#include "llama-grammar.h" #include "llama-vocab.h" #include "llama-sampling.h" #include #include #include // // helpers // // NOTE: assumes valid utf8 (but checks for overrun) static std::pair decode_utf8(const char * src) { static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 }; uint8_t first_byte = static_cast(*src); uint8_t highbits = first_byte >> 4; int len = lookup[highbits]; uint8_t mask = (1 << (8 - len)) - 1; uint32_t value = first_byte & mask; const char * end = src + len; // may overrun! const char * pos = src + 1; for ( ; pos < end && *pos; pos++) { value = (value << 6) + (static_cast(*pos) & 0x3F); } return std::make_pair(value, pos); } static std::pair, llama_partial_utf8> decode_utf8( const std::string & src, llama_partial_utf8 partial_start) { static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 }; const char * pos = src.c_str(); std::vector code_points; // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0. code_points.reserve(src.size() + 1); uint32_t value = partial_start.value; int n_remain = partial_start.n_remain; // continue previous decode, if applicable while (*pos != 0 && n_remain > 0) { uint8_t next_byte = static_cast(*pos); if ((next_byte >> 6) != 2) { // invalid sequence, abort code_points.push_back(0); return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 }); } value = (value << 6) + (next_byte & 0x3F); ++pos; --n_remain; } if (partial_start.n_remain > 0 && n_remain == 0) { code_points.push_back(value); } // decode any subsequent utf-8 sequences, which may end in an incomplete one while (*pos != 0) { uint8_t first_byte = static_cast(*pos); uint8_t highbits = first_byte >> 4; n_remain = lookup[highbits] - 1; if (n_remain < 0) { // invalid sequence, abort code_points.clear(); code_points.push_back(0); return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain }); } uint8_t mask = (1 << (7 - n_remain)) - 1; value = first_byte & mask; ++pos; while (*pos != 0 && n_remain > 0) { value = (value << 6) + (static_cast(*pos) & 0x3F); ++pos; --n_remain; } if (n_remain == 0) { code_points.push_back(value); } } code_points.push_back(0); return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain }); } static bool is_digit_char(char c) { return '0' <= c && c <= '9'; } static bool is_word_char(char c) { return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || c == '-' || is_digit_char(c); } static std::pair parse_hex(const char * src, int size) { const char * pos = src; const char * end = src + size; uint32_t value = 0; for ( ; pos < end && *pos; pos++) { value <<= 4; char c = *pos; if ('a' <= c && c <= 'f') { value += c - 'a' + 10; } else if ('A' <= c && c <= 'F') { value += c - 'A' + 10; } else if ('0' <= c && c <= '9') { value += c - '0'; } else { break; } } if (pos != end) { throw std::runtime_error("expecting " + std::to_string(size) + " hex chars at " + src); } return std::make_pair(value, pos); } static const char * parse_space(const char * src, bool newline_ok) { const char * pos = src; while (*pos == ' ' || *pos == '\t' || *pos == '#' || (newline_ok && (*pos == '\r' || *pos == '\n'))) { if (*pos == '#') { while (*pos && *pos != '\r' && *pos != '\n') { pos++; } } else { pos++; } } return pos; } static const char * parse_name(const char * src) { const char * pos = src; while (is_word_char(*pos)) { pos++; } if (pos == src) { throw std::runtime_error(std::string("expecting name at ") + src); } return pos; } static const char * parse_int(const char * src) { const char * pos = src; while (is_digit_char(*pos)) { pos++; } if (pos == src) { throw std::runtime_error(std::string("expecting integer at ") + src); } return pos; } static std::pair parse_char(const char * src) { if (*src == '\\') { switch (src[1]) { case 'x': return parse_hex(src + 2, 2); case 'u': return parse_hex(src + 2, 4); case 'U': return parse_hex(src + 2, 8); case 't': return std::make_pair('\t', src + 2); case 'r': return std::make_pair('\r', src + 2); case 'n': return std::make_pair('\n', src + 2); case '\\': case '"': case '[': case ']': return std::make_pair(src[1], src + 2); default: throw std::runtime_error(std::string("unknown escape at ") + src); } } else if (*src) { return decode_utf8(src); } throw std::runtime_error("unexpected end of input"); } static void print_grammar_char(FILE * file, uint32_t c) { if (0x20 <= c && c <= 0x7f) { fprintf(file, "%c", static_cast(c)); } else { // cop out of encoding UTF-8 fprintf(file, "", c); } } static bool is_char_element(llama_grammar_element elem) { switch (elem.type) { case LLAMA_GRETYPE_CHAR: return true; case LLAMA_GRETYPE_CHAR_NOT: return true; case LLAMA_GRETYPE_CHAR_ALT: return true; case LLAMA_GRETYPE_CHAR_RNG_UPPER: return true; case LLAMA_GRETYPE_CHAR_ANY: return true; default: return false; } } static void print_rule_binary(FILE * file, const llama_grammar_rule & rule) { for (auto elem : rule) { switch (elem.type) { case LLAMA_GRETYPE_END: fprintf(file, "END"); break; case LLAMA_GRETYPE_ALT: fprintf(file, "ALT"); break; case LLAMA_GRETYPE_RULE_REF: fprintf(file, "RULE_REF"); break; case LLAMA_GRETYPE_CHAR: fprintf(file, "CHAR"); break; case LLAMA_GRETYPE_CHAR_NOT: fprintf(file, "CHAR_NOT"); break; case LLAMA_GRETYPE_CHAR_RNG_UPPER: fprintf(file, "CHAR_RNG_UPPER"); break; case LLAMA_GRETYPE_CHAR_ALT: fprintf(file, "CHAR_ALT"); break; case LLAMA_GRETYPE_CHAR_ANY: fprintf(file, "CHAR_ANY"); break; } switch (elem.type) { case LLAMA_GRETYPE_END: case LLAMA_GRETYPE_ALT: case LLAMA_GRETYPE_RULE_REF: fprintf(file, "(%u) ", elem.value); break; case LLAMA_GRETYPE_CHAR: case LLAMA_GRETYPE_CHAR_NOT: case LLAMA_GRETYPE_CHAR_RNG_UPPER: case LLAMA_GRETYPE_CHAR_ALT: case LLAMA_GRETYPE_CHAR_ANY: fprintf(file, "(\""); print_grammar_char(file, elem.value); fprintf(file, "\") "); break; } } fprintf(file, "\n"); } static void print_rule( FILE * file, uint32_t rule_id, const llama_grammar_rule & rule, const std::map & symbol_id_names) { if (rule.empty() || rule.back().type != LLAMA_GRETYPE_END) { throw std::runtime_error( "malformed rule, does not end with LLAMA_GRETYPE_END: " + std::to_string(rule_id)); } fprintf(file, "%s ::= ", symbol_id_names.at(rule_id).c_str()); for (size_t i = 0, end = rule.size() - 1; i < end; i++) { llama_grammar_element elem = rule[i]; switch (elem.type) { case LLAMA_GRETYPE_END: throw std::runtime_error( "unexpected end of rule: " + std::to_string(rule_id) + "," + std::to_string(i)); case LLAMA_GRETYPE_ALT: fprintf(file, "| "); break; case LLAMA_GRETYPE_RULE_REF: fprintf(file, "%s ", symbol_id_names.at(elem.value).c_str()); break; case LLAMA_GRETYPE_CHAR: fprintf(file, "["); print_grammar_char(file, elem.value); break; case LLAMA_GRETYPE_CHAR_NOT: fprintf(file, "[^"); print_grammar_char(file, elem.value); break; case LLAMA_GRETYPE_CHAR_RNG_UPPER: if (i == 0 || !is_char_element(rule[i - 1])) { throw std::runtime_error( "LLAMA_GRETYPE_CHAR_RNG_UPPER without preceding char: " + std::to_string(rule_id) + "," + std::to_string(i)); } fprintf(file, "-"); print_grammar_char(file, elem.value); break; case LLAMA_GRETYPE_CHAR_ALT: if (i == 0 || !is_char_element(rule[i - 1])) { throw std::runtime_error( "LLAMA_GRETYPE_CHAR_ALT without preceding char: " + std::to_string(rule_id) + "," + std::to_string(i)); } print_grammar_char(file, elem.value); break; case LLAMA_GRETYPE_CHAR_ANY: fprintf(file, "."); break; } if (is_char_element(elem)) { switch (rule[i + 1].type) { case LLAMA_GRETYPE_CHAR_ALT: case LLAMA_GRETYPE_CHAR_RNG_UPPER: case LLAMA_GRETYPE_CHAR_ANY: break; default: fprintf(file, "] "); } } } fprintf(file, "\n"); } // // implementation // uint32_t llama_grammar_parser::get_symbol_id(const char * src, size_t len) { uint32_t next_id = static_cast(symbol_ids.size()); auto result = symbol_ids.emplace(std::string(src, len), next_id); return result.first->second; } uint32_t llama_grammar_parser::generate_symbol_id(const std::string & base_name) { uint32_t next_id = static_cast(symbol_ids.size()); symbol_ids[base_name + '_' + std::to_string(next_id)] = next_id; return next_id; } void llama_grammar_parser::add_rule(uint32_t rule_id, const llama_grammar_rule & rule) { if (rules.size() <= rule_id) { rules.resize(rule_id + 1); } rules[rule_id] = rule; } const char * llama_grammar_parser::parse_alternates( const char * src, const std::string & rule_name, uint32_t rule_id, bool is_nested) { llama_grammar_rule rule; const char * pos = parse_sequence(src, rule_name, rule, is_nested); while (*pos == '|') { rule.push_back({LLAMA_GRETYPE_ALT, 0}); pos = parse_space(pos + 1, true); pos = parse_sequence(pos, rule_name, rule, is_nested); } rule.push_back({LLAMA_GRETYPE_END, 0}); add_rule(rule_id, rule); return pos; } const char * llama_grammar_parser::parse_sequence( const char * src, const std::string & rule_name, llama_grammar_rule & rule, bool is_nested) { size_t last_sym_start = rule.size(); const char * pos = src; auto handle_repetitions = [&](int min_times, int max_times) { if (last_sym_start == rule.size()) { throw std::runtime_error(std::string("expecting preceding item to */+/?/{ at ") + pos); } // apply transformation to previous symbol (last_sym_start to end) according to // the following rewrite rules: // S{m,n} --> S S S (m times) S'(n-m) // S'(x) ::= S S'(x-1) | // (... n-m definitions of these S' rules ...) // S'(1) ::= S | // S{m,} --> S S S (m times) S' // S' ::= S S' | // S* --> S{0,} // --> S' ::= S S' | // S+ --> S{1,} // --> S S' // S' ::= S S' | // S? --> S{0,1} // --> S' // S' ::= S | llama_grammar_rule prev_rule(rule.begin() + last_sym_start, rule.end()); if (min_times == 0) { rule.resize(last_sym_start); } else { // Repeat the previous elements (min_times - 1) times for (int i = 1; i < min_times; i++) { rule.insert(rule.end(), prev_rule.begin(), prev_rule.end()); } } uint32_t last_rec_rule_id = 0; auto n_opt = max_times < 0 ? 1 : max_times - min_times; llama_grammar_rule rec_rule(prev_rule); for (int i = 0; i < n_opt; i++) { rec_rule.resize(prev_rule.size()); uint32_t rec_rule_id = generate_symbol_id( rule_name); if (i > 0 || max_times < 0) { rec_rule.push_back({LLAMA_GRETYPE_RULE_REF, max_times < 0 ? rec_rule_id : last_rec_rule_id}); } rec_rule.push_back({LLAMA_GRETYPE_ALT, 0}); rec_rule.push_back({LLAMA_GRETYPE_END, 0}); add_rule( rec_rule_id, rec_rule); last_rec_rule_id = rec_rule_id; } if (n_opt > 0) { rule.push_back({LLAMA_GRETYPE_RULE_REF, last_rec_rule_id}); } }; while (*pos) { if (*pos == '"') { // literal string pos++; last_sym_start = rule.size(); while (*pos != '"') { if (!*pos) { throw std::runtime_error("unexpected end of input"); } auto char_pair = parse_char(pos); pos = char_pair.second; rule.push_back({LLAMA_GRETYPE_CHAR, char_pair.first}); } pos = parse_space(pos + 1, is_nested); } else if (*pos == '[') { // char range(s) pos++; enum llama_gretype start_type = LLAMA_GRETYPE_CHAR; if (*pos == '^') { pos++; start_type = LLAMA_GRETYPE_CHAR_NOT; } last_sym_start = rule.size(); while (*pos != ']') { if (!*pos) { throw std::runtime_error("unexpected end of input"); } auto char_pair = parse_char(pos); pos = char_pair.second; enum llama_gretype type = last_sym_start < rule.size() ? LLAMA_GRETYPE_CHAR_ALT : start_type; rule.push_back({type, char_pair.first}); if (pos[0] == '-' && pos[1] != ']') { if (!pos[1]) { throw std::runtime_error("unexpected end of input"); } auto endchar_pair = parse_char(pos + 1); pos = endchar_pair.second; rule.push_back({LLAMA_GRETYPE_CHAR_RNG_UPPER, endchar_pair.first}); } } pos = parse_space(pos + 1, is_nested); } else if (is_word_char(*pos)) { // rule reference const char * name_end = parse_name(pos); uint32_t ref_rule_id = get_symbol_id(pos, name_end - pos); pos = parse_space(name_end, is_nested); last_sym_start = rule.size(); rule.push_back({LLAMA_GRETYPE_RULE_REF, ref_rule_id}); } else if (*pos == '(') { // grouping // parse nested alternates into synthesized rule pos = parse_space(pos + 1, true); uint32_t sub_rule_id = generate_symbol_id(rule_name); pos = parse_alternates(pos, rule_name, sub_rule_id, true); last_sym_start = rule.size(); // output reference to synthesized rule rule.push_back({LLAMA_GRETYPE_RULE_REF, sub_rule_id}); if (*pos != ')') { throw std::runtime_error(std::string("expecting ')' at ") + pos); } pos = parse_space(pos + 1, is_nested); } else if (*pos == '.') { // any char last_sym_start = rule.size(); rule.push_back({LLAMA_GRETYPE_CHAR_ANY, 0}); pos = parse_space(pos + 1, is_nested); } else if (*pos == '*') { pos = parse_space(pos + 1, is_nested); handle_repetitions(0, -1); } else if (*pos == '+') { pos = parse_space(pos + 1, is_nested); handle_repetitions(1, -1); } else if (*pos == '?') { pos = parse_space(pos + 1, is_nested); handle_repetitions(0, 1); } else if (*pos == '{') { pos = parse_space(pos + 1, is_nested); if (!is_digit_char(*pos)) { throw std::runtime_error(std::string("expecting an int at ") + pos); } const char * int_end = parse_int(pos); int min_times = std::stoul(std::string(pos, int_end - pos)); pos = parse_space(int_end, is_nested); int max_times = -1; if (*pos == '}') { max_times = min_times; pos = parse_space(pos + 1, is_nested); } else if (*pos == ',') { pos = parse_space(pos + 1, is_nested); if (is_digit_char(*pos)) { const char * int_end = parse_int(pos); max_times = std::stoul(std::string(pos, int_end - pos)); pos = parse_space(int_end, is_nested); } if (*pos != '}') { throw std::runtime_error(std::string("expecting '}' at ") + pos); } pos = parse_space(pos + 1, is_nested); } else { throw std::runtime_error(std::string("expecting ',' at ") + pos); } handle_repetitions(min_times, max_times); } else { break; } } return pos; } const char * llama_grammar_parser::parse_rule(const char * src) { const char * name_end = parse_name(src); const char * pos = parse_space(name_end, false); size_t name_len = name_end - src; uint32_t rule_id = get_symbol_id(src, name_len); const std::string name(src, name_len); if (!(pos[0] == ':' && pos[1] == ':' && pos[2] == '=')) { throw std::runtime_error(std::string("expecting ::= at ") + pos); } pos = parse_space(pos + 3, true); pos = parse_alternates(pos, name, rule_id, false); if (*pos == '\r') { pos += pos[1] == '\n' ? 2 : 1; } else if (*pos == '\n') { pos++; } else if (*pos) { throw std::runtime_error(std::string("expecting newline or end at ") + pos); } return parse_space(pos, true); } bool llama_grammar_parser::parse(const char * src) { try { const char * pos = parse_space(src, true); while (*pos) { pos = parse_rule(pos); } // Validate the state to ensure that all rules are defined for (const auto & rule : rules) { if (rule.empty()) { throw std::runtime_error("Undefined rule"); } for (const auto & elem : rule) { if (elem.type == LLAMA_GRETYPE_RULE_REF) { // Ensure that the rule at that location exists if (elem.value >= rules.size() || rules[elem.value].empty()) { // Get the name of the rule that is missing for (const auto & kv : symbol_ids) { if (kv.second == elem.value) { throw std::runtime_error("Undefined rule identifier '" + kv.first + "'"); } } } } } } } catch (const std::exception & err) { fprintf(stderr, "%s: error parsing grammar: %s\n", __func__, err.what()); rules.clear(); return false; } return true; } void llama_grammar_parser::print(FILE * file) { try { std::map symbol_id_names; for (const auto & kv : symbol_ids) { symbol_id_names[kv.second] = kv.first; } for (size_t i = 0, end = rules.size(); i < end; i++) { // fprintf(file, "%zu: ", i); // print_rule_binary(file, rules[i]); print_rule(file, uint32_t(i), rules[i], symbol_id_names); // fprintf(file, "\n"); } } catch (const std::exception & err) { fprintf(stderr, "\n%s: error printing grammar: %s\n", __func__, err.what()); } } llama_grammar_stack llama_grammar_parser::c_rules() const { llama_grammar_stack ret; ret.reserve(rules.size()); for (const auto & rule : rules) { ret.push_back(rule.data()); } return ret; } // returns true iff pos points to the end of one of the definitions of a rule static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) { switch (pos->type) { case LLAMA_GRETYPE_END: return true; // NOLINT case LLAMA_GRETYPE_ALT: return true; // NOLINT default: return false; } } // returns true iff chr satisfies the char range at pos (regular or inverse range) // asserts that pos is pointing to a char range element static std::pair llama_grammar_match_char( const llama_grammar_element * pos, const uint32_t chr) { bool found = false; bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR || pos->type == LLAMA_GRETYPE_CHAR_ANY; GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT do { if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) { // inclusive range, e.g. [a-z] found = found || (pos->value <= chr && chr <= pos[1].value); pos += 2; } else if (pos->type == LLAMA_GRETYPE_CHAR_ANY) { // Any character matches "." found = true; pos += 1; } else { // exact char match, e.g. [a] or "a" found = found || pos->value == chr; pos += 1; } } while (pos->type == LLAMA_GRETYPE_CHAR_ALT); return std::make_pair(found == is_positive_char, pos); } // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char // range at pos (regular or inverse range) // asserts that pos is pointing to a char range element static bool llama_grammar_match_partial_char( const llama_grammar_element * pos, const llama_partial_utf8 partial_utf8) { bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR || pos->type == LLAMA_GRETYPE_CHAR_ANY; GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); uint32_t partial_value = partial_utf8.value; int n_remain = partial_utf8.n_remain; // invalid sequence or 7-bit char split across 2 bytes (overlong) if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) { return false; } // range of possible code points this partial UTF-8 sequence could complete to uint32_t low = partial_value << (n_remain * 6); uint32_t high = low | ((1 << (n_remain * 6)) - 1); if (low == 0) { if (n_remain == 2) { low = 1 << 11; } else if (n_remain == 3) { low = 1 << 16; } } do { if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) { // inclusive range, e.g. [a-z] if (pos->value <= high && low <= pos[1].value) { return is_positive_char; } pos += 2; } else if (pos->type == LLAMA_GRETYPE_CHAR_ANY) { // Any character matches "." return true; } else { // exact char match, e.g. [a] or "a" if (low <= pos->value && pos->value <= high) { return is_positive_char; } pos += 1; } } while (pos->type == LLAMA_GRETYPE_CHAR_ALT); return !is_positive_char; } // transforms a grammar pushdown stack into N possible stacks, all ending // at a character range (terminal element) static void llama_grammar_advance_stack( const llama_grammar_rules & rules, const llama_grammar_stack & stack, llama_grammar_stacks & new_stacks) { if (stack.empty()) { if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) { new_stacks.emplace_back(stack); } return; } const llama_grammar_element * pos = stack.back(); switch (pos->type) { case LLAMA_GRETYPE_RULE_REF: { const size_t rule_id = static_cast(pos->value); const llama_grammar_element * subpos = rules[rule_id].data(); do { // init new stack without the top (pos) llama_grammar_stack new_stack(stack.begin(), stack.end() - 1); if (!llama_grammar_is_end_of_sequence(pos + 1)) { // if this rule ref is followed by another element, add that to stack new_stack.push_back(pos + 1); } if (!llama_grammar_is_end_of_sequence(subpos)) { // if alternate is nonempty, add to stack new_stack.push_back(subpos); } llama_grammar_advance_stack(rules, new_stack, new_stacks); while (!llama_grammar_is_end_of_sequence(subpos)) { // scan to end of alternate def subpos++; } if (subpos->type == LLAMA_GRETYPE_ALT) { // there's another alternate def of this rule to process subpos++; } else { break; } } while (true); break; } case LLAMA_GRETYPE_CHAR: case LLAMA_GRETYPE_CHAR_NOT: case LLAMA_GRETYPE_CHAR_ANY: if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) { // only add the stack if it's not a duplicate of one we already have new_stacks.emplace_back(stack); } break; default: // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on // those GGML_ABORT("fatal error"); } } static llama_grammar_candidates llama_grammar_reject_candidates( const llama_grammar_rules & rules, const llama_grammar_stacks & stacks, const llama_grammar_candidates & candidates) { GGML_ASSERT(!stacks.empty()); // REVIEW if (candidates.empty()) { return {}; } auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates); for (size_t i = 1, size = stacks.size(); i < size; ++i) { rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects); } return rejects; } static bool llama_grammar_detect_left_recursion( const llama_grammar_rules & rules, size_t rule_index, std::vector * rules_visited, std::vector * rules_in_progress, std::vector * rules_may_be_empty) { if ((*rules_in_progress)[rule_index]) { return true; } (*rules_in_progress)[rule_index] = true; const llama_grammar_rule & rule = rules[rule_index]; // First check if the rule might produce the empty string. This could be done combined with the second // step but it's more readable as two steps. bool at_rule_start = true; for (size_t i = 0; i < rule.size(); i++) { if (llama_grammar_is_end_of_sequence(&rule[i])) { if (at_rule_start) { (*rules_may_be_empty)[rule_index] = true; break; } at_rule_start = true; } else { at_rule_start = false; } } // Second, recurse into leftmost nonterminals (or next-leftmost as long as the previous nonterminal may // be empty) bool recurse_into_nonterminal = true; for (size_t i = 0; i < rule.size(); i++) { if (rule[i].type == LLAMA_GRETYPE_RULE_REF && recurse_into_nonterminal) { if (llama_grammar_detect_left_recursion(rules, (size_t)rule[i].value, rules_visited, rules_in_progress, rules_may_be_empty)) { return true; } if (!((*rules_may_be_empty)[(size_t)rule[i].value])) { recurse_into_nonterminal = false; } } else if (llama_grammar_is_end_of_sequence(&rule[i])) { recurse_into_nonterminal = true; } else { recurse_into_nonterminal = false; } } (*rules_in_progress)[rule_index] = false; (*rules_visited)[rule_index] = true; return false; } const llama_grammar_rules & llama_grammar_get_rules(const struct llama_grammar * grammar) { return grammar->rules; } llama_grammar_stacks & llama_grammar_get_stacks(struct llama_grammar * grammar) { return grammar->stacks; } void llama_grammar_accept(struct llama_grammar * grammar, uint32_t chr) { llama_grammar_stacks stacks_new; stacks_new.reserve(grammar->stacks.size()); for (const auto & stack : grammar->stacks) { if (stack.empty()) { continue; } auto match = llama_grammar_match_char(stack.back(), chr); if (match.first) { const llama_grammar_element * pos = match.second; // update top of stack to next element, if any llama_grammar_stack new_stack(stack.begin(), stack.end() - 1); if (!llama_grammar_is_end_of_sequence(pos)) { new_stack.push_back(pos); } llama_grammar_advance_stack(grammar->rules, new_stack, stacks_new); } } grammar->stacks = std::move(stacks_new); } llama_grammar_candidates llama_grammar_reject_candidates_for_stack( const llama_grammar_rules & rules, const llama_grammar_stack & stack, const llama_grammar_candidates & candidates) { llama_grammar_candidates rejects; rejects.reserve(candidates.size()); if (stack.empty()) { for (const auto & tok : candidates) { if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) { rejects.push_back(tok); } } return rejects; } const llama_grammar_element * stack_pos = stack.back(); llama_grammar_candidates next_candidates; next_candidates.reserve(candidates.size()); for (const auto & tok : candidates) { if (*tok.code_points == 0) { // reached end of full codepoints in token, reject iff it ended in a partial sequence // that cannot satisfy this position in grammar if (tok.partial_utf8.n_remain != 0 && !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) { rejects.push_back(tok); } } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) { next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 }); } else { rejects.push_back(tok); } } const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second; // update top of stack to next element, if any llama_grammar_stack stack_after(stack.begin(), stack.end() - 1); if (!llama_grammar_is_end_of_sequence(stack_pos_after)) { stack_after.push_back(stack_pos_after); } llama_grammar_stacks next_stacks; llama_grammar_advance_stack(rules, stack_after, next_stacks); auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates); for (const auto & tok : next_rejects) { rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 }); } return rejects; } //////////////////// struct llama_grammar * llama_grammar_init_impl( const struct llama_vocab * vocab, const llama_grammar_element ** rules, size_t n_rules, size_t start_rule_index) { const llama_grammar_element * pos; // copy rule definitions into vectors llama_grammar_rules vec_rules(n_rules); for (size_t i = 0; i < n_rules; i++) { for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) { vec_rules[i].push_back(*pos); } vec_rules[i].push_back({LLAMA_GRETYPE_END, 0}); } // Check for left recursion std::vector rules_visited(n_rules); std::vector rules_in_progress(n_rules); std::vector rules_may_be_empty(n_rules); for (size_t i = 0; i < n_rules; i++) { if (rules_visited[i]) { continue; } if (llama_grammar_detect_left_recursion(vec_rules, i, &rules_visited, &rules_in_progress, &rules_may_be_empty)) { LLAMA_LOG_ERROR("unsupported grammar, left recursion detected for nonterminal at index %zu", i); return nullptr; } } // loop over alternates of start rule to build initial stacks llama_grammar_stacks stacks; pos = vec_rules[start_rule_index].data(); do { llama_grammar_stack stack; if (!llama_grammar_is_end_of_sequence(pos)) { // if alternate is nonempty, add to stack stack.push_back(pos); } llama_grammar_advance_stack(vec_rules, stack, stacks); while (!llama_grammar_is_end_of_sequence(pos)) { // scan to end of alternate def pos++; } if (pos->type == LLAMA_GRETYPE_ALT) { // there's another alternate def of this rule to process pos++; } else { break; } } while (true); // Important: vec_rules has to be moved here, not copied, because stacks contains // pointers to elements of vec_rules. If vec_rules were copied into llama_grammar // then the pointers would be invalidated when the local vec_rules goes out of scope. return new llama_grammar { vocab, std::move(vec_rules), std::move(stacks), {}, }; } struct llama_grammar * llama_grammar_init_impl(const struct llama_vocab * vocab, const char * grammar_str, const char * grammar_root) { llama_grammar_parser parser; // if there is a grammar, parse it if (!parser.parse(grammar_str)) { return nullptr; } // will be empty (default) if there are parse errors if (parser.rules.empty()) { fprintf(stderr, "%s: failed to parse grammar\n", __func__); return nullptr; } // Ensure that there is a "root" node. if (parser.symbol_ids.find("root") == parser.symbol_ids.end()) { fprintf(stderr, "%s: grammar does not contain a 'root' symbol\n", __func__); return nullptr; } std::vector grammar_rules(parser.c_rules()); const size_t n_rules = grammar_rules.size(); const size_t start_rule_index = parser.symbol_ids.at(grammar_root); const llama_grammar_element * pos; // copy rule definitions into vectors llama_grammar_rules vec_rules(n_rules); for (size_t i = 0; i < n_rules; i++) { for (pos = grammar_rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) { vec_rules[i].push_back(*pos); } vec_rules[i].push_back({LLAMA_GRETYPE_END, 0}); } // Check for left recursion std::vector rules_visited(n_rules); std::vector rules_in_progress(n_rules); std::vector rules_may_be_empty(n_rules); for (size_t i = 0; i < n_rules; i++) { if (rules_visited[i]) { continue; } if (llama_grammar_detect_left_recursion(vec_rules, i, &rules_visited, &rules_in_progress, &rules_may_be_empty)) { LLAMA_LOG_ERROR("unsupported grammar, left recursion detected for nonterminal at index %zu", i); return nullptr; } } // loop over alternates of start rule to build initial stacks llama_grammar_stacks stacks; pos = vec_rules[start_rule_index].data(); do { llama_grammar_stack stack; if (!llama_grammar_is_end_of_sequence(pos)) { // if alternate is nonempty, add to stack stack.push_back(pos); } llama_grammar_advance_stack(vec_rules, stack, stacks); while (!llama_grammar_is_end_of_sequence(pos)) { // scan to end of alternate def pos++; } if (pos->type == LLAMA_GRETYPE_ALT) { // there's another alternate def of this rule to process pos++; } else { break; } } while (true); // Important: vec_rules has to be moved here, not copied, because stacks contains // pointers to elements of vec_rules. If vec_rules were copied into llama_grammar // then the pointers would be invalidated when the local vec_rules goes out of scope. return new llama_grammar { vocab, std::move(vec_rules), std::move(stacks), {}, }; } void llama_grammar_free_impl(struct llama_grammar * grammar) { if (grammar == nullptr) { return; } delete grammar; } struct llama_grammar * llama_grammar_clone_impl(const struct llama_grammar & grammar) { llama_grammar * result = new llama_grammar { grammar.vocab, grammar.rules, grammar.stacks, grammar.partial_utf8, }; // redirect elements in stacks to point to new rules for (size_t is = 0; is < result->stacks.size(); is++) { for (size_t ie = 0; ie < result->stacks[is].size(); ie++) { for (size_t ir0 = 0; ir0 < grammar.rules.size(); ir0++) { for (size_t ir1 = 0; ir1 < grammar.rules[ir0].size(); ir1++) { if (grammar.stacks[is][ie] == &grammar.rules[ir0][ir1]) { result->stacks[is][ie] = &result->rules[ir0][ir1]; } } } } } return result; } void llama_grammar_apply_impl(const struct llama_grammar & grammar, llama_token_data_array * cur_p) { GGML_ASSERT(grammar.vocab != nullptr); bool allow_eog = false; for (const auto & stack : grammar.stacks) { if (stack.empty()) { allow_eog = true; break; } } std::vector, llama_partial_utf8>> candidates_decoded; candidates_decoded.reserve(cur_p->size); llama_grammar_candidates candidates_grammar; candidates_grammar.reserve(cur_p->size); for (size_t i = 0; i < cur_p->size; ++i) { const llama_token id = cur_p->data[i].id; const std::string & piece = grammar.vocab->cache_token_to_piece.at(id); if (llama_token_is_eog_impl(*grammar.vocab, id)) { if (!allow_eog) { cur_p->data[i].logit = -INFINITY; } } else if (piece.empty() || piece[0] == 0) { cur_p->data[i].logit = -INFINITY; } else { candidates_decoded.push_back(decode_utf8(piece, grammar.partial_utf8)); candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second }); } } const auto rejects = llama_grammar_reject_candidates(grammar.rules, grammar.stacks, candidates_grammar); for (const auto & reject : rejects) { cur_p->data[reject.index].logit = -INFINITY; } } void llama_grammar_accept_impl(struct llama_grammar & grammar, llama_token token) { GGML_ASSERT(grammar.vocab != nullptr); if (llama_token_is_eog_impl(*grammar.vocab, token)) { for (const auto & stack : grammar.stacks) { if (stack.empty()) { return; } } GGML_ABORT("fatal error"); } const std::string & piece = grammar.vocab->cache_token_to_piece.at(token); // Note terminating 0 in decoded string const auto decoded = decode_utf8(piece, grammar.partial_utf8); const auto & code_points = decoded.first; for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) { llama_grammar_accept(&grammar, *it); } grammar.partial_utf8 = decoded.second; GGML_ASSERT(!grammar.stacks.empty()); }