// NOTE: This is modified from clip.cpp only for LLaVA, // so there might be still unnecessary artifacts hanging around // I'll gradually clean and extend it #include #include #include #include #include #include #include #include #include #include #include "clip.h" #include "ggml.h" #include "ggml-alloc.h" #define STB_IMAGE_IMPLEMENTATION #include "stb_image.h" #define CLIP_DEBUG static std::string format(const char * fmt, ...) { va_list ap; va_list ap2; va_start(ap, fmt); va_copy(ap2, ap); int size = vsnprintf(NULL, 0, fmt, ap); GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT std::vector buf(size + 1); int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2); GGML_ASSERT(size2 == size); va_end(ap2); va_end(ap); return std::string(buf.data(), buf.size()); } // // key constants // #define KEY_FTYPE "general.file_type" #define KEY_NAME "general.name" #define KEY_DESCRIPTION "general.description" #define KEY_HAS_TEXT_ENC "clip.has_text_encoder" #define KEY_HAS_VIS_ENC "clip.has_vision_encoder" #define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector" #define KEY_USE_GELU "clip.use_gelu" #define KEY_N_EMBD "clip.%s.embedding_length" #define KEY_N_FF "clip.%s.feed_forward_length" #define KEY_N_BLOCK "clip.%s.block_count" #define KEY_N_HEAD "clip.%s.attention.head_count" #define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon" #define KEY_PROJ_DIM "clip.%s.projection_dim" #define KEY_TOKENS "tokenizer.ggml.tokens" #define KEY_N_POSITIONS "clip.text.context_length" #define KEY_IMAGE_SIZE "clip.vision.image_size" #define KEY_PATCH_SIZE "clip.vision.patch_size" #define KEY_IMAGE_MEAN "clip.vision.image_mean" #define KEY_IMAGE_STD "clip.vision.image_std" // // tensor name constants // #define TN_TOKEN_EMBD "%s.token_embd.weight" #define TN_POS_EMBD "%s.position_embd.weight" #define TN_CLASS_EMBD "v.class_embd" #define TN_PATCH_EMBD "v.patch_embd.weight" #define TN_ATTN_K "%s.blk.%d.attn_k.%s" #define TN_ATTN_Q "%s.blk.%d.attn_q.%s" #define TN_ATTN_V "%s.blk.%d.attn_v.%s" #define TN_ATTN_OUTPUT "%s.blk.%d.attn_out.%s" #define TN_FFN_DOWN "%s.blk.%d.ffn_down.%s" #define TN_FFN_UP "%s.blk.%d.ffn_up.%s" #define TN_LN_1 "%s.blk.%d.ln1.%s" #define TN_LN_2 "%s.blk.%d.ln2.%s" #define TN_LN_PRE "%s.pre_ln.%s" #define TN_LN_POST "%s.post_ln.%s" #define TN_TEXT_PROJ "text_projection.weight" #define TN_VIS_PROJ "visual_projection.weight" #define TN_LLAVA_PROJ "mm.%d.%s" // // utilities to get data from a gguf file // static int get_key_idx(const gguf_context * ctx, const char * key) { int i = gguf_find_key(ctx, key); if (i == -1) { fprintf(stderr, "key %s not found in file\n", key); throw std::runtime_error(format("Missing required key: %s", key)); } return i; } static uint32_t get_u32(const gguf_context * ctx, const std::string & key) { const int i = get_key_idx(ctx, key.c_str()); return gguf_get_val_u32(ctx, i); } static float get_f32(const gguf_context * ctx, const std::string & key) { const int i = get_key_idx(ctx, key.c_str()); return gguf_get_val_f32(ctx, i); } static struct ggml_tensor * get_tensor(struct ggml_context * ctx, const std::string & name) { struct ggml_tensor * cur = ggml_get_tensor(ctx, name.c_str()); if (!cur) { printf("unable to find tensor %s\n", name.c_str()); throw std::runtime_error(format("unable to find tensor %s\n", name.c_str())); } return cur; } static std::string get_ftype(int ftype) { switch (ftype) { case 0: return "f32"; case 1: return "f16"; case 2: return "q4_0"; case 3: return "q4_1"; case 6: return "q5_0"; case 7: return "q5_1"; case 8: return "q8_0"; default: throw std::runtime_error(format("Unrecognized file type: %d\n", ftype)); } } // // clip layers // struct clip_layer { // attention struct ggml_tensor * k_w; struct ggml_tensor * k_b; struct ggml_tensor * q_w; struct ggml_tensor * q_b; struct ggml_tensor * v_w; struct ggml_tensor * v_b; struct ggml_tensor * o_w; struct ggml_tensor * o_b; // layernorm 1 struct ggml_tensor * ln_1_w; struct ggml_tensor * ln_1_b; // ff struct ggml_tensor * ff_i_w; struct ggml_tensor * ff_i_b; struct ggml_tensor * ff_o_w; struct ggml_tensor * ff_o_b; // layernorm 2 struct ggml_tensor * ln_2_w; struct ggml_tensor * ln_2_b; }; struct clip_vision_model { struct clip_vision_hparams hparams; // embeddings struct ggml_tensor * class_embedding; struct ggml_tensor * patch_embeddings; struct ggml_tensor * position_embeddings; struct ggml_tensor * pre_ln_w; struct ggml_tensor * pre_ln_b; std::vector layers; struct ggml_tensor * post_ln_w; struct ggml_tensor * post_ln_b; struct ggml_tensor * projection; // LLaVA projection struct ggml_tensor * mm_0_w; struct ggml_tensor * mm_0_b; struct ggml_tensor * mm_2_w; struct ggml_tensor * mm_2_b; }; // Replacement for std::vector that doesn't require zero-initialization. struct clip_buffer { uint8_t * data = NULL; size_t size = 0; void resize(size_t size) { delete[] data; data = new uint8_t[size]; this->size = size; } ~clip_buffer() { delete[] data; } }; struct clip_ctx { bool has_text_encoder = false; bool has_vision_encoder = false; bool has_llava_projector = false; struct clip_vision_model vision_model; float image_mean[3]; float image_std[3]; bool use_gelu = false; int32_t ftype = 1; struct ggml_context * ctx; struct gguf_context * ctx_gguf; // memory buffers to evaluate the model clip_buffer buf_compute; clip_buffer buf_alloc; ggml_allocr * alloc = NULL; }; static ggml_cgraph * clip_image_build_graph(const clip_ctx * ctx, const clip_image_f32_batch * imgs) { if (!ctx->has_vision_encoder) { printf("This gguf file seems to have no vision encoder\n"); return nullptr; } const auto & model = ctx->vision_model; const auto & hparams = model.hparams; const int image_size = hparams.image_size; const int patch_size = hparams.patch_size; const int num_patches = ((image_size / patch_size) * (image_size / patch_size)); const int num_positions = num_patches + 1; const int hidden_size = hparams.hidden_size; const int n_head = hparams.n_head; const int d_head = hidden_size / n_head; const int n_layer = hparams.n_layer; //const int n_intermediate = hparams.n_intermediate; //const int projection_dim = hparams.projection_dim; const float eps = hparams.eps; int batch_size = imgs->size; if(ctx->has_llava_projector) { GGML_ASSERT(batch_size == 1); } const auto & buf_compute = ctx->buf_compute; struct ggml_init_params params = { /*.mem_size =*/ buf_compute.size, /*.mem_buffer =*/ buf_compute.data, /*.no_alloc =*/ false, }; params.no_alloc = true; struct ggml_context * ctx0 = ggml_init(params); struct ggml_cgraph * gf = ggml_new_graph(ctx0); struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size, image_size, 3, batch_size); ggml_allocr_alloc(ctx->alloc, inp_raw); if (!ggml_allocr_is_measure(ctx->alloc)) { float * data = (float *)ggml_get_data(inp_raw); for (size_t i = 0; i < imgs->size; i++) { const int nx = imgs->data[i].nx; const int ny = imgs->data[i].ny; GGML_ASSERT(nx == image_size && ny == image_size); const int n = nx * ny; for (int b = 0; b < batch_size; b++) { for (int k = 0; k < 3; k++) { for (int y = 0; y < ny; y++) { for (int x = 0; x < nx; x++) { data[(b * 3 * n) + k * n + y * nx + x] = imgs->data[b].data[3 * (y * nx + x) + k]; } } } } } } struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings, inp_raw, patch_size, patch_size, 0, 0, 1, 1); inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size); inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3)); // concat class_embeddings and patch_embeddings struct ggml_tensor * embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size); ggml_allocr_alloc(ctx->alloc, embeddings); if (!ggml_allocr_is_measure(ctx->alloc)) { ggml_set_zero(embeddings); } struct ggml_tensor * temp = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, 1, batch_size); ggml_allocr_alloc(ctx->alloc, temp); embeddings = ggml_acc(ctx0, embeddings, ggml_repeat(ctx0, model.class_embedding, temp), embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0); embeddings = ggml_acc(ctx0, embeddings, inp, embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]); struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions); ggml_allocr_alloc(ctx->alloc, positions); if (!ggml_allocr_is_measure(ctx->alloc)) { for (int i = 0; i < num_positions; i++) { ggml_set_i32_1d(positions, i, i); } } embeddings = ggml_add(ctx0, embeddings, ggml_repeat(ctx0, ggml_get_rows(ctx0, model.position_embeddings, positions), embeddings)); // pre-layernorm { embeddings = ggml_norm(ctx0, embeddings, eps); embeddings = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.pre_ln_w, embeddings), embeddings), ggml_repeat(ctx0, model.pre_ln_b, embeddings)); } struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); ggml_allocr_alloc(ctx->alloc, KQ_scale); if (!ggml_allocr_is_measure(ctx->alloc)) { ggml_set_f32(KQ_scale, 1.0f / sqrt((float)d_head)); } // loop over layers for (int il = 0; il < n_layer - 1; il++) { struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states //const size_t nb_q_w = model.layers[il].q_w->nb[0]; // layernorm1 { cur = ggml_norm(ctx0, cur, eps); cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].ln_1_w, cur), cur), ggml_repeat(ctx0, model.layers[il].ln_1_b, cur)); } // self-attention { struct ggml_tensor * Q = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].q_b, cur), ggml_mul_mat(ctx0, model.layers[il].q_w, cur)); Q = ggml_scale_inplace(ctx0, Q, KQ_scale); Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size); Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3)); Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size); struct ggml_tensor * K = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].k_b, cur), ggml_mul_mat(ctx0, model.layers[il].k_w, cur)); K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size); K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3)); K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size); struct ggml_tensor * V = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].v_b, cur), ggml_mul_mat(ctx0, model.layers[il].v_w, cur)); V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size); V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3)); V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size); struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); KQ = ggml_soft_max_inplace(ctx0, KQ); struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ); KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size); KQV = ggml_cont(ctx0, ggml_permute(ctx0, KQV, 0, 2, 1, 3)); cur = ggml_cpy(ctx0, KQV, ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size)); } // attention output cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].o_b, cur), ggml_mul_mat(ctx0, model.layers[il].o_w, cur)); // re-add the layer input, e.g., residual cur = ggml_add(ctx0, cur, embeddings); embeddings = cur; // embeddings = residual, cur = hidden_states // layernorm2 { cur = ggml_norm(ctx0, cur, eps); cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].ln_2_w, cur), cur), ggml_repeat(ctx0, model.layers[il].ln_2_b, cur)); } cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur); cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].ff_i_b, cur), cur); if (ctx->use_gelu) { cur = ggml_gelu_inplace(ctx0, cur); } else { cur = ggml_gelu_quick_inplace(ctx0, cur); } cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur); cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].ff_o_b, cur), cur); // residual 2 cur = ggml_add(ctx0, embeddings, cur); embeddings = cur; } // llava projector { embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]); struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches); ggml_allocr_alloc(ctx->alloc, patches); if (!ggml_allocr_is_measure(ctx->alloc)) { for (int i = 0; i < num_patches; ++i) { ggml_set_i32_1d(patches, i, i+1); } } embeddings = ggml_get_rows(ctx0, embeddings, patches); // mm projection 0 embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings); embeddings = ggml_add(ctx0, ggml_repeat(ctx0, model.mm_0_b, embeddings), embeddings); embeddings = ggml_gelu(ctx0, embeddings); embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings); embeddings = ggml_add(ctx0, ggml_repeat(ctx0, model.mm_2_b, embeddings), embeddings); } // build the graph ggml_build_forward_expand(gf, embeddings); ggml_free(ctx0); return gf; } // read and create ggml_context containing the tensors and their data struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { struct ggml_context * meta = NULL; struct gguf_init_params params = { /*.no_alloc = */ true, /*.ctx = */ &meta, }; struct gguf_context * ctx = gguf_init_from_file(fname, params); if (verbosity >= 1) { const int n_tensors = gguf_get_n_tensors(ctx); const int n_kv = gguf_get_n_kv(ctx); const int ftype = get_u32(ctx, KEY_FTYPE); const std::string ftype_str = get_ftype(ftype); const int idx_desc = get_key_idx(ctx, KEY_DESCRIPTION); const std::string description = gguf_get_val_str(ctx, idx_desc); const int idx_name = gguf_find_key(ctx, KEY_NAME); if (idx_name != -1) { // make name optional temporarily as some of the uploaded models missing it due to a bug const std::string name = gguf_get_val_str(ctx, idx_name); printf("%s: model name: %s\n", __func__, name.c_str()); } printf("%s: description: %s\n", __func__, description.c_str()); printf("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx)); printf("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx)); printf("%s: n_tensors: %d\n", __func__, n_tensors); printf("%s: n_kv: %d\n", __func__, n_kv); printf("%s: ftype: %s\n", __func__, ftype_str.c_str()); printf("\n"); } // kv if (verbosity >= 3) { const int n_kv = gguf_get_n_kv(ctx); for (int i = 0; i < n_kv; ++i) { const char * key = gguf_get_key(ctx, i); printf("%s: kv[%d]: key = %s\n", __func__, i, key); } printf("\n"); } // data size_t ctx_size = 0; { const int n_tensors = gguf_get_n_tensors(ctx); for (int i = 0; i < n_tensors; ++i) { const char * name = gguf_get_tensor_name(ctx, i); const size_t offset = gguf_get_tensor_offset(ctx, i); struct ggml_tensor * cur = ggml_get_tensor(meta, name); ctx_size += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE; size_t tensor_size = ggml_nbytes(cur); size_t padded_size = ggml_nbytes_pad(cur); ctx_size += padded_size; if (verbosity >= 3) { printf("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, padded_size=%zu, offset=%zu\n", __func__, i, cur->n_dims, cur->name, tensor_size, padded_size, offset); } } } clip_ctx * new_clip = new clip_ctx; // model size and capabilities { int idx = get_key_idx(ctx, KEY_HAS_TEXT_ENC); new_clip->has_text_encoder = gguf_get_val_bool(ctx, idx); idx = get_key_idx(ctx, KEY_HAS_VIS_ENC); new_clip->has_vision_encoder = gguf_get_val_bool(ctx, idx); idx = gguf_find_key(ctx, KEY_HAS_LLAVA_PROJ); if (idx != -1) { new_clip->has_llava_projector = gguf_get_val_bool(ctx, idx); } GGML_ASSERT(new_clip->has_llava_projector); // see monatis/clip.cpp for image and/or text encoding for semantic search GGML_ASSERT(new_clip->has_vision_encoder); GGML_ASSERT(!new_clip->has_text_encoder); idx = get_key_idx(ctx, KEY_USE_GELU); new_clip->use_gelu = gguf_get_val_bool(ctx, idx); if (verbosity >= 1) { printf("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder); printf("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder); printf("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector); printf("%s: model size: %.2f MB\n", __func__, (ctx_size / 1024.0 / 1024.0)); printf("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0); } } // load tensors { struct ggml_init_params params = { /*.mem_size =*/ ctx_size, /*.mem_buffer =*/ NULL, /*.no_alloc =*/ false, }; new_clip->ctx = ggml_init(params); if (!new_clip->ctx) { fprintf(stderr, "%s: ggml_init() failed\n", __func__); clip_free(new_clip); return nullptr; } auto fin = std::ifstream(fname, std::ios::binary); if (!fin) { printf("cannot open model file for loading tensors\n"); clip_free(new_clip); return nullptr; } const int n_tensors = gguf_get_n_tensors(ctx); for (int i = 0; i < n_tensors; ++i) { const char * name = gguf_get_tensor_name(ctx, i); struct ggml_tensor * t = ggml_get_tensor(meta, name); struct ggml_tensor * cur = ggml_dup_tensor(new_clip->ctx, t); ggml_set_name(cur, name); const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i); fin.seekg(offset, std::ios::beg); if (!fin) { printf("%s: failed to seek for tensor %s\n", __func__, name); clip_free(new_clip); return nullptr; } fin.read(reinterpret_cast(cur->data), ggml_nbytes(t)); } fin.close(); } // vision model if (new_clip->has_vision_encoder) { // load vision model auto & vision_model = new_clip->vision_model; auto & hparams = vision_model.hparams; hparams.hidden_size = get_u32(ctx, format(KEY_N_EMBD, "vision")); hparams.n_head = get_u32(ctx, format(KEY_N_HEAD, "vision")); hparams.n_intermediate = get_u32(ctx, format(KEY_N_FF, "vision")); hparams.n_layer = get_u32(ctx, format(KEY_N_BLOCK, "vision")); hparams.image_size = get_u32(ctx, KEY_IMAGE_SIZE); hparams.patch_size = get_u32(ctx, KEY_PATCH_SIZE); hparams.projection_dim = get_u32(ctx, format(KEY_PROJ_DIM, "vision")); hparams.eps = get_f32(ctx, format(KEY_LAYER_NORM_EPS, "vision")); int idx_mean = get_key_idx(ctx, KEY_IMAGE_MEAN); int idx_std = get_key_idx(ctx, KEY_IMAGE_STD); for (int i = 0; i < 3; ++i) { new_clip->image_mean[i] = *((const float *)gguf_get_arr_data(ctx, idx_mean)); new_clip->image_std[i] = *((const float *)gguf_get_arr_data(ctx, idx_std)); } if (verbosity >= 2) { printf("\n%s: vision model hparams\n", __func__); printf("image_size %d\n", hparams.image_size); printf("patch_size %d\n", hparams.patch_size); printf("v_hidden_size %d\n", hparams.hidden_size); printf("v_n_intermediate %d\n", hparams.n_intermediate); printf("v_projection_dim %d\n", hparams.projection_dim); printf("v_n_head %d\n", hparams.n_head); printf("v_n_layer %d\n", hparams.n_layer); } vision_model.patch_embeddings = get_tensor(new_clip->ctx, TN_PATCH_EMBD); vision_model.class_embedding = get_tensor(new_clip->ctx, TN_CLASS_EMBD); vision_model.position_embeddings = get_tensor(new_clip->ctx, format(TN_POS_EMBD, "v")); vision_model.pre_ln_w = get_tensor(new_clip->ctx, format(TN_LN_PRE, "v", "weight")); vision_model.pre_ln_b = get_tensor(new_clip->ctx, format(TN_LN_PRE, "v", "bias")); vision_model.mm_0_w = get_tensor(new_clip->ctx, format(TN_LLAVA_PROJ, 0, "weight")); vision_model.mm_0_b = get_tensor(new_clip->ctx, format(TN_LLAVA_PROJ, 0, "bias")); vision_model.mm_2_w = get_tensor(new_clip->ctx, format(TN_LLAVA_PROJ, 2, "weight")); vision_model.mm_2_b = get_tensor(new_clip->ctx, format(TN_LLAVA_PROJ, 2, "bias")); vision_model.layers.resize(hparams.n_layer); for (int il = 0; il < hparams.n_layer; ++il) { auto & layer = vision_model.layers[il]; layer.k_w = get_tensor(new_clip->ctx, format(TN_ATTN_K, "v", il, "weight")); layer.q_w = get_tensor(new_clip->ctx, format(TN_ATTN_Q, "v", il, "weight")); layer.v_w = get_tensor(new_clip->ctx, format(TN_ATTN_V, "v", il, "weight")); layer.o_w = get_tensor(new_clip->ctx, format(TN_ATTN_OUTPUT, "v", il, "weight")); layer.ln_1_w = get_tensor(new_clip->ctx, format(TN_LN_1, "v", il, "weight")); layer.ln_2_w = get_tensor(new_clip->ctx, format(TN_LN_2, "v", il, "weight")); layer.ff_i_w = get_tensor(new_clip->ctx, format(TN_FFN_DOWN, "v", il, "weight")); layer.ff_o_w = get_tensor(new_clip->ctx, format(TN_FFN_UP, "v", il, "weight")); layer.k_b = get_tensor(new_clip->ctx, format(TN_ATTN_K, "v", il, "bias")); layer.q_b = get_tensor(new_clip->ctx, format(TN_ATTN_Q, "v", il, "bias")); layer.v_b = get_tensor(new_clip->ctx, format(TN_ATTN_V, "v", il, "bias")); layer.o_b = get_tensor(new_clip->ctx, format(TN_ATTN_OUTPUT, "v", il, "bias")); layer.ln_1_b = get_tensor(new_clip->ctx, format(TN_LN_1, "v", il, "bias")); layer.ln_2_b = get_tensor(new_clip->ctx, format(TN_LN_2, "v", il, "bias")); layer.ff_i_b = get_tensor(new_clip->ctx, format(TN_FFN_DOWN, "v", il, "bias")); layer.ff_o_b = get_tensor(new_clip->ctx, format(TN_FFN_UP, "v", il, "bias")); } } ggml_free(meta); new_clip->ctx_gguf = ctx; // measure mem requirement and allocate { static const size_t tensor_alignment = 32; new_clip->buf_compute.resize(ggml_tensor_overhead()*GGML_MAX_NODES + ggml_graph_overhead()); new_clip->alloc = ggml_allocr_new_measure(tensor_alignment); clip_image_f32_batch batch; batch.size = 1; ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch); size_t alloc_size = ggml_allocr_alloc_graph(new_clip->alloc, gf) + tensor_alignment; ggml_allocr_free(new_clip->alloc); new_clip->buf_alloc.resize(alloc_size); new_clip->alloc = ggml_allocr_new(new_clip->buf_alloc.data, new_clip->buf_alloc.size, tensor_alignment); printf("%s: total allocated memory: %.2f MB\n", __func__, (new_clip->buf_compute.size + alloc_size)/1024.0/1024.0); } return new_clip; } clip_image_u8 * make_clip_image_u8() { return new clip_image_u8(); } clip_image_f32 * make_clip_image_f32() { return new clip_image_f32(); } bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) { int nx, ny, nc; auto data = stbi_load(fname, &nx, &ny, &nc, 3); if (!data) { fprintf(stderr, "%s: failed to load '%s'\n", __func__, fname); return false; } img->nx = nx; img->ny = ny; img->size = nx * ny * 3; img->data = new uint8_t[img->size](); memcpy(img->data, data, img->size); stbi_image_free(data); return true; } // normalize: x = (x - mean) / std // TODO: implement bicubic interpolation instead of linear. bool clip_image_preprocess(const clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32 * res, const bool pad2square) { if (!ctx->has_vision_encoder) { printf("This gguf file seems to have no vision encoder\n"); return false; } // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104) // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156 clip_image_u8 temp; // we will keep the input image data here temporarily if (pad2square && img->nx != img->ny) { int longer_side = std::max(img->nx, img->ny); temp.nx = longer_side; temp.ny = longer_side; temp.size = 3 * longer_side * longer_side; temp.data = new uint8_t[temp.size](); uint8_t bc[3] = {122, 116, 104}; // bakground color in RGB from LLaVA // fill with background color for (size_t i = 0; i < temp.size; i++) { temp.data[i] = bc[i % 3]; } // copy from the input image for (int y = 0; y < img->ny; y++) { for (int x = 0; x < img->nx; x++) { const int i = 3 * (y * img->nx + x); const int j = 3 * (y * temp.nx + x); temp.data[j] = img->data[i]; temp.data[j+1] = img->data[i+1]; temp.data[j+2] = img->data[i+2]; } } } else { temp.nx = img->nx; temp.ny = img->ny; temp.size = img->size; temp.data = img->data; } const int nx = temp.nx; const int ny = temp.ny; const int nx2 = ctx->vision_model.hparams.image_size; const int ny2 = ctx->vision_model.hparams.image_size; res->nx = nx2; res->ny = ny2; res->size = 3 * nx2 * ny2; res->data = new float[res->size](); const float scale = std::max(nx, ny) / (float)ctx->vision_model.hparams.image_size; const int nx3 = int(nx / scale + 0.5f); const int ny3 = int(ny / scale + 0.5f); const auto & m3 = ctx->image_mean; // {0.48145466f, 0.4578275f, 0.40821073f}; const auto & s3 = ctx->image_std; // {0.26862954f, 0.26130258f, 0.27577711f}; for (int y = 0; y < ny3; y++) { for (int x = 0; x < nx3; x++) { for (int c = 0; c < 3; c++) { // linear interpolation const float sx = (x + 0.5f) * scale - 0.5f; const float sy = (y + 0.5f) * scale - 0.5f; const int x0 = std::max(0, (int)std::floor(sx)); const int y0 = std::max(0, (int)std::floor(sy)); const int x1 = std::min(x0 + 1, nx - 1); const int y1 = std::min(y0 + 1, ny - 1); const float dx = sx - x0; const float dy = sy - y0; const int j00 = 3 * (y0 * nx + x0) + c; const int j01 = 3 * (y0 * nx + x1) + c; const int j10 = 3 * (y1 * nx + x0) + c; const int j11 = 3 * (y1 * nx + x1) + c; const float v00 = temp.data[j00]; const float v01 = temp.data[j01]; const float v10 = temp.data[j10]; const float v11 = temp.data[j11]; const float v0 = v00 * (1.0f - dx) + v01 * dx; const float v1 = v10 * (1.0f - dx) + v11 * dx; const float v = v0 * (1.0f - dy) + v1 * dy; const uint8_t v2 = std::min(std::max(std::round(v), 0.0f), 255.0f); const int i = 3 * (y * nx3 + x) + c; res->data[i] = ((float(v2) / 255.0f) - m3[c]) / s3[c]; } } } return true; } void clip_free(clip_ctx * ctx) { ggml_free(ctx->ctx); gguf_free(ctx->ctx_gguf); delete ctx; } bool clip_image_encode(const clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) { if (!ctx->has_vision_encoder) { printf("This gguf file seems to have no vision encoder\n"); return false; } clip_image_f32_batch imgs{}; imgs.size = 1; imgs.data = img; return clip_image_batch_encode(ctx, n_threads, &imgs, vec); } bool clip_image_batch_encode(const clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec) { if (!ctx->has_vision_encoder) { printf("This gguf file seems to have no vision encoder\n"); return false; } int batch_size = imgs->size; if(ctx->has_llava_projector) { GGML_ASSERT(batch_size == 1); // TODO: support multiple images } // reset alloc buffer to clean the memory from previous invocations ggml_allocr_reset(ctx->alloc); // build the inference graph ggml_cgraph * gf = clip_image_build_graph(ctx, imgs); ggml_allocr_alloc_graph(ctx->alloc, gf); struct ggml_cplan plan = ggml_graph_plan(gf, n_threads); if (plan.work_size > 0) { plan.work_data = (uint8_t *)malloc(plan.work_size); } ggml_graph_compute(gf, &plan); // the last node is the embedding tensor struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 1]; // copy the embeddings to the location passed by the user memcpy(vec, ggml_get_data_f32(embeddings), ggml_nbytes(embeddings)); if (plan.work_size > 0) { free(plan.work_data); } return true; } bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype) { ggml_type type = GGML_TYPE_Q4_1; switch (itype) { case 2: type = GGML_TYPE_Q4_0; break; case 3: type = GGML_TYPE_Q4_1; break; case 6: type = GGML_TYPE_Q5_0; break; case 7: type = GGML_TYPE_Q5_1; break; case 8: type = GGML_TYPE_Q8_0; break; default: fprintf(stderr, "%s: invalid quantization type %d\n", __func__, itype); return false; }; auto ctx_clip = clip_model_load(fname_inp, 2); const auto & ctx_src = ctx_clip->ctx_gguf; const auto & ctx_data = ctx_clip->ctx; auto ctx_out = gguf_init_empty(); gguf_set_kv(ctx_out, ctx_src); gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION); gguf_set_val_u32(ctx_out, "general.file_type", itype); auto fout = std::ofstream(fname_out, std::ios::binary); const int n_tensors = gguf_get_n_tensors(ctx_src); for (int i = 0; i < n_tensors; ++i) { const char * name = gguf_get_tensor_name(ctx_src, i); struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name); gguf_add_tensor(ctx_out, cur); } const size_t meta_size = gguf_get_meta_size(ctx_out); for (size_t i = 0; i < meta_size; ++i) { fout.put(0); } // regexes of tensor names to be quantized const std::vector k_names = { ".*weight", }; std::vector read_data(512); std::vector work(512); std::vector conv_buf(512); std::vector hist_all(1 << 4, 0); size_t total_size_org = 0; size_t total_size_new = 0; for (int i = 0; i < n_tensors; ++i) { const std::string name = gguf_get_tensor_name(ctx_src, i); struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str()); enum ggml_type new_type; void * new_data; size_t new_size; bool quantize = false; for (const auto & s : k_names) { if (std::regex_match(name, std::regex(s))) { quantize = true; break; } } // quantize only 2D tensors quantize &= (cur->n_dims == 2); if (quantize) { new_type = type; const size_t n_elms = ggml_nelements(cur); float * f32_data; switch (cur->type) { case GGML_TYPE_F32: f32_data = (float *)cur->data; break; case GGML_TYPE_F16: if (conv_buf.size() < n_elms) { conv_buf.resize(n_elms); } for (size_t j = 0; j < n_elms; ++j) { conv_buf[j] = ggml_fp16_to_fp32(((ggml_fp16_t *)cur->data)[j]); } f32_data = (float *)conv_buf.data(); break; default: printf("Please use an input file in f32 or f16\n"); return false; } if (work.size() < n_elms * 4) { work.resize(n_elms * 4); } new_data = work.data(); std::vector hist_cur(1 << 4, 0); switch (new_type) { case GGML_TYPE_Q4_0: { new_size = ggml_quantize_q4_0(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data()); } break; case GGML_TYPE_Q4_1: { new_size = ggml_quantize_q4_1(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data()); } break; case GGML_TYPE_Q5_0: { new_size = ggml_quantize_q5_0(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data()); } break; case GGML_TYPE_Q5_1: { new_size = ggml_quantize_q5_1(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data()); } break; case GGML_TYPE_Q8_0: { new_size = ggml_quantize_q8_0(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data()); } break; default: { fprintf(stderr, "%s: unsupported quantization type %d\n", __func__, new_type); return false; } } for (size_t j = 0; j < hist_cur.size(); ++j) { hist_all[j] += hist_cur[j]; } } else { new_type = cur->type; new_data = cur->data; new_size = ggml_nbytes(cur); } const size_t orig_size = ggml_nbytes(cur); total_size_org += orig_size; total_size_new += new_size; gguf_set_tensor_type(ctx_out, name.c_str(), new_type); gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size); fout.write((const char *)new_data, new_size); size_t pad = GGML_PAD(new_size, gguf_get_alignment(ctx_out)) - new_size; for (size_t j = 0; j < pad; ++j) { fout.put(0); } printf("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), cur->n_dims, quantize, orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0); } // go back to beginning of file and write the updated metadata fout.seekp(0, std::ios::beg); std::vector meta(meta_size); gguf_get_meta_data(ctx_out, meta.data()); fout.write((const char *)meta.data(), meta_size); fout.close(); clip_free(ctx_clip); gguf_free(ctx_out); { printf("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0); printf("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0); int64_t sum_all = 0; for (size_t i = 0; i < hist_all.size(); ++i) { sum_all += hist_all[i]; } printf("%s: hist: ", __func__); for (size_t i = 0; i < hist_all.size(); ++i) { printf("%5.3f ", hist_all[i] / (float)sum_all); } printf("\n"); } return true; } int clip_n_mmproj_embd(struct clip_ctx * ctx) { return ctx->vision_model.mm_2_b->ne[0]; } int clip_n_patches(struct clip_ctx * ctx) { auto & params = ctx->vision_model.hparams; return (params.image_size / params.patch_size) * (params.image_size / params.patch_size); } size_t clip_embd_nbytes(struct clip_ctx * ctx) { return clip_n_patches(ctx) * clip_n_mmproj_embd(ctx) * sizeof(float); }