#pragma once #include "ggml.h" #include "ggml-alloc.h" #ifdef GGML_BACKEND_SHARED # if defined(_WIN32) && !defined(__MINGW32__) # ifdef GGML_BACKEND_BUILD # define GGML_BACKEND_API __declspec(dllexport) extern # else # define GGML_BACKEND_API __declspec(dllimport) extern # endif # else # define GGML_BACKEND_API __attribute__ ((visibility ("default"))) extern # endif #else # define GGML_BACKEND_API extern #endif #ifdef __cplusplus extern "C" { #endif typedef struct ggml_backend_buffer_type * ggml_backend_buffer_type_t; typedef struct ggml_backend_buffer * ggml_backend_buffer_t; typedef struct ggml_backend_event * ggml_backend_event_t; typedef struct ggml_backend * ggml_backend_t; typedef void * ggml_backend_graph_plan_t; typedef struct ggml_backend_reg * ggml_backend_reg_t; typedef struct ggml_backend_device * ggml_backend_dev_t; // // Backend buffer type // GGML_API const char * ggml_backend_buft_name (ggml_backend_buffer_type_t buft); GGML_API ggml_backend_buffer_t ggml_backend_buft_alloc_buffer (ggml_backend_buffer_type_t buft, size_t size); GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft); GGML_API size_t ggml_backend_buft_get_max_size (ggml_backend_buffer_type_t buft); GGML_API size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor); GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft); GGML_API ggml_backend_dev_t ggml_backend_buft_get_device (ggml_backend_buffer_type_t buft); // // Backend buffer // enum ggml_backend_buffer_usage { GGML_BACKEND_BUFFER_USAGE_ANY = 0, GGML_BACKEND_BUFFER_USAGE_WEIGHTS = 1, GGML_BACKEND_BUFFER_USAGE_COMPUTE = 2, }; GGML_API const char * ggml_backend_buffer_name (ggml_backend_buffer_t buffer); GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer); GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer); GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer); GGML_API void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer); GGML_API size_t ggml_backend_buffer_get_max_size (ggml_backend_buffer_t buffer); GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value); GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer); GGML_API void ggml_backend_buffer_set_usage (ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage); GGML_API enum ggml_backend_buffer_usage ggml_backend_buffer_get_usage (ggml_backend_buffer_t buffer); GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_get_type (ggml_backend_buffer_t buffer); GGML_API void ggml_backend_buffer_reset (ggml_backend_buffer_t buffer); // tensor copy between different backends GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst); // // Backend (stream) // GGML_API ggml_guid_t ggml_backend_guid(ggml_backend_t backend); GGML_API const char * ggml_backend_name(ggml_backend_t backend); GGML_API void ggml_backend_free(ggml_backend_t backend); GGML_API ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend); GGML_API ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size); GGML_API size_t ggml_backend_get_alignment(ggml_backend_t backend); GGML_API size_t ggml_backend_get_max_size(ggml_backend_t backend); GGML_API void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); GGML_API void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); // "offset" refers to the offset in tensor->data for setting/getting data GGML_API void ggml_backend_tensor_set( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); GGML_API void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); GGML_API void ggml_backend_tensor_memset( struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size); GGML_API void ggml_backend_synchronize(ggml_backend_t backend); GGML_API ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph); GGML_API void ggml_backend_graph_plan_free (ggml_backend_t backend, ggml_backend_graph_plan_t plan); GGML_API enum ggml_status ggml_backend_graph_plan_compute (ggml_backend_t backend, ggml_backend_graph_plan_t plan); GGML_API enum ggml_status ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph); GGML_API enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph); // NOTE: will be removed, use device version instead GGML_API bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op); GGML_API bool ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft); GGML_API bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op); // asynchronous copy // the copy is performed after all the currently queued operations in backend_src // backend_dst will wait for the copy to complete before performing other operations // automatic fallback to sync copy if async is not supported GGML_API void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst); GGML_API ggml_backend_dev_t ggml_backend_get_device(ggml_backend_t backend); // // Events // GGML_API ggml_backend_event_t ggml_backend_event_new(ggml_backend_dev_t device); GGML_API void ggml_backend_event_free(ggml_backend_event_t event); GGML_API void ggml_backend_event_record(ggml_backend_event_t event, ggml_backend_t backend); GGML_API void ggml_backend_event_synchronize(ggml_backend_event_t event); GGML_API void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event); // // Backend device // enum ggml_backend_dev_type { // CPU device using system memory GGML_BACKEND_DEVICE_TYPE_CPU, // GPU device using dedicated memory GGML_BACKEND_DEVICE_TYPE_GPU, // accelerator devices intended to be used together with the CPU backend (e.g. BLAS or AMX) GGML_BACKEND_DEVICE_TYPE_ACCEL }; // functionality supported by the device struct ggml_backend_dev_caps { // asynchronous operations bool async; // pinned host buffer bool host_buffer; // creating buffers from host ptr bool buffer_from_host_ptr; // event synchronization bool events; }; // all the device properties struct ggml_backend_dev_props { const char * name; const char * description; size_t memory_free; size_t memory_total; enum ggml_backend_dev_type type; struct ggml_backend_dev_caps caps; }; GGML_API const char * ggml_backend_dev_name(ggml_backend_dev_t device); GGML_API const char * ggml_backend_dev_description(ggml_backend_dev_t device); GGML_API void ggml_backend_dev_memory(ggml_backend_dev_t device, size_t * free, size_t * total); GGML_API enum ggml_backend_dev_type ggml_backend_dev_type(ggml_backend_dev_t device); GGML_API void ggml_backend_dev_get_props(ggml_backend_dev_t device, struct ggml_backend_dev_props * props); GGML_API ggml_backend_reg_t ggml_backend_dev_backend_reg(ggml_backend_dev_t device); GGML_API ggml_backend_t ggml_backend_dev_init(ggml_backend_dev_t device, const char * params); GGML_API ggml_backend_buffer_type_t ggml_backend_dev_buffer_type(ggml_backend_dev_t device); GGML_API ggml_backend_buffer_type_t ggml_backend_dev_host_buffer_type(ggml_backend_dev_t device); GGML_API ggml_backend_buffer_t ggml_backend_dev_buffer_from_host_ptr(ggml_backend_dev_t device, void * ptr, size_t size, size_t max_tensor_size); GGML_API bool ggml_backend_dev_supports_op(ggml_backend_dev_t device, const struct ggml_tensor * op); GGML_API bool ggml_backend_dev_supports_buft(ggml_backend_dev_t device, ggml_backend_buffer_type_t buft); GGML_API bool ggml_backend_dev_offload_op(ggml_backend_dev_t device, const struct ggml_tensor * op); // // Backend (reg) // GGML_API const char * ggml_backend_reg_name(ggml_backend_reg_t reg); GGML_API size_t ggml_backend_reg_dev_count(ggml_backend_reg_t reg); GGML_API ggml_backend_dev_t ggml_backend_reg_dev_get(ggml_backend_reg_t reg, size_t index); GGML_API void * ggml_backend_reg_get_proc_address(ggml_backend_reg_t reg, const char * name); // Common functions that may be obtained using ggml_backend_reg_get_proc_address // Split buffer type for tensor parallelism typedef ggml_backend_buffer_type_t (*ggml_backend_split_buffer_type_t)(int main_device, const float * tensor_split); // Set the number of threads for the backend typedef void (*ggml_backend_set_n_threads_t)(ggml_backend_t backend, int n_threads); // Get additional buffer types provided by the device (returns a NULL-terminated array) typedef ggml_backend_buffer_type_t * (*ggml_backend_dev_get_extra_bufts_t)(ggml_backend_dev_t device); // Set the abort callback for the backend typedef void (*ggml_backend_set_abort_callback_t)(ggml_backend_t backend, ggml_abort_callback abort_callback, void * abort_callback_data); // Get a list of feature flags supported by the backend (returns a NULL-terminated array) struct ggml_backend_feature { const char * name; const char * value; }; typedef struct ggml_backend_feature * (*ggml_backend_get_features_t)(ggml_backend_reg_t reg); // // Backend registry // // Backend (reg) enumeration GGML_API size_t ggml_backend_reg_count(void); GGML_API ggml_backend_reg_t ggml_backend_reg_get(size_t index); GGML_API ggml_backend_reg_t ggml_backend_reg_by_name(const char * name); // Device enumeration GGML_API size_t ggml_backend_dev_count(void); GGML_API ggml_backend_dev_t ggml_backend_dev_get(size_t index); GGML_API ggml_backend_dev_t ggml_backend_dev_by_name(const char * name); GGML_API ggml_backend_dev_t ggml_backend_dev_by_type(enum ggml_backend_dev_type type); // Direct backend (stream) initialization // = ggml_backend_dev_init(ggml_backend_dev_by_name(name), params) GGML_API ggml_backend_t ggml_backend_init_by_name(const char * name, const char * params); // = ggml_backend_dev_init(ggml_backend_dev_by_type(type), params) GGML_API ggml_backend_t ggml_backend_init_by_type(enum ggml_backend_dev_type type, const char * params); // = ggml_backend_dev_init(ggml_backend_dev_by_type(GPU) OR ggml_backend_dev_by_type(CPU), NULL) GGML_API ggml_backend_t ggml_backend_init_best(void); // Load a backend from a dynamic library GGML_API ggml_backend_reg_t ggml_backend_load(const char * path); // Load all known backends from dynamic libraries GGML_API void ggml_backend_load_all(void); // // Backend scheduler // // The backend scheduler allows for multiple backend devices to be used together // Handles compute buffer allocation, assignment of tensors to backends, and copying of tensors between backends // The backends are selected based on: // - the backend that supports the operation // - the location of the pre-allocated tensors (e.g. the weights) /* Example usage: // operations that use tensors allocated in a buffer with USAGE_WEIGHTS will be assigned // preferrably to run on the same backend as the buffer ggml_backend_buffer_set_usage(buf_weights, GGML_BACKEND_BUFFER_USAGE_WEIGHTS); sched = ggml_backend_sched_new({backend_gpu, backend_gpu2, backend_cpu}, NULL, num_backends, GGML_DEFAULT_GRAPH_SIZE, false); // initialize buffers from a max size graph (optional) reserve_graph = build_graph(sched, max_batch_size); // manually assign nodes to a backend (optional, should not be needed in most cases) struct ggml_tensor * node = ggml_mul_mat(ctx, ...); ggml_backend_sched_set_tensor_backend(sched, node, backend_gpu); ggml_backend_sched_reserve(sched, reserve_graph); // compute graph = build_graph(sched); // the graph and its tensors are single-use in terms of allocation, multi-use in terms of computation for (int i = 0; i < 10; ++i) { ggml_backend_sched_graph_compute(sched, graph); // on the first iteration the graph is allocated automatically } // if there are graph inputs: graph = build_graph(sched); // get a new graph that is not allocated (the metadata for the old graph is freed once ggml_free is called) ggml_backend_sched_reset(sched); // clear the allocation of the previous graph ggml_backend_sched_alloc_graph(sched, graph); // explicitly allocate the new graph but do not execute it ggml_backend_tensor_set(input_tensor, ...); // copy data to the newly allocated graph tensors ggml_backend_sched_graph_compute(sched, graph); // execute the graph // as an alternative to the above it is also possible to assign the inputs to a dedicated context and // allocate them statically via ggml_backend_alloc_ctx_tensors } */ typedef struct ggml_backend_sched * ggml_backend_sched_t; // Evaluation callback for each node in the graph (set with ggml_backend_sched_set_eval_callback) // when ask == true, the scheduler wants to know if the user wants to observe this node // this allows the scheduler to batch nodes together in order to evaluate them in a single call // // when ask == false, the scheduler is passing the node tensor to the user for observation // if the user returns false, the scheduler will cancel the graph compute // typedef bool (*ggml_backend_sched_eval_callback)(struct ggml_tensor * t, bool ask, void * user_data); // Initialize a backend scheduler, backends with low index are given priority over backends with high index GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size, bool parallel); GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched); // Initialize backend buffers from a measure graph GGML_API bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph); // returns success GGML_API int ggml_backend_sched_get_n_backends(ggml_backend_sched_t sched); GGML_API ggml_backend_t ggml_backend_sched_get_backend(ggml_backend_sched_t sched, int i); // Get the number of splits of the last graph GGML_API int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched); GGML_API int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched); GGML_API size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend); GGML_API void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend); GGML_API ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node); // Allocate and compute graph on the backend scheduler GGML_API bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph); // returns success GGML_API enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph); GGML_API enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph); GGML_API void ggml_backend_sched_synchronize(ggml_backend_sched_t sched); // Reset all assignments and allocators - must be called before changing the node backends or allocating a new graph. // This in effect deallocates all tensors that were previously allocated and leaves them with dangling pointers. // The correct way to use this API is to discard the deallocated tensors and create new ones. GGML_API void ggml_backend_sched_reset(ggml_backend_sched_t sched); // Set a callback to be called for each resulting node during graph compute GGML_API void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data); // // Utils // struct ggml_backend_graph_copy { ggml_backend_buffer_t buffer; struct ggml_context * ctx_allocated; struct ggml_context * ctx_unallocated; struct ggml_cgraph * graph; }; // Copy a graph to a different backend GGML_API struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph); GGML_API void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy); typedef bool (*ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data); // Compare the output of two backends GGML_API bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data); // Tensor initialization GGML_API void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr); GGML_API void ggml_backend_view_init(struct ggml_tensor * tensor); // CPU buffer types are always available GGML_API ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size); GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void); #ifdef __cplusplus } #endif