#pragma once #include "ggml.h" #include "ggml-backend.h" #ifdef GGML_USE_HIPBLAS #define GGML_CUDA_NAME "ROCm" #define GGML_CUBLAS_NAME "hipBLAS" #else #define GGML_CUDA_NAME "CUDA" #define GGML_CUBLAS_NAME "cuBLAS" #endif #ifdef __cplusplus extern "C" { #endif #define GGML_CUDA_MAX_DEVICES 16 // Always success. To check if CUDA is actually loaded, use `ggml_cublas_loaded`. GGML_API void ggml_init_cublas(void); // Returns `true` if there are available CUDA devices and cublas loads successfully; otherwise, it returns `false`. GGML_API bool ggml_cublas_loaded(void); GGML_API void * ggml_cuda_host_malloc(size_t size); GGML_API void ggml_cuda_host_free(void * ptr); GGML_API bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); GGML_API bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor); GGML_API int ggml_cuda_get_device_count(void); GGML_API void ggml_cuda_get_device_description(int device, char * description, size_t description_size); // backend API GGML_API ggml_backend_t ggml_backend_cuda_init(int device); GGML_API bool ggml_backend_is_cuda(ggml_backend_t backend); GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device); // split tensor buffer that splits matrices by rows across multiple devices GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split); // pinned host buffer for use with the CPU backend for faster copies between CPU and GPU GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void); GGML_API int ggml_backend_cuda_get_device_count(void); GGML_API void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size); GGML_API void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total); #ifdef __cplusplus } #endif