import argparse import os import torch from transformers import AutoModel, AutoTokenizer ap = argparse.ArgumentParser() ap.add_argument("-m", "--model", help="Path to MiniCPM-V-2.5 model") args = ap.parse_args() # find the model part that includes the the multimodal projector weights model = AutoModel.from_pretrained(args.model, trust_remote_code=True, local_files_only=True) checkpoint = model.state_dict() # get a list of mm tensor names mm_tensors = [k for k, v in checkpoint.items() if k.startswith("resampler")] # store these tensors in a new dictionary and torch.save them projector = {name: checkpoint[name].float() for name in mm_tensors} torch.save(projector, f"{args.model}/minicpmv.projector") clip_tensors = [k for k, v in checkpoint.items() if k.startswith("vpm")] if len(clip_tensors) > 0: clip = {name.replace("vpm.", ""): checkpoint[name].float() for name in clip_tensors} torch.save(clip, f"{args.model}/minicpmv.clip") # added tokens should be removed to be able to convert Mistral models if os.path.exists(f"{args.model}/added_tokens.json"): with open(f"{args.model}/added_tokens.json", "w") as f: f.write("{}\n") config = model.llm.config config._name_or_path = "openbmb/MiniCPM-Llama3-V-2.5" config.auto_map = { "AutoConfig": "configuration_minicpm.MiniCPMConfig", "AutoModel": "modeling_minicpm.MiniCPMModel", "AutoModelForCausalLM": "modeling_minicpm.MiniCPMForCausalLM", "AutoModelForSeq2SeqLM": "modeling_minicpm.MiniCPMForCausalLM", "AutoModelForSequenceClassification": "modeling_minicpm.MiniCPMForSequenceClassification" } model.llm.save_pretrained(f"{args.model}/model") tok = AutoTokenizer.from_pretrained(args.model, trust_remote_code=True) tok.save_pretrained(f"{args.model}/model") # os.system(f"cp {args.model}/modeling_minicpm.py {args.model}/MiniCPM_l3/modeling_minicpm.py") print("Done!") print(f"Now you can convert {args.model} to a regular LLaMA GGUF file.") print(f"Also, use {args.model}/minicpmv.projector to prepare a minicpmv-encoder.gguf file.")