#include "ggml.h" #include "llama.h" #include "common.h" #include "log.h" #include #include #include #include #include #include #include #include #include #include #include #include #include // GGUF keys & tensor names. #define KV_GENERAL_ARCHITECTURE "general.architecture" #define KV_GENERAL_NAME "general.name" #define KV_TOKENIZER_MODEL "tokenizer.ggml.model" #define KV_TOKENIZER_LIST "tokenizer.ggml.tokens" #define KV_TOKENIZER_TOKEN_TYPE "tokenizer.ggml.token_type" #define KV_TOKENIZER_SCORES "tokenizer.ggml.scores" #define KV_TOKENIZER_BOS_ID "tokenizer.ggml.bos_token_id" #define KV_TOKENIZER_EOS_ID "tokenizer.ggml.eos_token_id" #define KV_TOKENIZER_UNK_ID "tokenizer.ggml.unknown_token_id" #define KV_TOKENIZER_SEP_ID "tokenizer.ggml.seperator_token_id" #define KV_TOKENIZER_PAD_ID "tokenizer.ggml.padding_token_id" #define KV_TOKENIZER_HF_JSON "tokenizer.huggingface.json" #define KV_CONTEXT_LENGTH "llama.context_length" #define KV_EMBEDDING_LENGTH "llama.embedding_length" #define KV_BLOCK_COUNT "llama.block_count" #define KV_FEED_FORWARD_LENGTH "llama.feed_forward_length" #define KV_ATTENTION_HEAD_COUNT "llama.attention.head_count" #define KV_ATTENTION_HEAD_COUNT_KV "llama.attention.head_count_kv" #define KV_ATTENTION_LAYERNORM_RMS_EPS "llama.attention.layer_norm_rms_epsilon" #define KV_ROPE_DIMENSION_COUNT "llama.rope.dimension_count" #define TN_TOKEN_EMBD "token_embd.weight" #define TN_OUTPUT_NORM "output_norm.weight" #define TN_OUTPUT "output.weight" #define TN_ATTN_NORM "blk.%d.attn_norm.weight" #define TN_ATTN_Q "blk.%d.attn_q.weight" #define TN_ATTN_K "blk.%d.attn_k.weight" #define TN_ATTN_V "blk.%d.attn_v.weight" #define TN_ATTN_OUTPUT "blk.%d.attn_output.weight" #define TN_FFN_NORM "blk.%d.ffn_norm.weight" #define TN_FFN_GATE "blk.%d.ffn_gate.weight" #define TN_FFN_DOWN "blk.%d.ffn_down.weight" #define TN_FFN_UP "blk.%d.ffn_up.weight" #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif #define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt' #define LLAMA_FILE_VERSION_GGJT_V3 3 #define TOKENIZER_NAME "llama" #define UNKNOWN_TOKEN_ID 0 #define BOS_TOKEN_ID 1 #define EOS_TOKEN_ID 2 //////////////////////////////////////// llama2.c model structs and functions to load models, alloc memory etc. typedef struct { int dim; // transformer dimension int hidden_dim; // for ffn layers int n_layers; // number of layers int n_heads; // number of query heads int n_kv_heads; // number of key/value heads (can be < query heads because of multiquery) int vocab_size; // vocabulary size, usually 256 (byte-level) int seq_len; // max sequence length } Config; struct TransformerWeights { // token embedding table std::vector token_embedding_table; // (vocab_size, dim) // weights for rmsnorms std::vector rms_att_weight; // (layer, dim) rmsnorm weights std::vector rms_ffn_weight; // (layer, dim) // weights for matmuls std::vector wq; // (layer, dim, dim) std::vector wk; // (layer, dim, dim) std::vector wv; // (layer, dim, dim) std::vector wo; // (layer, dim, dim) // weights for ffn std::vector w1; // (layer, hidden_dim, dim) std::vector w2; // (layer, dim, hidden_dim) std::vector w3; // (layer, hidden_dim, dim) // final rmsnorm std::vector rms_final_weight; // (dim,) // freq_cis for RoPE relatively positional embeddings // std::vector freq_cis_real; // (seq_len, dim/2) // std::vector freq_cis_imag; // (seq_len, dim/2) // (optional) classifier weights for the logits, on the last layer std::vector wcls; }; static void alloc_weights(TransformerWeights * w, const Config * p, bool shared_weights) { const int n_multiqueries = p->n_kv_heads <= 0 || p->n_kv_heads >= p->n_heads ? 1 : p->n_heads / p->n_kv_heads; try { w->token_embedding_table.resize(p->vocab_size * p->dim); LOG_INF("%s: Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim); w->rms_att_weight.resize(p->n_layers * p->dim); LOG_INF("%s: Allocating [%d] x [%d] = [%d] float space for w->rms_att_weight\n",__func__,p->n_layers, p->dim, p->n_layers * p->dim); w->rms_ffn_weight.resize(p->n_layers * p->dim); LOG_INF("%s: Allocating [%d] x [%d] = [%d] float space for w->rms_ffn_weight\n",__func__,p->n_layers , p->dim, p->n_layers * p->dim); w->wq.resize(p->n_layers * p->dim * p->dim); LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wq\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim); w->wk.resize(p->n_layers * p->dim * p->dim / n_multiqueries); LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wk\n",__func__,p->n_layers, p->dim, p->dim / n_multiqueries, p->n_layers * p->dim * p->dim / n_multiqueries); w->wv.resize(p->n_layers * p->dim * p->dim / n_multiqueries); LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wv\n",__func__, p->n_layers, p->dim, p->dim / n_multiqueries, p->n_layers * p->dim * p->dim / n_multiqueries); w->wo.resize(p->n_layers * p->dim * p->dim); LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wo\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim); w->w1.resize(p->n_layers * p->hidden_dim * p->dim); LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w1\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim); w->w2.resize(p->n_layers * p->hidden_dim * p->dim); LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w2\n",__func__,p->n_layers, p->dim, p->hidden_dim, p->n_layers * p->hidden_dim * p->dim); w->w3.resize(p->n_layers * p->hidden_dim * p->dim); LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w3\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim); w->rms_final_weight.resize(p->dim); LOG_INF("%s: Allocating [%d] float space for w->rms_final_weight\n",__func__,p->dim); if (shared_weights) { w->wcls = {}; } else { w->wcls.resize(p->vocab_size * p->dim); LOG_INF("%s: Allocating [%d] x [%d] = [%d] float space for w->wcls\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim); } } catch (std::length_error &) { die("Invalid configuration. Failed to allocate memory for weights"); } } static int checkpoint_init_weights(TransformerWeights * w, const Config * p, FILE * f, bool shared_weights) { if (fread(w->token_embedding_table.data(), sizeof(float), w->token_embedding_table.size(), f) != w->token_embedding_table.size()) return 1; if (fread(w->rms_att_weight.data(), sizeof(float), w->rms_att_weight.size(), f) != w->rms_att_weight.size()) return 1; if (fread(w->wq.data(), sizeof(float), w->wq.size(), f) != w->wq.size()) return 1; if (fread(w->wk.data(), sizeof(float), w->wk.size(), f) != w->wk.size()) return 1; if (fread(w->wv.data(), sizeof(float), w->wv.size(), f) != w->wv.size()) return 1; if (fread(w->wo.data(), sizeof(float), w->wo.size(), f) != w->wo.size()) return 1; if (fread(w->rms_ffn_weight.data(), sizeof(float), w->rms_ffn_weight.size(), f) != w->rms_ffn_weight.size()) return 1; if (fread(w->w1.data(), sizeof(float), w->w1.size(), f) != w->w1.size()) return 1; if (fread(w->w2.data(), sizeof(float), w->w2.size(), f) != w->w2.size()) return 1; if (fread(w->w3.data(), sizeof(float), w->w3.size(), f) != w->w3.size()) return 1; if (fread(w->rms_final_weight.data(), sizeof(float), w->rms_final_weight.size(), f) != w->rms_final_weight.size()) return 1; // Skip freq_cis_real & freq_cis_imag int head_size = p->dim / p->n_heads; fseek(f, p->seq_len * head_size * sizeof(float), SEEK_CUR); if (!shared_weights && fread(w->wcls.data(), sizeof(float), w->wcls.size(), f) != w->wcls.size()) return 1; // Check we didn't forget to read anything auto curr = ftell(f); fseek(f, 0, SEEK_END); auto end = ftell(f); if (curr != end) { LOG_ERR("%s: Error: failed to read the checkpoint file to the end (curr = %ld, end = %ld)\n", __func__, curr, end); return 1; } return 0; } static void print_sample_weights(TransformerWeights *w){ LOG_INF("----- Quick print of first of the weight vales of all the variables\n"); LOG_INF("%f\n", w->token_embedding_table[0]); LOG_INF("%f\n", w->rms_att_weight[0]); LOG_INF("%f\n", w->rms_ffn_weight[0]); LOG_INF("%f\n", w->wq[0]); LOG_INF("%f\n", w->wk[0]); LOG_INF("%f\n", w->wv[0]); LOG_INF("%f\n", w->wo[0]); LOG_INF("%f\n", w->w1[0]); LOG_INF("%f\n", w->w2[0]); LOG_INF("%f\n", w->w3[0]); LOG_INF("%f\n", w->rms_att_weight[0]); if (!w->wcls.empty()) LOG_INF("%f\n", w->wcls[0]); } //////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////// ggml structs and functions required to load models, configs and save the model. struct my_llama_vocab { using id = int32_t; using token = std::string; using ttype = llama_token_type; struct token_data { token text; float score; ttype type; }; std::unordered_map token_to_id; std::vector id_to_token; }; struct my_llama_hparams { uint32_t n_vocab = 32000; uint32_t n_ctx = 512; // this is provided as user input? uint32_t n_embd = 4096; uint32_t n_ff = 11008; uint32_t n_mult = 4; uint32_t n_head = 32; uint32_t n_head_kv = 32; uint32_t n_layer = 32; uint32_t n_rot = 64; bool operator!=(const my_llama_hparams& other) const { return memcmp(this, &other, sizeof(my_llama_hparams)); } }; struct my_llama_layer { // normalization struct ggml_tensor * attention_norm; // attention struct ggml_tensor * wq; struct ggml_tensor * wk; struct ggml_tensor * wv; struct ggml_tensor * wo; // normalization struct ggml_tensor * ffn_norm; // ff struct ggml_tensor * w1; struct ggml_tensor * w2; struct ggml_tensor * w3; }; struct my_llama_model { struct ggml_context * ctx = NULL; std::string name; my_llama_hparams hparams; struct ggml_tensor * tok_embeddings; struct ggml_tensor * norm; struct ggml_tensor * output; std::vector layers; uint32_t train_its = 0; uint32_t train_samples = 0; uint32_t train_tokens = 0; }; struct train_params { const char * fn_vocab_model; const char * fn_llama2c_model; const char * fn_llama2c_output_model; const char * fn_train_data; const char * fn_checkpoint_in; const char * fn_checkpoint_out; const char * fn_model_out; uint32_t seed; int n_ctx; int n_embd; int n_mult; int n_head; int n_layer; int n_rotmax; int n_threads; int n_batch; int n_examples; int n_predict; int print_info_interval; int print_details_interval; bool samples_start_after_nl; bool use_adam; bool use_flash; bool use_scratch; // only adam int warmup; int cos_decay_steps; float cos_decay_restart; float cos_decay_alpha; int lbfgs_n_iter; int adam_n_iter; float adam_alpha; float adam_decay; int mem_model_gb; int mem_compute_gb; int mem_compute0_gb; int mem_compute1_gb; }; static void print_params(struct my_llama_hparams * params) { LOG_INF("%s: n_vocab: %u\n", __func__, params->n_vocab); LOG_INF("%s: n_ctx: %u\n", __func__, params->n_ctx); LOG_INF("%s: n_embd: %u\n", __func__, params->n_embd); LOG_INF("%s: n_mult: %u\n", __func__, params->n_mult); LOG_INF("%s: n_head: %u\n", __func__, params->n_head); LOG_INF("%s: n_head_kv: %u\n", __func__, params->n_head_kv); LOG_INF("%s: n_ff: %u\n", __func__, params->n_ff); LOG_INF("%s: n_layer: %u\n", __func__, params->n_layer); LOG_INF("%s: n_rot: %u\n", __func__, params->n_rot); } static void print_tensor_info(const struct ggml_context * ctx) { for (auto t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { LOG_INF("%s: Allocating ", __func__); int64_t total = 1; int i = 0; for (; i < ggml_n_dims(t); ++i) { if (i > 0) LOG("x "); LOG("[%" PRId64 "] ", t->ne[i]); total *= t->ne[i]; } if (i > 1) LOG("= [%" PRId64 "] ", total); LOG("float space for %s\n", ggml_get_name(t)); } } static void init_model(struct my_llama_model * model) { const auto & hparams = model->hparams; const uint32_t n_embd = hparams.n_embd; const uint32_t n_layer = hparams.n_layer; const uint32_t n_vocab = hparams.n_vocab; const uint32_t n_multiqueries = hparams.n_head_kv <= 0 || hparams.n_head_kv >= hparams.n_head ? 1 : hparams.n_head / hparams.n_head_kv; const uint32_t n_ff = hparams.n_ff; struct ggml_context * ctx = model->ctx; model->train_its = 0; model->train_samples = 0; model->train_tokens = 0; model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); ggml_set_name(model->tok_embeddings, "tok_embeddings.weight"); ggml_set_name(model->norm, "norm.weight"); ggml_set_name(model->output, "output.weight"); model->layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { auto & layer = model->layers[i]; std::string layers_i = "layers." + std::to_string(i); layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd / n_multiqueries); layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd / n_multiqueries); layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd); layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); ggml_set_name(layer.attention_norm, (layers_i + ".attention_norm.weight").c_str()); ggml_set_name(layer.wq, (layers_i + ".attention.wq.weight").c_str()); ggml_set_name(layer.wk, (layers_i + ".attention.wk.weight").c_str()); ggml_set_name(layer.wv, (layers_i + ".attention.wv.weight").c_str()); ggml_set_name(layer.wo, (layers_i + ".attention.wo.weight").c_str()); ggml_set_name(layer.ffn_norm, (layers_i + ".ffn_norm.weight").c_str()); ggml_format_name(layer.w1, "%s.feed_forward.w1.weight", layers_i.c_str()); ggml_format_name(layer.w2, "%s.feed_forward.w2.weight", layers_i.c_str()); ggml_format_name(layer.w3, "%s.feed_forward.w3.weight", layers_i.c_str()); } print_tensor_info(ctx); } static float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) { float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); return *ptr; } static int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) { int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); return *ptr; } static void print_row(struct ggml_tensor * probs, int i) { for (int k = 0; k < probs->ne[0]; ++k) { float p = get_f32_2d(probs, k, i); LOG(" %f", p); } LOG("\n"); } static void print_matrix(struct ggml_tensor * probs) { assert(ggml_is_matrix(probs)); for (int i = 0; i < probs->ne[1]; ++i) { for (int k = 0; k < probs->ne[0]; ++k) { float p = get_f32_2d(probs, k, i); LOG(" %.2f", p); } LOG("\n"); } } struct my_llama_file { // use FILE * so we don't have to re-open the file to mmap FILE * fp; size_t size; my_llama_file(const char * fname, const char * mode) { fp = std::fopen(fname, mode); if (fp == NULL) { size = 0; } else { seek(0, SEEK_END); size = tell(); seek(0, SEEK_SET); } } size_t tell() const { #ifdef _WIN32 __int64 ret = _ftelli64(fp); #else long ret = std::ftell(fp); #endif GGML_ASSERT(ret != -1); // this really shouldn't fail return (size_t) ret; } void seek(size_t offset, int whence) { #ifdef _WIN32 int ret = _fseeki64(fp, (__int64) offset, whence); #else int ret = std::fseek(fp, (long) offset, whence); #endif GGML_ASSERT(ret == 0); // same } void read_raw(void * ptr, size_t size) { if (size == 0) { return; } errno = 0; std::size_t ret = std::fread(ptr, size, 1, fp); if (ferror(fp)) { die_fmt("fread failed: %s", strerror(errno)); } if (ret != 1) { die("unexpectedly reached end of file"); } } std::uint32_t read_u32() { std::uint32_t ret; read_raw(&ret, sizeof(ret)); return ret; } std::float_t read_f32() { std::float_t ret; read_raw(&ret, sizeof(ret)); return ret; } std::string read_string(std::uint32_t len) { std::vector chars(len); read_raw(chars.data(), len); return std::string(chars.data(), len); } ~my_llama_file() { if (fp) { std::fclose(fp); } } }; static bool is_ggml_file(const char * filename) { my_llama_file file(filename, "rb"); if (file.size < 4) { return false; } std::string magic = file.read_string(4); return magic == GGUF_MAGIC; } static std::string llama_escape_whitespaces(const std::string & text) { std::ostringstream out; for (char c : text) { if (c == ' ') out << "\xe2\x96\x81"; else out << c; } return out.str(); } static void load_vocab(const char * filename, const Config * config, struct my_llama_vocab * vocab) { if (is_ggml_file(filename)) { LOG_INF("%s: Loading vocabulary from gguf file %s\n", __func__, filename); struct ggml_context * ctx_data = NULL; struct gguf_init_params params = { /*.no_alloc = */ false, /*.ctx = */ &ctx_data, }; struct gguf_context * ctx = gguf_init_from_file(filename, params); GGML_ASSERT(ctx != NULL); const int model_idx = gguf_find_key(ctx, KV_TOKENIZER_MODEL); GGML_ASSERT(model_idx >= 0); std::string tokenizer_name = gguf_get_val_str(ctx, model_idx); GGML_ASSERT(tokenizer_name == TOKENIZER_NAME); const int token_idx = gguf_find_key(ctx, KV_TOKENIZER_LIST); GGML_ASSERT(token_idx >= 0); const int score_idx = gguf_find_key(ctx, KV_TOKENIZER_SCORES); GGML_ASSERT(score_idx >= 0); const float * scores = (const float * ) gguf_get_arr_data(ctx, score_idx); const int toktype_idx = gguf_find_key(ctx, KV_TOKENIZER_TOKEN_TYPE); GGML_ASSERT(toktype_idx >= 0); const int * toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx); const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx); if (n_vocab != static_cast(config->vocab_size)) { die_fmt("vocab size mismatch: (gguf) %u != (llama2c) %d", n_vocab, config->vocab_size); } vocab->id_to_token.resize(n_vocab); for (uint32_t i = 0; i < n_vocab; i++) { std::string word = gguf_get_arr_str(ctx, token_idx, i); vocab->token_to_id[word] = i; auto & token_data = vocab->id_to_token[i]; token_data.text = std::move(word); token_data.score = scores[i]; token_data.type = (llama_token_type) toktypes[i]; } ggml_free(ctx_data); gguf_free(ctx); } else { // assume llama2.c vocabulary LOG_INF("%s: Assuming llama2.c vocabulary since %s is not a gguf file\n", __func__, filename); my_llama_file file(filename, "rb"); if (!file.fp) { die_fmt("%s: %s", strerror(errno), filename); } const int n_vocab = config->vocab_size; /* uint32_t max_token_length = */ file.read_u32(); // unused vocab->id_to_token.resize(n_vocab); for (my_llama_vocab::id id=0; id", &byte_val) == 1) { // Text of byte tokens is already in the expected format. type = LLAMA_TOKEN_TYPE_BYTE; } else { type = LLAMA_TOKEN_TYPE_NORMAL; } text = llama_escape_whitespaces(text); vocab->id_to_token[id].text = text; vocab->id_to_token[id].score = score; vocab->id_to_token[id].type = type; vocab->token_to_id.emplace(text, id); } } } static void convert_weights_ak_to_gg(struct ggml_tensor * gg_weights, const float * karpathy_weights) { int size = 1; for (int dim = 0; dim < ggml_n_dims(gg_weights); ++dim) { size *= gg_weights->ne[dim]; } for (int ct = 0; ct < size; ++ct) { int64_t i0 = 0; int64_t i1 = 0; int64_t i2 = 0; int64_t i3 = 0; ggml_unravel_index(gg_weights, ct, &i0, &i1, &i2, &i3); ggml_set_f32_nd(gg_weights, i0, i1, i2, i3, karpathy_weights[ct]); } } static void save_as_llama_model( struct my_llama_vocab * vocab, struct my_llama_model * model, TransformerWeights* w, const char * filename ) { // convert AK weights into GG weights one by one. // w->token_embedding_table -> model->tok_embeddings // float* -> struct ggml_tensor convert_weights_ak_to_gg(model->tok_embeddings, w->token_embedding_table.data()); convert_weights_ak_to_gg(model->output, !w->wcls.empty() ? w->wcls.data() : w->token_embedding_table.data()); convert_weights_ak_to_gg(model->norm, w->rms_final_weight.data()); //print_row(model->norm, 0); // for rms-att-weight int row_length = model->hparams.n_embd; int n_ff = model->hparams.n_ff; const uint32_t n_multiqueries = model->hparams.n_head_kv <= 0 || model->hparams.n_head_kv >= model->hparams.n_head ? 1 : model->hparams.n_head / model->hparams.n_head_kv; for (uint32_t i = 0; i < model->hparams.n_layer; ++i){ auto & layer = model->layers[i]; // 1d convert_weights_ak_to_gg(layer.attention_norm, &w->rms_att_weight[i*row_length]); convert_weights_ak_to_gg(layer.ffn_norm , &w->rms_ffn_weight[i*row_length]); // from 3d matrix layer x dim x dim to 2d matrix dim x dim convert_weights_ak_to_gg(layer.wq , &w->wq[i*row_length*row_length]); convert_weights_ak_to_gg(layer.wo , &w->wo[i*row_length*row_length]); // from 3d matrix layer x dim x dim to 2d matrix dim x dim / n_multiqueries convert_weights_ak_to_gg(layer.wk , &w->wk[i*row_length*row_length/n_multiqueries]); convert_weights_ak_to_gg(layer.wv , &w->wv[i*row_length*row_length/n_multiqueries]); convert_weights_ak_to_gg(layer.w1 , &w->w1[i*row_length*n_ff]); convert_weights_ak_to_gg(layer.w2 , &w->w2[i*n_ff*row_length]); convert_weights_ak_to_gg(layer.w3 , &w->w3[i*row_length*n_ff]); } struct gguf_context * ctx = gguf_init_empty(); std::vector tokens; std::vector scores; std::vector token_types; for (const my_llama_vocab::token_data & token_data : vocab->id_to_token) { tokens.push_back(token_data.text.c_str()); scores.push_back(token_data.score); token_types.push_back(token_data.type); } gguf_set_arr_str(ctx, KV_TOKENIZER_LIST, tokens.data(), tokens.size()); gguf_set_arr_data(ctx, KV_TOKENIZER_SCORES, GGUF_TYPE_FLOAT32, scores.data(), scores.size()); gguf_set_arr_data(ctx, KV_TOKENIZER_TOKEN_TYPE, GGUF_TYPE_INT32, token_types.data(), token_types.size()); gguf_set_val_str(ctx, KV_TOKENIZER_MODEL, TOKENIZER_NAME); gguf_set_val_str(ctx, KV_GENERAL_ARCHITECTURE, "llama"); gguf_set_val_str(ctx, KV_GENERAL_NAME, "llama"); // special tokens gguf_set_val_u32(ctx, KV_TOKENIZER_UNK_ID, UNKNOWN_TOKEN_ID); gguf_set_val_u32(ctx, KV_TOKENIZER_BOS_ID, BOS_TOKEN_ID); gguf_set_val_u32(ctx, KV_TOKENIZER_EOS_ID, EOS_TOKEN_ID); gguf_set_val_u32(ctx, KV_TOKENIZER_SEP_ID, -1); gguf_set_val_u32(ctx, KV_TOKENIZER_PAD_ID, -1); gguf_set_val_u32(ctx, KV_CONTEXT_LENGTH, model->hparams.n_ctx); gguf_set_val_u32(ctx, KV_EMBEDDING_LENGTH, model->hparams.n_embd); gguf_set_val_u32(ctx, KV_FEED_FORWARD_LENGTH, model->hparams.n_ff); gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT, model->hparams.n_head); gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT, model->hparams.n_head); gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT_KV, model->hparams.n_head_kv); gguf_set_val_u32(ctx, KV_BLOCK_COUNT, model->hparams.n_layer); gguf_set_val_u32(ctx, KV_ROPE_DIMENSION_COUNT, model->hparams.n_rot); gguf_set_val_f32(ctx, KV_ATTENTION_LAYERNORM_RMS_EPS, 1e-5f); // write tensors ggml_set_name(model->tok_embeddings, TN_TOKEN_EMBD); gguf_add_tensor(ctx, model->tok_embeddings); ggml_set_name(model->norm, TN_OUTPUT_NORM); gguf_add_tensor(ctx, model->norm); ggml_set_name(model->output, TN_OUTPUT); gguf_add_tensor(ctx, model->output); for (uint32_t i = 0; i < model->hparams.n_layer; ++i) { auto & layer = model->layers[i]; ggml_format_name(layer.wq, TN_ATTN_Q, i); gguf_add_tensor(ctx, layer.wq); ggml_format_name(layer.wk, TN_ATTN_K, i); gguf_add_tensor(ctx, layer.wk); ggml_format_name(layer.wv, TN_ATTN_V, i); gguf_add_tensor(ctx, layer.wv); ggml_format_name(layer.wo, TN_ATTN_OUTPUT, i); gguf_add_tensor(ctx, layer.wo); ggml_format_name(layer.attention_norm, TN_ATTN_NORM, i); gguf_add_tensor(ctx, layer.attention_norm); ggml_format_name(layer.w1, TN_FFN_GATE, i); gguf_add_tensor(ctx, layer.w1); ggml_format_name(layer.w2, TN_FFN_DOWN, i); gguf_add_tensor(ctx, layer.w2); ggml_format_name(layer.w3, TN_FFN_UP, i); gguf_add_tensor(ctx, layer.w3); ggml_format_name(layer.ffn_norm, TN_FFN_NORM, i); gguf_add_tensor(ctx, layer.ffn_norm); } gguf_write_to_file(ctx, filename, false); gguf_free(ctx); } static struct train_params get_default_train_params() { struct train_params params; params.fn_vocab_model = "models/7B/ggml-model-f16.gguf"; params.fn_llama2c_output_model = "ak_llama_model.bin"; params.fn_train_data = "shakespeare.txt"; params.fn_checkpoint_in = "checkpoint.bin"; params.fn_checkpoint_out = "checkpoint.bin"; params.fn_model_out = "ggml-checkpoint-f32.bin"; params.seed = -1; params.n_ctx = 128; params.n_embd = 256; params.n_mult = 256; params.n_head = 8; params.n_layer = 16; params.n_rotmax = 64; params.n_threads = 6; params.n_batch = 8; params.n_examples = 8; params.n_predict = 1024; params.print_info_interval = 1; params.print_details_interval = 2; params.samples_start_after_nl = false; params.use_adam = true; params.use_flash = false; params.use_scratch = true; // only adam params.warmup = 100; params.cos_decay_steps = 1000; params.cos_decay_restart = 1.1f; params.cos_decay_alpha = 0.0f; params.lbfgs_n_iter = 16; params.adam_n_iter = 16; params.adam_alpha = 1e-3f; params.adam_decay = 1e-3f; params.mem_model_gb = 2; params.mem_compute_gb = 24; params.mem_compute0_gb = 8; params.mem_compute1_gb = 2; return params; } static void print_usage(int /*argc*/, char ** argv, const struct train_params * params) { fprintf(stderr, "usage: %s [options]\n", argv[0]); fprintf(stderr, "\n"); fprintf(stderr, "options:\n"); fprintf(stderr, " -h, --help show this help message and exit\n"); fprintf(stderr, " --copy-vocab-from-model FNAME path of gguf llama model or llama2.c vocabulary from which to copy vocab (default '%s')\n", params->fn_vocab_model); fprintf(stderr, " --llama2c-model FNAME [REQUIRED] model path from which to load Karpathy's llama2.c model\n"); fprintf(stderr, " --llama2c-output-model FNAME model path to save the converted llama2.c model (default %s')\n", params->fn_llama2c_output_model); fprintf(stderr, "\n"); } static bool params_parse(int argc, char ** argv, struct train_params * params) { bool invalid_param = false; bool reqd_param_found = false; std::string arg; struct train_params default_params = get_default_train_params(); const std::string arg_prefix = "--"; for (int i = 1; i < argc; i++) { arg = argv[i]; if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { std::replace(arg.begin(), arg.end(), '_', '-'); } if (arg == "--copy-vocab-from-model") { if (++i >= argc) { invalid_param = true; break; } params->fn_vocab_model = argv[i]; } else if (arg == "--llama2c-model") { if (++i >= argc) { invalid_param = true; break; } reqd_param_found = true; params->fn_llama2c_model = argv[i]; } else if (arg == "--llama2c-output-model") { if (++i >= argc) { invalid_param = true; break; } params->fn_llama2c_output_model = argv[i]; } else if (arg == "-h" || arg == "--help") { print_usage(argc, argv, &default_params); exit(0); } else { fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); print_usage(argc, argv, &default_params); exit(1); } } if (invalid_param) { fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); print_usage(argc, argv, &default_params); exit(1); } if (!reqd_param_found){ fprintf(stderr, "error: please specify a llama2.c .bin file to be converted with argument --llama2c-model\n"); print_usage(argc, argv, &default_params); exit(1); } return true; } static std::string basename(const std::string &path) { size_t pos = path.find_last_of("/\\"); if (pos == std::string::npos) { return path; } return path.substr(pos + 1); } int main(int argc, char ** argv) { common_init(); struct train_params params = get_default_train_params(); if (!params_parse(argc, argv, ¶ms)) { return 1; } Config config; TransformerWeights weights = {}; { LOG_INF("%s: Loading llama2c model from %s\n", __func__, params.fn_llama2c_model); FILE * file = fopen(params.fn_llama2c_model, "rb"); if (!file) { LOG_ERR("%s: Unable to open the checkpoint file %s!\n", __func__, params.fn_llama2c_model); return 1; } // read in the config header if (fread(&config, sizeof(Config), 1, file) != 1) { LOG_ERR("%s: Unable to read llama2c config from %s!\n",__func__,params.fn_llama2c_model); return 1; } auto shared_weights = config.vocab_size > 0; config.vocab_size = abs(config.vocab_size); // read in the Transformer weights alloc_weights(&weights, &config, shared_weights); if (checkpoint_init_weights(&weights, &config, file, shared_weights)) { LOG_ERR("%s: Unable to initialize transformer weights from %s!",__func__,params.fn_llama2c_model); return 1; } fclose(file); } struct my_llama_vocab vocab; load_vocab(params.fn_vocab_model, &config, &vocab); struct my_llama_model model; model.hparams.n_vocab = config.vocab_size; //llama_n_vocab(lctx); model.hparams.n_ctx = params.n_ctx; model.hparams.n_embd = config.dim; //params.n_embd; model.hparams.n_ff = config.hidden_dim; model.hparams.n_mult = 32;//params.n_mult; model.hparams.n_head = config.n_heads; //params.n_head; model.hparams.n_head_kv = config.n_kv_heads; model.hparams.n_layer = config.n_layers; //params.n_layer; model.hparams.n_rot = std::min((uint32_t)params.n_rotmax, model.hparams.n_embd / model.hparams.n_head); print_params(&model.hparams); struct ggml_init_params lcparams; lcparams.mem_size = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb); lcparams.mem_buffer = NULL; lcparams.no_alloc = false; model.ctx = ggml_init(lcparams); init_model(&model); model.name = basename(params.fn_llama2c_model); save_as_llama_model(&vocab, &model, &weights, params.fn_llama2c_output_model); LOG_INF("%s: Saving llama.c model file %s in ggml format at %s\n", __func__, params.fn_llama2c_model, params.fn_llama2c_output_model); ggml_free(model.ctx); return 0; }