#import "ggml-metal.h" #import "ggml.h" #import #import #import #ifdef GGML_METAL_NDEBUG #define metal_printf(...) #else #define metal_printf(...) fprintf(stderr, __VA_ARGS__) #endif #define UNUSED(x) (void)(x) struct ggml_metal_buffer { const char * name; void * data; size_t size; id metal; int gpu_use_count; }; struct ggml_metal_context { float * logits; id device; id queue; id library; NSCondition *buffer_allocation_condition; dispatch_queue_t command_dispatch_queue; bool allocation_waiting; int n_buffers; struct ggml_metal_buffer buffers[GGML_METAL_MAX_BUFFERS]; // custom kernels #define GGML_METAL_DECL_KERNEL(name) \ id function_##name; \ id pipeline_##name GGML_METAL_DECL_KERNEL(add); GGML_METAL_DECL_KERNEL(mul); GGML_METAL_DECL_KERNEL(mul_row); // TODO: avoid this extra kernel, instead extend the "mul" kernel to support broadcast GGML_METAL_DECL_KERNEL(scale); GGML_METAL_DECL_KERNEL(silu); GGML_METAL_DECL_KERNEL(relu); GGML_METAL_DECL_KERNEL(gelu); GGML_METAL_DECL_KERNEL(soft_max); GGML_METAL_DECL_KERNEL(diag_mask_inf); GGML_METAL_DECL_KERNEL(get_rows_f16); GGML_METAL_DECL_KERNEL(get_rows_q4_0); GGML_METAL_DECL_KERNEL(get_rows_q4_1); GGML_METAL_DECL_KERNEL(get_rows_q2_K); GGML_METAL_DECL_KERNEL(get_rows_q3_K); GGML_METAL_DECL_KERNEL(get_rows_q4_K); GGML_METAL_DECL_KERNEL(get_rows_q5_K); GGML_METAL_DECL_KERNEL(get_rows_q6_K); GGML_METAL_DECL_KERNEL(rms_norm); GGML_METAL_DECL_KERNEL(norm); GGML_METAL_DECL_KERNEL(mul_mat_f16_f32); GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32); GGML_METAL_DECL_KERNEL(mul_mat_q4_1_f32); GGML_METAL_DECL_KERNEL(mul_mat_q2_K_f32); GGML_METAL_DECL_KERNEL(mul_mat_q3_K_f32); GGML_METAL_DECL_KERNEL(mul_mat_q4_K_f32); GGML_METAL_DECL_KERNEL(mul_mat_q5_K_f32); GGML_METAL_DECL_KERNEL(mul_mat_q6_K_f32); GGML_METAL_DECL_KERNEL(rope); GGML_METAL_DECL_KERNEL(alibi_f32); GGML_METAL_DECL_KERNEL(cpy_f32_f16); GGML_METAL_DECL_KERNEL(cpy_f32_f32); GGML_METAL_DECL_KERNEL(cpy_f16_f16); #undef GGML_METAL_DECL_KERNEL }; // MSL code // TODO: move the contents here when ready // for now it is easier to work in a separate file static NSString * const msl_library_source = @"see metal.metal"; // Here to assist with NSBundle Path Hack @interface GGMLMetalClass : NSObject @end @implementation GGMLMetalClass @end struct ggml_metal_context * ggml_metal_init(void) { fprintf(stderr, "%s: allocating\n", __func__); struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context)); memset(ctx, 0, sizeof(struct ggml_metal_context)); ctx->device = MTLCreateSystemDefaultDevice(); ctx->queue = [ctx->device newCommandQueue]; ctx->n_buffers = 0; ctx->command_dispatch_queue = dispatch_queue_create("llama.cpp.command_dispatch", DISPATCH_QUEUE_CONCURRENT); ctx->buffer_allocation_condition = [[NSCondition alloc] init]; ctx->allocation_waiting = false; // determine if we can use MPS if (MPSSupportsMTLDevice(ctx->device)) { fprintf(stderr, "%s: using MPS\n", __func__); } else { fprintf(stderr, "%s: not using MPS\n", __func__); GGML_ASSERT(false && "MPS not supported"); } #if 0 // compile from source string and show compile log { NSError * error = nil; ctx->library = [ctx->device newLibraryWithSource:msl_library_source options:nil error:&error]; if (error) { fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]); exit(1); } } #else UNUSED(msl_library_source); // read the source from "ggml-metal.metal" into a string and use newLibraryWithSource { NSError * error = nil; //NSString * path = [[NSBundle mainBundle] pathForResource:@"../../examples/metal/metal" ofType:@"metal"]; NSBundle * bundle = [NSBundle bundleForClass:[GGMLMetalClass class]]; NSString * path = [bundle pathForResource:@"ggml-metal" ofType:@"metal"]; fprintf(stderr, "%s: loading '%s'\n", __func__, [path UTF8String]); NSString * src = [NSString stringWithContentsOfFile:path encoding:NSUTF8StringEncoding error:&error]; if (error) { fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]); exit(1); } #ifdef GGML_QKK_64 MTLCompileOptions* options = [MTLCompileOptions new]; options.preprocessorMacros = @{ @"QK_K" : @(64) }; ctx->library = [ctx->device newLibraryWithSource:src options:options error:&error]; #else ctx->library = [ctx->device newLibraryWithSource:src options:nil error:&error]; #endif if (error) { fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]); exit(1); } } #endif // load kernels { #define GGML_METAL_ADD_KERNEL(name) \ ctx->function_##name = [ctx->library newFunctionWithName:@"kernel_"#name]; \ ctx->pipeline_##name = [ctx->device newComputePipelineStateWithFunction:ctx->function_##name error:nil]; \ fprintf(stderr, "%s: loaded %-32s %16p\n", __func__, "kernel_"#name, (__bridge void *) ctx->pipeline_##name); GGML_METAL_ADD_KERNEL(add); GGML_METAL_ADD_KERNEL(mul); GGML_METAL_ADD_KERNEL(mul_row); GGML_METAL_ADD_KERNEL(scale); GGML_METAL_ADD_KERNEL(silu); GGML_METAL_ADD_KERNEL(relu); GGML_METAL_ADD_KERNEL(gelu); GGML_METAL_ADD_KERNEL(soft_max); GGML_METAL_ADD_KERNEL(diag_mask_inf); GGML_METAL_ADD_KERNEL(get_rows_f16); GGML_METAL_ADD_KERNEL(get_rows_q4_0); GGML_METAL_ADD_KERNEL(get_rows_q4_1); GGML_METAL_ADD_KERNEL(get_rows_q2_K); GGML_METAL_ADD_KERNEL(get_rows_q3_K); GGML_METAL_ADD_KERNEL(get_rows_q4_K); GGML_METAL_ADD_KERNEL(get_rows_q5_K); GGML_METAL_ADD_KERNEL(get_rows_q6_K); GGML_METAL_ADD_KERNEL(rms_norm); GGML_METAL_ADD_KERNEL(norm); GGML_METAL_ADD_KERNEL(mul_mat_f16_f32); GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32); GGML_METAL_ADD_KERNEL(mul_mat_q4_1_f32); GGML_METAL_ADD_KERNEL(mul_mat_q2_K_f32); GGML_METAL_ADD_KERNEL(mul_mat_q3_K_f32); GGML_METAL_ADD_KERNEL(mul_mat_q4_K_f32); GGML_METAL_ADD_KERNEL(mul_mat_q5_K_f32); GGML_METAL_ADD_KERNEL(mul_mat_q6_K_f32); GGML_METAL_ADD_KERNEL(rope); GGML_METAL_ADD_KERNEL(alibi_f32); GGML_METAL_ADD_KERNEL(cpy_f32_f16); GGML_METAL_ADD_KERNEL(cpy_f32_f32); GGML_METAL_ADD_KERNEL(cpy_f16_f16); #undef GGML_METAL_ADD_KERNEL } fprintf(stderr, "%s: currentAllocatedSize = %8.2f MB\n", __func__, ctx->device.currentAllocatedSize / 1024.0 / 1024.0); fprintf(stderr, "%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0); fprintf(stderr, "%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false"); if (ctx->device.maxTransferRate != 0) { fprintf(stderr, "%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0); } else { fprintf(stderr, "%s: maxTransferRate = built-in GPU\n", __func__); } return ctx; } void ggml_metal_free(struct ggml_metal_context * ctx) { fprintf(stderr, "%s: deallocating\n", __func__); for (int i = 0; i < ctx->n_buffers; ++i) { [ctx->buffers[i].metal release]; } ctx->command_dispatch_queue = nil; [ctx->buffer_allocation_condition release]; ctx->buffer_allocation_condition = nil; ctx->n_buffers = 0; ctx->device = nil; ctx->library = nil; ctx->queue = nil; free(ctx); } // finds the Metal buffer that contains the tensor data on the GPU device // the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the // Metal buffer based on the host memory pointer // static int ggml_metal_get_buffer_index(struct ggml_metal_context * ctx, struct ggml_tensor * t, size_t * offs) { //fprintf(stderr, "%s: data tensor '%16s', offs_data = %8ld, offs_eval = %8ld, offs_cach = %8ld\n", __func__, t->name, offs_data, offs_eval, offs_cach); const int64_t tsize = ggml_nbytes(t); // find the view that contains the tensor fully for (int i = 0; i < ctx->n_buffers; ++i) { const int64_t ioffs = (int64_t) t->data - (int64_t) ctx->buffers[i].data; size_t size = ctx->buffers[i].size; if (ioffs >= 0 && ioffs + tsize <= (int64_t) size) { *offs = (size_t) ioffs; return i; } } fprintf(stderr, "%s: error: buffer is NULL\n", __func__); return -1; } static void ggml_metal_release_unused_buffer(struct ggml_metal_context * ctx) { // Release a buffer that no command buffers are actively using if (ctx->allocation_waiting) { for (int i = 0; i < ctx->n_buffers; ++i) { if (ctx->buffers[i].gpu_use_count == 0 && ctx->buffers[i].metal != nil) { [ctx->buffers[i].metal release]; ctx->buffers[i].metal = nil; ctx->allocation_waiting = false; break; } } } } static void ggml_metal_signal_buffer_dealloc(struct ggml_metal_context * ctx, int buf_idx) { void *data = ctx->buffers[buf_idx].data; const char * name = ctx->buffers[buf_idx].name; size_t address = (size_t) data; [ctx->buffer_allocation_condition lock]; [ctx->buffer_allocation_condition signal]; [ctx->buffer_allocation_condition unlock]; } static void ggml_metal_allocate_buffer(struct ggml_metal_context * ctx, int buf_idx) { void *data = ctx->buffers[buf_idx].data; const char * name = ctx->buffers[buf_idx].name; size_t size = ctx->buffers[buf_idx].size; size_t address = (size_t) data; ctx->buffers[buf_idx].metal = [ctx->device newBufferWithBytesNoCopy:data length:size options:MTLResourceStorageModeShared deallocator:^(void *const ptr, const NSUInteger len) { dispatch_async(ctx->command_dispatch_queue, ^{ ggml_metal_signal_buffer_dealloc(ctx, buf_idx); }); }]; } static id ggml_metal_get_buffer(struct ggml_metal_context * ctx, int buf_idx, bool wait_for_alloc) { if (buf_idx < 0) { return nil; } size_t size = ctx->buffers[buf_idx].size; while (true) { if (ctx->buffers[buf_idx].metal != nil) { return ctx->buffers[buf_idx].metal; } if (ctx->device.currentAllocatedSize + size <= ctx->device.recommendedMaxWorkingSetSize) { ggml_metal_allocate_buffer(ctx, buf_idx); return ctx->buffers[buf_idx].metal; } if (!wait_for_alloc) { return nil; } ctx->allocation_waiting = true; ggml_metal_release_unused_buffer(ctx); [ctx->buffer_allocation_condition wait]; } return ctx->buffers[buf_idx].metal; } bool ggml_metal_add_buffer( struct ggml_metal_context * ctx, const char * name, void * data, size_t size, size_t max_size) { if (ctx->n_buffers >= GGML_METAL_MAX_BUFFERS) { fprintf(stderr, "%s: too many buffers\n", __func__); return false; } if (data) { // verify that the buffer does not overlap with any of the existing buffers for (int i = 0; i < ctx->n_buffers; ++i) { const int64_t ioffs = (int64_t) data - (int64_t) ctx->buffers[i].data; if (ioffs >= 0 && ioffs < (int64_t) ctx->buffers[i].size) { fprintf(stderr, "%s: error: buffer '%s' overlaps with '%s'\n", __func__, name, ctx->buffers[i].name); return false; } } const size_t size_page = getpagesize(); size_t size_aligned = size; if ((size_aligned % size_page) != 0) { size_aligned += (size_page - (size_aligned % size_page)); } // the buffer fits into the max buffer size allowed by the device if (size_aligned <= ctx->device.maxBufferLength) { ctx->buffers[ctx->n_buffers].name = name; ctx->buffers[ctx->n_buffers].data = data; ctx->buffers[ctx->n_buffers].size = size_aligned; ctx->buffers[ctx->n_buffers].metal = nil; ctx->buffers[ctx->n_buffers].gpu_use_count = 0; fprintf(stderr, "%s: prepared size for '%-16s' buffer (%d), size = %8.2f MB\n", __func__, name, ctx->n_buffers, size_aligned / 1024.0 / 1024.0); ++ctx->n_buffers; } else { // this overlap between the views will guarantee that the tensor with the maximum size will fully fit into // one of the views size_t max_buffer_length = 1 * 1024ul * 1024ul * 1024ul; // ctx->device.maxBufferLength; const size_t size_ovlp = ((max_size + size_page - 1) / size_page + 1) * size_page; // round-up 2 pages just in case const size_t size_step = max_buffer_length - size_ovlp; const size_t size_view = max_buffer_length; for (size_t i = 0; i < size; i += size_step) { const size_t size_step_aligned = (i + size_view <= size) ? size_view : (size_aligned - i); ctx->buffers[ctx->n_buffers].name = name; ctx->buffers[ctx->n_buffers].data = (void *) ((uint8_t *) data + i); ctx->buffers[ctx->n_buffers].size = size_step_aligned; ctx->buffers[ctx->n_buffers].metal = nil; ctx->buffers[ctx->n_buffers].gpu_use_count = 0; fprintf(stderr, "%s: prepared size for '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_step_aligned / 1024.0 / 1024.0); ++ctx->n_buffers; } } } return true; } void ggml_metal_graph_compute( struct ggml_metal_context * ctx, struct ggml_cgraph * gf) { metal_printf("%s: evaluating graph\n", __func__); // create multiple command buffers and enqueue them // then, we encode the graph into the command buffers in parallel NSMutableArray * command_buffers = [NSMutableArray arrayWithCapacity:16]; int buf_idx_src0 = -1; int buf_idx_src1 = -1; int buf_idx_dst = -1; int node_curr = 0; while (node_curr < gf->n_nodes) { id command_buffer = [ctx->queue commandBuffer]; [command_buffers addObject:command_buffer]; [command_buffer enqueue]; [ctx->buffer_allocation_condition lock]; NSMutableSet *buf_idxs_used = [NSMutableSet set]; int node_start = node_curr; while (node_curr < gf->n_nodes) { size_t offs_src0 = 0; size_t offs_src1 = 0; size_t offs_dst = 0; struct ggml_tensor * src0 = gf->nodes[node_curr]->src0; struct ggml_tensor * src1 = gf->nodes[node_curr]->src1; struct ggml_tensor * dst = gf->nodes[node_curr]; bool wait_for_alloc = (node_start == node_curr); #define GGML_METAL_ALLOC_OR_BREAK(buffer_name) \ if (buffer_name) { \ if (buf_idx_##buffer_name < 0) { \ int buf_idx = ggml_metal_get_buffer_index(ctx, buffer_name, &offs_##buffer_name); \ if (ggml_metal_get_buffer(ctx, buf_idx, wait_for_alloc)) { \ buf_idx_##buffer_name = buf_idx; \ [buf_idxs_used addObject:[NSNumber numberWithInt:buf_idx]]; \ } else { \ break; \ } \ } \ } GGML_METAL_ALLOC_OR_BREAK(src0) GGML_METAL_ALLOC_OR_BREAK(src1) GGML_METAL_ALLOC_OR_BREAK(dst) #undef GGML_METAL_ALLOC_OR_BREAK buf_idx_src0 = -1; buf_idx_src1 = -1; buf_idx_dst = -1; ++node_curr; } for (NSNumber *buf_idx_num in buf_idxs_used) { int buf_idx = [buf_idx_num intValue]; ctx->buffers[buf_idx].gpu_use_count++; } [ctx->buffer_allocation_condition unlock]; [command_buffer addCompletedHandler: ^(id cb) { [ctx->buffer_allocation_condition lock]; for (NSNumber *buf_idx_num in buf_idxs_used) { int buf_idx = [buf_idx_num intValue]; ctx->buffers[buf_idx].gpu_use_count--; } ggml_metal_release_unused_buffer(ctx); [ctx->buffer_allocation_condition unlock]; }]; id encoder = nil; for (int i = node_start; i < node_curr; ++i) { metal_printf("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op)); size_t offs_src0 = 0; size_t offs_src1 = 0; size_t offs_dst = 0; struct ggml_tensor * src0 = gf->nodes[i]->src0; struct ggml_tensor * src1 = gf->nodes[i]->src1; struct ggml_tensor * dst = gf->nodes[i]; const int64_t ne00 = src0 ? src0->ne[0] : 0; const int64_t ne01 = src0 ? src0->ne[1] : 0; const int64_t ne02 = src0 ? src0->ne[2] : 0; const int64_t ne03 = src0 ? src0->ne[3] : 0; const uint64_t nb00 = src0 ? src0->nb[0] : 0; const uint64_t nb01 = src0 ? src0->nb[1] : 0; const uint64_t nb02 = src0 ? src0->nb[2] : 0; const uint64_t nb03 = src0 ? src0->nb[3] : 0; const int64_t ne10 = src1 ? src1->ne[0] : 0; const int64_t ne11 = src1 ? src1->ne[1] : 0; const int64_t ne12 = src1 ? src1->ne[2] : 0; const int64_t ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13); const uint64_t nb10 = src1 ? src1->nb[0] : 0; const uint64_t nb11 = src1 ? src1->nb[1] : 0; const uint64_t nb12 = src1 ? src1->nb[2] : 0; const uint64_t nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13); const int64_t ne0 = dst ? dst->ne[0] : 0; const int64_t ne1 = dst ? dst->ne[1] : 0; const int64_t ne2 = dst ? dst->ne[2] : 0; const int64_t ne3 = dst ? dst->ne[3] : 0; const uint64_t nb0 = dst ? dst->nb[0] : 0; const uint64_t nb1 = dst ? dst->nb[1] : 0; const uint64_t nb2 = dst ? dst->nb[2] : 0; const uint64_t nb3 = dst ? dst->nb[3] : 0; const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT; const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT; const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT; [ctx->buffer_allocation_condition lock]; id id_src0 = src0 ? ggml_metal_get_buffer(ctx, ggml_metal_get_buffer_index(ctx, src0, &offs_src0), false) : nil; id id_src1 = src1 ? ggml_metal_get_buffer(ctx, ggml_metal_get_buffer_index(ctx, src1, &offs_src1), false) : nil; id id_dst = dst ? ggml_metal_get_buffer(ctx, ggml_metal_get_buffer_index(ctx, dst, &offs_dst), false) : nil; [ctx->buffer_allocation_condition unlock]; //metal_printf("%s: op - %s\n", __func__, ggml_op_name(dst->op)); //if (src0) { // metal_printf("%s: src0 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src0t), ne00, ne01, ne02, // ggml_is_contiguous(src0), src0->name); //} //if (src1) { // metal_printf("%s: src1 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src1t), ne10, ne11, ne12, // ggml_is_contiguous(src1), src1->name); //} //if (dst) { // metal_printf("%s: dst - %4s [%5lld, %5lld, %5lld], 1, %s\n", __func__, ggml_type_name(dstt), ne0, ne1, ne2, // dst->name); //} switch (dst->op) { case GGML_OP_RESHAPE: case GGML_OP_VIEW: case GGML_OP_TRANSPOSE: case GGML_OP_PERMUTE: { // noop } break; case GGML_OP_ADD: { if (encoder == nil) { encoder = [command_buffer computeCommandEncoder]; } [encoder setComputePipelineState:ctx->pipeline_add]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; const int64_t n = ggml_nelements(dst); [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_OP_MUL: { if (encoder == nil) { encoder = [command_buffer computeCommandEncoder]; } if (ggml_nelements(src1) == ne10) { // src1 is a row [encoder setComputePipelineState:ctx->pipeline_mul_row]; } else { [encoder setComputePipelineState:ctx->pipeline_mul]; } [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; const int64_t n = ggml_nelements(dst); [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_OP_SCALE: { if (encoder == nil) { encoder = [command_buffer computeCommandEncoder]; } const float scale = *(const float *) src1->data; [encoder setComputePipelineState:ctx->pipeline_scale]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&scale length:sizeof(scale) atIndex:2]; const int64_t n = ggml_nelements(dst); [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_OP_SILU: { if (encoder == nil) { encoder = [command_buffer computeCommandEncoder]; } [encoder setComputePipelineState:ctx->pipeline_silu]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; const int64_t n = ggml_nelements(dst); [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_OP_RELU: { if (encoder == nil) { encoder = [command_buffer computeCommandEncoder]; } [encoder setComputePipelineState:ctx->pipeline_relu]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; const int64_t n = ggml_nelements(dst); [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_OP_GELU: { if (encoder == nil) { encoder = [command_buffer computeCommandEncoder]; } [encoder setComputePipelineState:ctx->pipeline_gelu]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; const int64_t n = ggml_nelements(dst); [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_OP_SOFT_MAX: { if (encoder == nil) { encoder = [command_buffer computeCommandEncoder]; } const int nth = 32; [encoder setComputePipelineState:ctx->pipeline_soft_max]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2]; [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3]; [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4]; [encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0]; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; case GGML_OP_DIAG_MASK_INF: { if (encoder == nil) { encoder = [command_buffer computeCommandEncoder]; } const int n_past = ((int32_t *)(src1->data))[0]; [encoder setComputePipelineState:ctx->pipeline_diag_mask_inf]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2]; [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3]; [encoder setBytes:&n_past length:sizeof(int) atIndex:4]; [encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_OP_MUL_MAT: { // TODO: needs to be updated after PR: https://github.com/ggerganov/ggml/pull/224 GGML_ASSERT(ne00 == ne10); GGML_ASSERT(ne02 == ne12); if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && (src0t == GGML_TYPE_F32 || src0t == GGML_TYPE_F16) && ne11 > 1) { if (encoder != nil) { [encoder endEncoding]; encoder = nil; } MPSDataType src0dt = src0t == GGML_TYPE_F32 ? MPSDataTypeFloat32 : MPSDataTypeFloat16; MPSDataType src1dt = src1t == GGML_TYPE_F32 ? MPSDataTypeFloat32 : MPSDataTypeFloat16; // for F32 x F32 we use MPS MPSMatrixDescriptor * desc0 = [MPSMatrixDescriptor matrixDescriptorWithRows:ne01 columns:ne00 rowBytes:src0->nb[1] dataType:src0dt]; MPSMatrixDescriptor * desc1 = [MPSMatrixDescriptor matrixDescriptorWithRows:ne11 columns:ne10 rowBytes:src1->nb[1] dataType:src1dt]; MPSMatrixDescriptor * desc = [MPSMatrixDescriptor matrixDescriptorWithRows:ne1 columns:ne0 rowBytes:dst->nb[1] dataType:MPSDataTypeFloat32]; MPSMatrixMultiplication * mul = [[MPSMatrixMultiplication alloc] initWithDevice:ctx->device transposeLeft:false transposeRight:true resultRows:ne11 resultColumns:ne01 interiorColumns:ne00 alpha:1.0 beta:0.0]; // we need to do ne02 multiplications // TODO: is there a way to do this in parallel - currently very slow .. // TODO: might be possible to offload part of the computation to ANE using Accelerate's CBLAS for (int64_t i02 = 0; i02 < ne02; ++i02) { size_t offs_src0_cur = offs_src0 + i02*nb02; size_t offs_src1_cur = offs_src1 + i02*nb12; size_t offs_dst_cur = offs_dst + i02*nb2; MPSMatrix * mat_src0 = [[MPSMatrix alloc] initWithBuffer:id_src0 offset:offs_src0_cur descriptor:desc0]; MPSMatrix * mat_src1 = [[MPSMatrix alloc] initWithBuffer:id_src1 offset:offs_src1_cur descriptor:desc1]; MPSMatrix * mat_dst = [[MPSMatrix alloc] initWithBuffer:id_dst offset:offs_dst_cur descriptor:desc ]; [mul encodeToCommandBuffer:command_buffer leftMatrix:mat_src1 rightMatrix:mat_src0 resultMatrix:mat_dst]; } } else { if (encoder == nil) { encoder = [command_buffer computeCommandEncoder]; } int nth0 = 32; int nth1 = 1; // use custom matrix x vector kernel switch (src0t) { case GGML_TYPE_F16: { GGML_ASSERT(ne02 == ne12); nth0 = 64; nth1 = 1; [encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32]; } break; case GGML_TYPE_Q4_0: { GGML_ASSERT(ne02 == 1); GGML_ASSERT(ne12 == 1); nth0 = 8; nth1 = 8; [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_0_f32]; } break; case GGML_TYPE_Q4_1: { GGML_ASSERT(ne02 == 1); GGML_ASSERT(ne12 == 1); nth0 = 8; nth1 = 8; [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_1_f32]; } break; case GGML_TYPE_Q2_K: { GGML_ASSERT(ne02 == 1); GGML_ASSERT(ne12 == 1); nth0 = 4; nth1 = 16; [encoder setComputePipelineState:ctx->pipeline_mul_mat_q2_K_f32]; } break; case GGML_TYPE_Q3_K: { GGML_ASSERT(ne02 == 1); GGML_ASSERT(ne12 == 1); nth0 = 4; nth1 = 16; [encoder setComputePipelineState:ctx->pipeline_mul_mat_q3_K_f32]; } break; case GGML_TYPE_Q4_K: { GGML_ASSERT(ne02 == 1); GGML_ASSERT(ne12 == 1); nth0 = 4; nth1 = 16; [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_K_f32]; } break; case GGML_TYPE_Q5_K: { GGML_ASSERT(ne02 == 1); GGML_ASSERT(ne12 == 1); nth0 = 4; nth1 = 16; [encoder setComputePipelineState:ctx->pipeline_mul_mat_q5_K_f32]; } break; case GGML_TYPE_Q6_K: { GGML_ASSERT(ne02 == 1); GGML_ASSERT(ne12 == 1); nth0 = 4; nth1 = 16; [encoder setComputePipelineState:ctx->pipeline_mul_mat_q6_K_f32]; } break; default: { fprintf(stderr, "Asserting on type %d\n",(int)src0t); GGML_ASSERT(false && "not implemented"); } }; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4]; [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:5]; [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:6]; [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:7]; [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:8]; [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:9]; [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:10]; [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:11]; [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:12]; [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:13]; [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:14]; if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1) { [encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0]; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } else if (src0t == GGML_TYPE_Q2_K || src0t == GGML_TYPE_Q3_K || src0t == GGML_TYPE_Q4_K || src0t == GGML_TYPE_Q5_K || src0t == GGML_TYPE_Q6_K) { [encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0]; [encoder dispatchThreadgroups:MTLSizeMake(ne01, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } else { [encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0]; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } } } break; case GGML_OP_GET_ROWS: { if (encoder == nil) { encoder = [command_buffer computeCommandEncoder]; } switch (src0->type) { case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break; case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break; case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_1]; break; case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q2_K]; break; case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q3_K]; break; case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_K]; break; case GGML_TYPE_Q5_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q5_K]; break; case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q6_K]; break; default: GGML_ASSERT(false && "not implemented"); } [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; [encoder setBytes:&(src0->ne[0]) length:sizeof( int64_t) atIndex:3]; [encoder setBytes:&(src0->nb[1]) length:sizeof(uint64_t) atIndex:4]; [encoder setBytes:&(dst->nb[1]) length:sizeof(uint64_t) atIndex:5]; const int64_t n = ggml_nelements(src1); [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_OP_RMS_NORM: { if (encoder == nil) { encoder = [command_buffer computeCommandEncoder]; } const float eps = 1e-6f; const int nth = 256; [encoder setComputePipelineState:ctx->pipeline_rms_norm]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3]; [encoder setBytes:&eps length:sizeof( float) atIndex:4]; [encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0]; const int64_t nrows = ggml_nrows(src0); [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; case GGML_OP_NORM: { if (encoder == nil) { encoder = [command_buffer computeCommandEncoder]; } const float eps = 1e-5f; const int nth = 256; [encoder setComputePipelineState:ctx->pipeline_norm]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3]; [encoder setBytes:&eps length:sizeof( float) atIndex:4]; [encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0]; const int64_t nrows = ggml_nrows(src0); [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; case GGML_OP_ALIBI: { if (encoder == nil) { encoder = [command_buffer computeCommandEncoder]; } GGML_ASSERT((src0t == GGML_TYPE_F32)); const int n_past = ((int32_t *) src1->data)[0]; UNUSED(n_past); const int n_head = ((int32_t *) src1->data)[1]; const float max_bias = ((float *) src1->data)[2]; if (__builtin_popcount(n_head) != 1) { GGML_ASSERT(false && "only power-of-two n_head implemented"); } const int n_heads_log2_floor = 1 << (int) floor(log2(n_head)); const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor); [encoder setComputePipelineState:ctx->pipeline_alibi_f32]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3]; [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4]; [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5]; [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6]; [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7]; [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8]; [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9]; [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10]; [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11]; [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12]; [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13]; [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14]; [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15]; [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16]; [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17]; [encoder setBytes:&m0 length:sizeof( float) atIndex:18]; const int nth = 32; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; case GGML_OP_ROPE: { if (encoder == nil) { encoder = [command_buffer computeCommandEncoder]; } const int n_dims = ((int32_t *) src1->data)[1]; const int mode = ((int32_t *) src1->data)[2]; const int n_past = ((int32_t *)(src1->data))[0]; [encoder setComputePipelineState:ctx->pipeline_rope]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3]; [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4]; [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5]; [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6]; [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7]; [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8]; [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9]; [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10]; [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11]; [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12]; [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13]; [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14]; [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15]; [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16]; [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17]; [encoder setBytes:&n_past length:sizeof( int) atIndex:18]; [encoder setBytes:&n_dims length:sizeof( int) atIndex:19]; [encoder setBytes:&mode length:sizeof( int) atIndex:20]; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_OP_CPY: { if (encoder == nil) { encoder = [command_buffer computeCommandEncoder]; } const int nth = 32; switch (src0t) { case GGML_TYPE_F32: { switch (dstt) { case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f16]; break; case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f32]; break; default: GGML_ASSERT(false && "not implemented"); }; } break; case GGML_TYPE_F16: { switch (dstt) { case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_cpy_f16_f16]; break; case GGML_TYPE_F32: GGML_ASSERT(false && "cpy_f16_f32 not implemented"); break; default: GGML_ASSERT(false && "not implemented"); }; } break; default: GGML_ASSERT(false && "not implemented"); } [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3]; [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4]; [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5]; [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6]; [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7]; [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8]; [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9]; [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10]; [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11]; [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12]; [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13]; [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14]; [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15]; [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16]; [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17]; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; default: fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); GGML_ASSERT(false); } } if (encoder != nil) { [encoder endEncoding]; encoder = nil; } [command_buffer commit]; } int n_cb = [command_buffers count]; [command_buffers[n_cb - 1] waitUntilCompleted]; // check status of command buffers // needed to detect if the device ran out-of-memory for example (#1881) for (int i = 0; i < n_cb; i++) { MTLCommandBufferStatus status = (MTLCommandBufferStatus) [command_buffers[i] status]; if (status != MTLCommandBufferStatusCompleted) { const char *error_str = [[[command_buffers[i] error] description] cStringUsingEncoding:NSUTF8StringEncoding]; fprintf(stderr, "%s: command buffer %d failed with status %lu: %s\n", __func__, i, status, error_str); GGML_ASSERT(false); } } }