GGML_UNARY_OP_HARDSIGMOID: case GGML_UNARY_OP_HARDSWISH: case GGML_UNARY_OP_GELU_QUICK: case GGML_UNARY_OP_TANH: return true; default: return false; } break; case GGML_OP_MUL_MAT: case GGML_OP_MUL_MAT_ID: { struct ggml_tensor * a; struct ggml_tensor * b; if (op->op == GGML_OP_MUL_MAT) { a = op->src[0]; b = op->src[1]; } else { a = op->src[2]; b = op->src[1]; } if (a->ne[3] != b->ne[3]) { return false; } ggml_type a_type = a->type; if (a_type == GGML_TYPE_IQ2_XXS || a_type == GGML_TYPE_IQ2_XS || a_type == GGML_TYPE_IQ3_XXS || a_type == GGML_TYPE_IQ1_S || a_type == GGML_TYPE_IQ4_NL || a_type == GGML_TYPE_IQ3_S || a_type == GGML_TYPE_IQ1_M || a_type == GGML_TYPE_IQ2_S || a_type == GGML_TYPE_IQ4_XS) { if (b->ne[1] == 1 && ggml_nrows(b) > 1) { return false; } } return true; } break; case GGML_OP_GET_ROWS: { switch (op->src[0]->type) { case GGML_TYPE_F16: case GGML_TYPE_F32: case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: return true; default: return false; } } break; case GGML_OP_CPY: { ggml_type src0_type = op->src[0]->type; ggml_type src1_type = op->src[1]->type; if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) { return true; } if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) { return true; } if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q8_0) { return true; } if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_0) { return true; } if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_1) { return true; } if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q5_0) { return true; } if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q5_1) { return true; } if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_IQ4_NL) { return true; } if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) { return true; } if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) { return true; } return false; } break; case GGML_OP_DUP: case GGML_OP_REPEAT: case GGML_OP_CONCAT: { ggml_type src0_type = op->src[0]->type; return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16; } break; case GGML_OP_NONE: case GGML_OP_RESHAPE: case GGML_OP_VIEW: case GGML_OP_PERMUTE: case GGML_OP_TRANSPOSE: case GGML_OP_NORM: case GGML_OP_ADD: case GGML_OP_MUL: case GGML_OP_DIV: case GGML_OP_RMS_NORM: case GGML_OP_SCALE: case GGML_OP_SQR: case GGML_OP_CLAMP: case GGML_OP_CONT: case GGML_OP_DIAG_MASK_INF: case GGML_OP_SOFT_MAX: case GGML_OP_ROPE: case GGML_OP_ALIBI: case GGML_OP_IM2COL: case GGML_OP_POOL_2D: case GGML_OP_SUM_ROWS: case GGML_OP_ARGSORT: case GGML_OP_ACC: case GGML_OP_GROUP_NORM: case GGML_OP_UPSCALE: case GGML_OP_PAD: case GGML_OP_ARANGE: case GGML_OP_TIMESTEP_EMBEDDING: case GGML_OP_LEAKY_RELU: return true; default: return false; } GGML_UNUSED(backend); } GGML_CALL static bool ggml_backend_cuda_offload_op(ggml_backend_t backend, const ggml_tensor * op) { const int min_batch_size = 32; return (op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS) || (op->ne[2] >= min_batch_size && op->op == GGML_OP_MUL_MAT_ID); GGML_UNUSED(backend); } static ggml_backend_event_t ggml_backend_cuda_event_new(ggml_backend_t backend) { #ifdef GGML_CUDA_NO_PEER_COPY return nullptr; #else ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; ggml_cuda_set_device(cuda_ctx->device); cudaEvent_t event; CUDA_CHECK(cudaEventCreateWithFlags(&event, cudaEventDisableTiming)); return new ggml_backend_event { /* .backend = */ backend, /* .context = */ event, }; #endif } static void ggml_backend_cuda_event_free(ggml_backend_event_t event) { CUDA_CHECK(cudaEventDestroy((cudaEvent_t)event->context)); delete event; } static void ggml_backend_cuda_event_record(ggml_backend_event_t event) { ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)event->backend->context; CUDA_CHECK(cudaEventRecord((cudaEvent_t)event->context, cuda_ctx->stream())); } static void ggml_backend_cuda_event_wait(ggml_backend_t backend, ggml_backend_event_t event) { ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; if (ggml_backend_is_cuda(event->backend)) { CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx->stream(), (cudaEvent_t)event->context, 0)); } else { #if 0 // untested auto wait_fn = [](void * user_data) { ggml_backend_event_t event = (ggml_backend_event_t)user_data; ggml_backend_event_synchronize(event); }; CUDA_CHECK(cudaLaunchHostFunc(cuda_ctx->stream(), wait_fn, event)); #endif GGML_ASSERT(false); } } static void ggml_backend_cuda_event_synchronize(ggml_backend_event_t event) { CUDA_CHECK(cudaEventSynchronize((cudaEvent_t)event->context)); } static ggml_backend_i ggml_backend_cuda_interface = { /* .get_name = */ ggml_backend_cuda_name, /* .free = */ ggml_backend_cuda_free, /* .get_default_buffer_type = */ ggml_backend_cuda_get_default_buffer_type, /* .set_tensor_async = */ ggml_backend_cuda_set_tensor_async, /* .get_tensor_async = */ ggml_backend_cuda_get_tensor_async, /* .cpy_tensor_async = */ ggml_backend_cuda_cpy_tensor_async, /* .synchronize = */ ggml_backend_cuda_synchronize, /* .graph_plan_create = */ NULL, /* .graph_plan_free = */ NULL, /* .graph_plan_compute = */ NULL, /* .graph_compute = */ ggml_backend_cuda_graph_compute, /* .supports_op = */ ggml_backend_cuda_supports_op, /* .offload_op = */ ggml_backend_cuda_offload_op, /* .event_new = */ ggml_backend_cuda_event_new, /* .event_free = */ ggml_backend_cuda_event_free, /* .event_record = */ ggml_backend_cuda_event_record, /* .event_wait = */ ggml_backend_cuda_event_wait, /* .event_synchronize = */ ggml_backend_cuda_event_synchronize, }; static ggml_guid_t ggml_backend_cuda_guid() { static ggml_guid guid = { 0x2c, 0xdd, 0xe8, 0x1c, 0x65, 0xb3, 0x65, 0x73, 0x6a, 0x12, 0x88, 0x61, 0x1c, 0xc9, 0xdc, 0x25 }; return &guid; } GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device) { if (device < 0 || device >= ggml_backend_cuda_get_device_count()) { fprintf(stderr, "%s: error: invalid device %d\n", __func__, device); return nullptr; } ggml_backend_cuda_context * ctx = new ggml_backend_cuda_context(device); if (ctx == nullptr) { fprintf(stderr, "%s: error: failed to allocate context\n", __func__); return nullptr; } ggml_backend_t cuda_backend = new ggml_backend { /* .guid = */ ggml_backend_cuda_guid(), /* .interface = */ ggml_backend_cuda_interface, /* .context = */ ctx }; return cuda_backend; } GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend) { return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cuda_guid()); } GGML_CALL int ggml_backend_cuda_get_device_count() { return ggml_cuda_info().device_count; } GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size) { cudaDeviceProp prop; CUDA_CHECK(cudaGetDeviceProperties(&prop, device)); snprintf(description, description_size, "%s", prop.name); } GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total) { ggml_cuda_set_device(device); CUDA_CHECK(cudaMemGetInfo(free, total)); } GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size) { if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) { return false; } #if CUDART_VERSION >= 11100 cudaError_t err = cudaHostRegister(buffer, size, cudaHostRegisterPortable | cudaHostRegisterReadOnly); if (err != cudaSuccess) { // clear the error cudaGetLastError(); fprintf(stderr, "%s: warning: failed to register %.2f MiB of pinned memory: %s\n", __func__, size/1024.0/1024.0, cudaGetErrorString(err)); return false; } return true; #else return false; #endif } GGML_CALL void ggml_backend_cuda_unregister_host_buffer(void * buffer) { if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) { return; } cudaError_t err = cudaHostUnregister(buffer); if (err != cudaSuccess) { // clear the error cudaGetLastError(); } } // backend registry GGML_CALL static ggml_backend_t ggml_backend_reg_cuda_init(const char * params, void * user_data) { ggml_backend_t cuda_backend = ggml_backend_cuda_init((int) (intptr_t) user_data); return cuda_backend; GGML_UNUSED(params); } extern "C" GGML_CALL int ggml_backend_cuda_reg_devices(); GGML_CALL int ggml_backend_cuda_reg_devices() { int device_count = ggml_backend_cuda_get_device_count(); //int device_count = 1; // DEBUG: some tools require delaying CUDA initialization for (int i = 0; i < device_count; i++) { char name[128]; snprintf(name, sizeof(name), "%s%d", GGML_CUDA_NAME, i); ggml_backend_register(name, ggml_backend_reg_cuda_init, ggml_backend_cuda_buffer_type(i), (void *) (intptr_t) i); } return device_count; }