#include "utils.h" #include "ggml.h" #include "llama.h" #include #include #include #include #include #include #include #include #include #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) #include #include #elif defined (_WIN32) #include #endif #if defined (_WIN32) #pragma comment(lib,"kernel32.lib") extern "C" __declspec(dllimport) void* __stdcall GetStdHandle(unsigned long nStdHandle); extern "C" __declspec(dllimport) int __stdcall GetConsoleMode(void* hConsoleHandle, unsigned long* lpMode); extern "C" __declspec(dllimport) int __stdcall SetConsoleMode(void* hConsoleHandle, unsigned long dwMode); #endif #define ANSI_COLOR_RED "\x1b[31m" #define ANSI_COLOR_GREEN "\x1b[32m" #define ANSI_COLOR_YELLOW "\x1b[33m" #define ANSI_COLOR_BLUE "\x1b[34m" #define ANSI_COLOR_MAGENTA "\x1b[35m" #define ANSI_COLOR_CYAN "\x1b[36m" #define ANSI_COLOR_RESET "\x1b[0m" #define ANSI_BOLD "\x1b[1m" /* Keep track of current color of output, and emit ANSI code if it changes. */ enum console_state { CONSOLE_STATE_DEFAULT=0, CONSOLE_STATE_PROMPT, CONSOLE_STATE_USER_INPUT }; static console_state con_st = CONSOLE_STATE_DEFAULT; static bool con_use_color = false; void set_console_state(console_state new_st) { if (!con_use_color) return; // only emit color code if state changed if (new_st != con_st) { con_st = new_st; switch(con_st) { case CONSOLE_STATE_DEFAULT: printf(ANSI_COLOR_RESET); return; case CONSOLE_STATE_PROMPT: printf(ANSI_COLOR_YELLOW); return; case CONSOLE_STATE_USER_INPUT: printf(ANSI_BOLD ANSI_COLOR_GREEN); return; } } } std::vector softmax(const std::vector& logits) { std::vector probs(logits.size()); float max_logit = logits[0]; for (float v : logits) max_logit = std::max(max_logit, v); double sum_exp = 0.0; for (size_t i = 0; i < logits.size(); i++) { // Subtract the maximum logit value from the current logit value for numerical stability float logit = logits[i] - max_logit; double exp_logit = std::exp(logit); sum_exp += exp_logit; probs[i] = exp_logit; } for (size_t i = 0; i < probs.size(); i++) probs[i] /= sum_exp; return probs; } void perplexity(llama_context * ctx, const gpt_params & params) { // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research // Run `./main --perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw` // Output: `perplexity: 13.5106 [114/114]` auto tokens = ::llama_tokenize(ctx, params.prompt, true); int count = 0; double nll = 0.0; int seq_count = tokens.size() / params.n_ctx; fprintf(stderr, "%s : calculating perplexity over %d chunks\n", __func__, seq_count); for (int i = 0; i < seq_count; ++i) { int start = i * params.n_ctx; int end = start + params.n_ctx - 1; std::vector embd(tokens.begin() + start, tokens.begin() + end); auto start_t = std::chrono::high_resolution_clock::now(); if (llama_eval(ctx, embd.data(), embd.size(), 0, params.n_threads)) { fprintf(stderr, "%s : failed to eval\n", __func__); return; } auto end_t = std::chrono::high_resolution_clock::now(); if (i == 0) { double seconds = std::chrono::duration(end_t - start_t).count(); printf("%.2f seconds per pass - ETA %.2f hours\n", seconds, (seconds * seq_count) / (60.0*60.0)); } // We get the logits for all the tokens in the context window (params.n_ctx) // from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity, // calculate the perplexity over the last half the window (so the model always has // some context to predict the token). // // We rely on the fact that attention in the forward pass only looks at previous // tokens here, so the logits returned for each token are an accurate representation // of what the model would have predicted at that point. // // Example, we have a context window of 512, we will compute perplexity for each of the // last 256 tokens. Then, we split the input up into context window size chunks to // process the entire prompt. auto logits = llama_get_logits(ctx); for (int j = params.n_ctx / 2; j < params.n_ctx - 1; ++j) { // Calculate probability of next token, given the previous ones. int n_vocab = llama_n_vocab(ctx); std::vector tok_logits( logits + j * n_vocab, logits + (j + 1) * n_vocab); double prob = softmax(tok_logits)[tokens[start + j + 1]]; nll += -std::log(prob); ++count; } // perplexity is e^(average negative log-likelihood) printf("[%d]%.4lf,", i + 1, std::exp(nll / count)); fflush(stdout); } printf("\n"); } static bool is_interacting = false; #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32) void sigint_handler(int signo) { set_console_state(CONSOLE_STATE_DEFAULT); printf("\n"); // this also force flush stdout. if (signo == SIGINT) { if (!is_interacting) { is_interacting=true; } else { _exit(130); } } } #endif int run(int argc, char ** argv) { // has to be called once at the start of the program to init ggml stuff ggml_time_init(); gpt_params params; params.model = "models/llama-7B/ggml-model.bin"; if (gpt_params_parse(argc, argv, params) == false) { return 1; } if (params.n_ctx > 2048) { fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);" "expect poor results\n", __func__, params.n_ctx); } if (params.seed <= 0) { params.seed = time(NULL); } fprintf(stderr, "%s: seed = %d\n", __func__, params.seed); std::mt19937 rng(params.seed); if (params.random_prompt) { params.prompt = gpt_random_prompt(rng); } // save choice to use color for later // (note for later: this is a slightly awkward choice) con_use_color = params.use_color; // params.prompt = R"(// this function checks if the number n is prime //bool is_prime(int n) {)"; llama_context * ctx; // load the model { auto lparams = llama_context_default_params(); lparams.n_ctx = params.n_ctx; lparams.n_parts = params.n_parts; lparams.seed = params.seed; lparams.f16_kv = params.memory_f16; lparams.logits_all = params.perplexity; ctx = llama_init_from_file(params.model.c_str(), lparams); if (ctx == NULL) { fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str()); return 1; } } // print system information { fprintf(stderr, "\n"); fprintf(stderr, "system_info: n_threads = %d / %d | %s\n", params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info()); } // determine the required inference memory per token: // TODO: better way to do that { const std::vector tmp = { 0, 1, 2, 3 }; llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads); } if (params.perplexity) { perplexity(ctx, params); exit(0); } int n_past = 0; // Add a space in front of the first character to match OG llama tokenizer behavior params.prompt.insert(0, 1, ' '); // tokenize the prompt auto embd_inp = ::llama_tokenize(ctx, params.prompt, true); const int n_ctx = llama_n_ctx(ctx); params.n_predict = std::min(params.n_predict, n_ctx - (int) embd_inp.size()); // prefix & suffix for instruct mode const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", true); const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false); // in instruct mode, we inject a prefix and a suffix to each input by the user if (params.instruct) { params.interactive = true; params.antiprompt.push_back("### Instruction:\n\n"); } // enable interactive mode if reverse prompt is specified if (params.antiprompt.size() != 0) { params.interactive = true; } if (params.interactive_start) { params.interactive = true; } fprintf(stderr, "\n"); fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str()); fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size()); for (int i = 0; i < (int) embd_inp.size(); i++) { fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i])); } fprintf(stderr, "\n"); if (params.interactive) { #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) struct sigaction sigint_action; sigint_action.sa_handler = sigint_handler; sigemptyset (&sigint_action.sa_mask); sigint_action.sa_flags = 0; sigaction(SIGINT, &sigint_action, NULL); #elif defined (_WIN32) signal(SIGINT, sigint_handler); #endif fprintf(stderr, "%s: interactive mode on.\n", __func__); if(params.antiprompt.size()) { for (auto antiprompt : params.antiprompt) { fprintf(stderr, "Reverse prompt: '%s'\n", antiprompt.c_str()); } } } fprintf(stderr, "sampling parameters: temp = %f, top_k = %d, top_p = %f, repeat_last_n = %i, repeat_penalty = %f\n", params.temp, params.top_k, params.top_p, params.repeat_last_n, params.repeat_penalty); fprintf(stderr, "\n\n"); std::vector embd; int last_n_size = params.repeat_last_n; std::vector last_n_tokens(last_n_size); std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0); if (params.interactive) { fprintf(stderr, "== Running in interactive mode. ==\n" #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32) " - Press Ctrl+C to interject at any time.\n" #endif " - Press Return to return control to LLaMa.\n" " - If you want to submit another line, end your input in '\\'.\n\n"); is_interacting = params.interactive_start; } int input_consumed = 0; bool input_noecho = false; int remaining_tokens = params.n_predict; #if defined (_WIN32) if (params.use_color) { // Enable ANSI colors on Windows 10+ unsigned long dwMode = 0; void* hConOut = GetStdHandle((unsigned long)-11); // STD_OUTPUT_HANDLE (-11) if (hConOut && hConOut != (void*)-1 && GetConsoleMode(hConOut, &dwMode) && !(dwMode & 0x4)) { SetConsoleMode(hConOut, dwMode | 0x4); // ENABLE_VIRTUAL_TERMINAL_PROCESSING (0x4) } } #endif // the first thing we will do is to output the prompt, so set color accordingly set_console_state(CONSOLE_STATE_PROMPT); while (remaining_tokens > 0 || params.interactive) { // predict if (embd.size() > 0) { if (llama_eval(ctx, embd.data(), embd.size(), n_past, params.n_threads)) { fprintf(stderr, "%s : failed to eval\n", __func__); return 1; } } n_past += embd.size(); embd.clear(); if ((int) embd_inp.size() <= input_consumed) { // out of user input, sample next token const float top_k = params.top_k; const float top_p = params.top_p; const float temp = params.temp; const float repeat_penalty = params.repeat_penalty; llama_token id = 0; { auto logits = llama_get_logits(ctx); if (params.ignore_eos) { // set the logit of the eos token to zero to avoid sampling it //logits[logits.size() - n_vocab + EOS_TOKEN_ID] = 0; // TODO: this does not work of params.logits_all == true assert(params.perplexity == false); logits[llama_token_eos()] = 0; } id = llama_sample_top_p_top_k(ctx, last_n_tokens.data(), last_n_tokens.size(), top_k, top_p, temp, repeat_penalty); last_n_tokens.erase(last_n_tokens.begin()); last_n_tokens.push_back(id); } // add it to the context embd.push_back(id); // echo this to console input_noecho = false; // decrement remaining sampling budget --remaining_tokens; } else { // some user input remains from prompt or interaction, forward it to processing while ((int) embd_inp.size() > input_consumed) { embd.push_back(embd_inp[input_consumed]); last_n_tokens.erase(last_n_tokens.begin()); last_n_tokens.push_back(embd_inp[input_consumed]); ++input_consumed; if ((int) embd.size() >= params.n_batch) { break; } } } // display text if (!input_noecho) { for (auto id : embd) { printf("%s", llama_token_to_str(ctx, id)); } fflush(stdout); } // reset color to default if we there is no pending user input if (!input_noecho && (int)embd_inp.size() == input_consumed) { set_console_state(CONSOLE_STATE_DEFAULT); } // in interactive mode, and not currently processing queued inputs; // check if we should prompt the user for more if (params.interactive && (int) embd_inp.size() <= input_consumed) { // check for reverse prompt std::string last_output; for (auto id : last_n_tokens) { last_output += llama_token_to_str(ctx, id); } // Check if each of the reverse prompts appears at the end of the output. for (std::string antiprompt : params.antiprompt) { if (last_output.find(antiprompt.c_str(), last_output.length() - antiprompt.length(), antiprompt.length()) != std::string::npos) { is_interacting = true; break; } } if (is_interacting) { // potentially set color to indicate we are taking user input set_console_state(CONSOLE_STATE_USER_INPUT); if (params.instruct) { input_consumed = embd_inp.size(); embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end()); printf("\n> "); } std::string buffer; std::string line; bool another_line = true; do { std::getline(std::cin, line); if (line.empty() || line.back() != '\\') { another_line = false; } else { line.pop_back(); // Remove the continue character } buffer += line + '\n'; // Append the line to the result } while (another_line); // done taking input, reset color set_console_state(CONSOLE_STATE_DEFAULT); auto line_inp = ::llama_tokenize(ctx, buffer, false); embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end()); if (params.instruct) { embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end()); } remaining_tokens -= line_inp.size(); input_noecho = true; // do not echo this again } is_interacting = false; } // end of text token if (embd.back() == llama_token_eos()) { if (params.interactive) { is_interacting = true; } else { fprintf(stderr, " [end of text]\n"); break; } } // In interactive mode, respect the maximum number of tokens and drop back to user input when reached. if (params.interactive && remaining_tokens <= 0) { remaining_tokens = params.n_predict; is_interacting = true; } } #if defined (_WIN32) signal(SIGINT, SIG_DFL); #endif llama_print_timings(ctx); llama_free(ctx); set_console_state(CONSOLE_STATE_DEFAULT); return 0; }