#include "ggml-quants.h" #include "ggml-impl.h" #include #include #include #include #include // for qsort #include // for GGML_ASSERT #ifdef __ARM_NEON // if YCM cannot find , make a symbolic link to it, for example: // // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/ // #include #else #ifdef __wasm_simd128__ #include #else #if defined(__POWER9_VECTOR__) || defined(__powerpc64__) #include #undef bool #define bool _Bool #else #if defined(_MSC_VER) || defined(__MINGW32__) #include #else #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__) #if !defined(__riscv) #include #endif #endif #endif #endif #endif #endif #ifdef __riscv_v_intrinsic #include #endif #undef MIN #undef MAX #define MIN(a, b) ((a) < (b) ? (a) : (b)) #define MAX(a, b) ((a) > (b) ? (a) : (b)) #define UNUSED GGML_UNUSED #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1) #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) // multiply int8_t, add results pairwise twice static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) { // Get absolute values of x vectors const __m128i ax = _mm_sign_epi8(x, x); // Sign the values of the y vectors const __m128i sy = _mm_sign_epi8(y, x); // Perform multiplication and create 16-bit values const __m128i dot = _mm_maddubs_epi16(ax, sy); const __m128i ones = _mm_set1_epi16(1); return _mm_madd_epi16(ones, dot); } #if __AVX__ || __AVX2__ || __AVX512F__ // horizontally add 8 floats static inline float hsum_float_8(const __m256 x) { __m128 res = _mm256_extractf128_ps(x, 1); res = _mm_add_ps(res, _mm256_castps256_ps128(x)); res = _mm_add_ps(res, _mm_movehl_ps(res, res)); res = _mm_add_ss(res, _mm_movehdup_ps(res)); return _mm_cvtss_f32(res); } // horizontally add 8 int32_t static inline int hsum_i32_8(const __m256i a) { const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1)); const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128); const __m128i sum64 = _mm_add_epi32(hi64, sum128); const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1)); return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32)); } // horizontally add 4 int32_t static inline int hsum_i32_4(const __m128i a) { const __m128i hi64 = _mm_unpackhi_epi64(a, a); const __m128i sum64 = _mm_add_epi32(hi64, a); const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1)); return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32)); } #if defined(__AVX2__) || defined(__AVX512F__) // spread 32 bits to 32 bytes { 0x00, 0xFF } static inline __m256i bytes_from_bits_32(const uint8_t * x) { uint32_t x32; memcpy(&x32, x, sizeof(uint32_t)); const __m256i shuf_mask = _mm256_set_epi64x( 0x0303030303030303, 0x0202020202020202, 0x0101010101010101, 0x0000000000000000); __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask); const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe); bytes = _mm256_or_si256(bytes, bit_mask); return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1)); } // Unpack 32 4-bit fields into 32 bytes // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi) { const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi); const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp); const __m256i lowMask = _mm256_set1_epi8( 0xF ); return _mm256_and_si256(lowMask, bytes); } // add int16_t pairwise and return as float vector static inline __m256 sum_i16_pairs_float(const __m256i x) { const __m256i ones = _mm256_set1_epi16(1); const __m256i summed_pairs = _mm256_madd_epi16(ones, x); return _mm256_cvtepi32_ps(summed_pairs); } static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) { #if __AVXVNNI__ const __m256i zero = _mm256_setzero_si256(); const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy); return _mm256_cvtepi32_ps(summed_pairs); #else // Perform multiplication and create 16-bit values const __m256i dot = _mm256_maddubs_epi16(ax, sy); return sum_i16_pairs_float(dot); #endif } // multiply int8_t, add results pairwise twice and return as float vector static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) { #if __AVXVNNIINT8__ const __m256i zero = _mm256_setzero_si256(); const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y); return _mm256_cvtepi32_ps(summed_pairs); #else // Get absolute values of x vectors const __m256i ax = _mm256_sign_epi8(x, x); // Sign the values of the y vectors const __m256i sy = _mm256_sign_epi8(y, x); return mul_sum_us8_pairs_float(ax, sy); #endif } static inline __m128i packNibbles( __m256i bytes ) { // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh #if __AVX512F__ const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000 bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh return _mm256_cvtepi16_epi8(bytes); // abcd_efgh #else const __m256i lowByte = _mm256_set1_epi16( 0xFF ); __m256i high = _mm256_andnot_si256( lowByte, bytes ); __m256i low = _mm256_and_si256( lowByte, bytes ); high = _mm256_srli_epi16( high, 4 ); bytes = _mm256_or_si256( low, high ); // Compress uint16_t lanes into bytes __m128i r0 = _mm256_castsi256_si128( bytes ); __m128i r1 = _mm256_extracti128_si256( bytes, 1 ); return _mm_packus_epi16( r0, r1 ); #endif } #elif defined(__AVX__) // spread 32 bits to 32 bytes { 0x00, 0xFF } static inline __m256i bytes_from_bits_32(const uint8_t * x) { uint32_t x32; memcpy(&x32, x, sizeof(uint32_t)); const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000); const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202); __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl); __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh); const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe); bytesl = _mm_or_si128(bytesl, bit_mask); bytesh = _mm_or_si128(bytesh, bit_mask); bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1)); bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1)); return MM256_SET_M128I(bytesh, bytesl); } // Unpack 32 4-bit fields into 32 bytes // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi) { // Load 16 bytes from memory __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi); __m128i tmph = _mm_srli_epi16(tmpl, 4); const __m128i lowMask = _mm_set1_epi8(0xF); tmpl = _mm_and_si128(lowMask, tmpl); tmph = _mm_and_si128(lowMask, tmph); return MM256_SET_M128I(tmph, tmpl); } // add int16_t pairwise and return as float vector static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) { const __m128i ones = _mm_set1_epi16(1); const __m128i summed_pairsl = _mm_madd_epi16(ones, xl); const __m128i summed_pairsh = _mm_madd_epi16(ones, xh); const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl); return _mm256_cvtepi32_ps(summed_pairs); } static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) { const __m128i axl = _mm256_castsi256_si128(ax); const __m128i axh = _mm256_extractf128_si256(ax, 1); const __m128i syl = _mm256_castsi256_si128(sy); const __m128i syh = _mm256_extractf128_si256(sy, 1); // Perform multiplication and create 16-bit values const __m128i dotl = _mm_maddubs_epi16(axl, syl); const __m128i doth = _mm_maddubs_epi16(axh, syh); return sum_i16_pairs_float(doth, dotl); } // multiply int8_t, add results pairwise twice and return as float vector static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) { const __m128i xl = _mm256_castsi256_si128(x); const __m128i xh = _mm256_extractf128_si256(x, 1); const __m128i yl = _mm256_castsi256_si128(y); const __m128i yh = _mm256_extractf128_si256(y, 1); // Get absolute values of x vectors const __m128i axl = _mm_sign_epi8(xl, xl); const __m128i axh = _mm_sign_epi8(xh, xh); // Sign the values of the y vectors const __m128i syl = _mm_sign_epi8(yl, xl); const __m128i syh = _mm_sign_epi8(yh, xh); // Perform multiplication and create 16-bit values const __m128i dotl = _mm_maddubs_epi16(axl, syl); const __m128i doth = _mm_maddubs_epi16(axh, syh); return sum_i16_pairs_float(doth, dotl); } static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 ) { // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh const __m128i lowByte = _mm_set1_epi16( 0xFF ); __m128i high = _mm_andnot_si128( lowByte, bytes1 ); __m128i low = _mm_and_si128( lowByte, bytes1 ); high = _mm_srli_epi16( high, 4 ); bytes1 = _mm_or_si128( low, high ); high = _mm_andnot_si128( lowByte, bytes2 ); low = _mm_and_si128( lowByte, bytes2 ); high = _mm_srli_epi16( high, 4 ); bytes2 = _mm_or_si128( low, high ); return _mm_packus_epi16( bytes1, bytes2); } #endif #elif defined(__SSSE3__) // horizontally add 4x4 floats static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) { __m128 res_0 =_mm_hadd_ps(a, b); __m128 res_1 =_mm_hadd_ps(c, d); __m128 res =_mm_hadd_ps(res_0, res_1); res =_mm_hadd_ps(res, res); res =_mm_hadd_ps(res, res); return _mm_cvtss_f32(res); } #endif // __AVX__ || __AVX2__ || __AVX512F__ #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) #if defined(__ARM_NEON) #ifdef _MSC_VER #define ggml_vld1q_u32(w,x,y,z) { ((w) + ((uint64_t)(x) << 32)), ((y) + ((uint64_t)(z) << 32)) } #else #define ggml_vld1q_u32(w,x,y,z) { (w), (x), (y), (z) } #endif #if !defined(__aarch64__) // 64-bit compatibility // vaddvq_s16 // vpaddq_s16 // vpaddq_s32 // vaddvq_s32 // vaddvq_f32 // vmaxvq_f32 // vcvtnq_s32_f32 // vzip1_u8 // vzip2_u8 inline static int32_t vaddvq_s16(int16x8_t v) { return (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) + (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) + (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) + (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7); } inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) { int16x4_t a0 = vpadd_s16(vget_low_s16(a), vget_high_s16(a)); int16x4_t b0 = vpadd_s16(vget_low_s16(b), vget_high_s16(b)); return vcombine_s16(a0, b0); } inline static int32x4_t vpaddq_s32(int32x4_t a, int32x4_t b) { int32x2_t a0 = vpadd_s32(vget_low_s32(a), vget_high_s32(a)); int32x2_t b0 = vpadd_s32(vget_low_s32(b), vget_high_s32(b)); return vcombine_s32(a0, b0); } inline static int32_t vaddvq_s32(int32x4_t v) { return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3); } inline static float vaddvq_f32(float32x4_t v) { return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3); } inline static float vmaxvq_f32(float32x4_t v) { return MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)), MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3))); } inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) { int32x4_t res; res[0] = roundf(vgetq_lane_f32(v, 0)); res[1] = roundf(vgetq_lane_f32(v, 1)); res[2] = roundf(vgetq_lane_f32(v, 2)); res[3] = roundf(vgetq_lane_f32(v, 3)); return res; } inline static uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) { uint8x8_t res; res[0] = a[0]; res[1] = b[0]; res[2] = a[1]; res[3] = b[1]; res[4] = a[2]; res[5] = b[2]; res[6] = a[3]; res[7] = b[3]; return res; } inline static uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) { uint8x8_t res; res[0] = a[4]; res[1] = b[4]; res[2] = a[5]; res[3] = b[5]; res[4] = a[6]; res[5] = b[6]; res[6] = a[7]; res[7] = b[7]; return res; } // vld1q_s16_x2 // vld1q_u8_x2 // vld1q_u8_x4 // vld1q_s8_x2 // vld1q_s8_x4 // TODO: double-check these work correctly typedef struct ggml_int16x8x2_t { int16x8_t val[2]; } ggml_int16x8x2_t; inline static ggml_int16x8x2_t ggml_vld1q_s16_x2(const int16_t * ptr) { ggml_int16x8x2_t res; res.val[0] = vld1q_s16(ptr + 0); res.val[1] = vld1q_s16(ptr + 8); return res; } typedef struct ggml_uint8x16x2_t { uint8x16_t val[2]; } ggml_uint8x16x2_t; inline static ggml_uint8x16x2_t ggml_vld1q_u8_x2(const uint8_t * ptr) { ggml_uint8x16x2_t res; res.val[0] = vld1q_u8(ptr + 0); res.val[1] = vld1q_u8(ptr + 16); return res; } typedef struct ggml_uint8x16x4_t { uint8x16_t val[4]; } ggml_uint8x16x4_t; inline static ggml_uint8x16x4_t ggml_vld1q_u8_x4(const uint8_t * ptr) { ggml_uint8x16x4_t res; res.val[0] = vld1q_u8(ptr + 0); res.val[1] = vld1q_u8(ptr + 16); res.val[2] = vld1q_u8(ptr + 32); res.val[3] = vld1q_u8(ptr + 48); return res; } typedef struct ggml_int8x16x2_t { int8x16_t val[2]; } ggml_int8x16x2_t; inline static ggml_int8x16x2_t ggml_vld1q_s8_x2(const int8_t * ptr) { ggml_int8x16x2_t res; res.val[0] = vld1q_s8(ptr + 0); res.val[1] = vld1q_s8(ptr + 16); return res; } typedef struct ggml_int8x16x4_t { int8x16_t val[4]; } ggml_int8x16x4_t; inline static ggml_int8x16x4_t ggml_vld1q_s8_x4(const int8_t * ptr) { ggml_int8x16x4_t res; res.val[0] = vld1q_s8(ptr + 0); res.val[1] = vld1q_s8(ptr + 16); res.val[2] = vld1q_s8(ptr + 32); res.val[3] = vld1q_s8(ptr + 48); return res; } #else #define ggml_int16x8x2_t int16x8x2_t #define ggml_uint8x16x2_t uint8x16x2_t #define ggml_uint8x16x4_t uint8x16x4_t #define ggml_int8x16x2_t int8x16x2_t #define ggml_int8x16x4_t int8x16x4_t #define ggml_vld1q_s16_x2 vld1q_s16_x2 #define ggml_vld1q_u8_x2 vld1q_u8_x2 #define ggml_vld1q_u8_x4 vld1q_u8_x4 #define ggml_vld1q_s8_x2 vld1q_s8_x2 #define ggml_vld1q_s8_x4 vld1q_s8_x4 #endif #if !defined(__ARM_FEATURE_DOTPROD) inline static int32x4_t ggml_vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b) { const int16x8_t p0 = vmull_s8(vget_low_s8 (a), vget_low_s8 (b)); const int16x8_t p1 = vmull_s8(vget_high_s8(a), vget_high_s8(b)); return vaddq_s32(acc, vaddq_s32(vpaddlq_s16(p0), vpaddlq_s16(p1))); } #else #define ggml_vdotq_s32(a, b, c) vdotq_s32(a, b, c) #endif #endif #if defined(__ARM_NEON) || defined(__wasm_simd128__) #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s) #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s) #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s) #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s) #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s) #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s) #define B8(c,s ) B7(c,s, c), B7(c,s, s) // precomputed tables for expanding 8bits to 8 bytes: static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4 static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4 #endif // reference implementation for deterministic creation of model files void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) { static const int qk = QK4_0; assert(k % qk == 0); const int nb = k / qk; for (int i = 0; i < nb; i++) { float amax = 0.0f; // absolute max float max = 0.0f; for (int j = 0; j < qk; j++) { const float v = x[i*qk + j]; if (amax < fabsf(v)) { amax = fabsf(v); max = v; } } const float d = max / -8; const float id = d ? 1.0f/d : 0.0f; y[i].d = GGML_FP32_TO_FP16(d); for (int j = 0; j < qk/2; ++j) { const float x0 = x[i*qk + 0 + j]*id; const float x1 = x[i*qk + qk/2 + j]*id; const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f)); const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f)); y[i].qs[j] = xi0; y[i].qs[j] |= xi1 << 4; } } } void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) { quantize_row_q4_0_reference(x, y, k); } void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) { const int qk = QK4_1; assert(k % qk == 0); const int nb = k / qk; for (int i = 0; i < nb; i++) { float min = FLT_MAX; float max = -FLT_MAX; for (int j = 0; j < qk; j++) { const float v = x[i*qk + j]; if (v < min) min = v; if (v > max) max = v; } const float d = (max - min) / ((1 << 4) - 1); const float id = d ? 1.0f/d : 0.0f; y[i].d = GGML_FP32_TO_FP16(d); y[i].m = GGML_FP32_TO_FP16(min); for (int j = 0; j < qk/2; ++j) { const float x0 = (x[i*qk + 0 + j] - min)*id; const float x1 = (x[i*qk + qk/2 + j] - min)*id; const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f)); const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f)); y[i].qs[j] = xi0; y[i].qs[j] |= xi1 << 4; } } } void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) { quantize_row_q4_1_reference(x, y, k); } void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) { static const int qk = QK5_0; assert(k % qk == 0); const int nb = k / qk; for (int i = 0; i < nb; i++) { float amax = 0.0f; // absolute max float max = 0.0f; for (int j = 0; j < qk; j++) { const float v = x[i*qk + j]; if (amax < fabsf(v)) { amax = fabsf(v); max = v; } } const float d = max / -16; const float id = d ? 1.0f/d : 0.0f; y[i].d = GGML_FP32_TO_FP16(d); uint32_t qh = 0; for (int j = 0; j < qk/2; ++j) { const float x0 = x[i*qk + 0 + j]*id; const float x1 = x[i*qk + qk/2 + j]*id; const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f)); const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f)); y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4); // get the 5-th bit and store it in qh at the right position qh |= ((xi0 & 0x10u) >> 4) << (j + 0); qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2); } memcpy(&y[i].qh, &qh, sizeof(qh)); } } void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) { quantize_row_q5_0_reference(x, y, k); } void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) { const int qk = QK5_1; assert(k % qk == 0); const int nb = k / qk; for (int i = 0; i < nb; i++) { float min = FLT_MAX; float max = -FLT_MAX; for (int j = 0; j < qk; j++) { const float v = x[i*qk + j]; if (v < min) min = v; if (v > max) max = v; } const float d = (max - min) / ((1 << 5) - 1); const float id = d ? 1.0f/d : 0.0f; y[i].d = GGML_FP32_TO_FP16(d); y[i].m = GGML_FP32_TO_FP16(min); uint32_t qh = 0; for (int j = 0; j < qk/2; ++j) { const float x0 = (x[i*qk + 0 + j] - min)*id; const float x1 = (x[i*qk + qk/2 + j] - min)*id; const uint8_t xi0 = (uint8_t)(x0 + 0.5f); const uint8_t xi1 = (uint8_t)(x1 + 0.5f); y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4); // get the 5-th bit and store it in qh at the right position qh |= ((xi0 & 0x10u) >> 4) << (j + 0); qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2); } memcpy(&y[i].qh, &qh, sizeof(y[i].qh)); } } void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) { quantize_row_q5_1_reference(x, y, k); } // reference implementation for deterministic creation of model files void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) { assert(k % QK8_0 == 0); const int nb = k / QK8_0; for (int i = 0; i < nb; i++) { float amax = 0.0f; // absolute max for (int j = 0; j < QK8_0; j++) { const float v = x[i*QK8_0 + j]; amax = MAX(amax, fabsf(v)); } const float d = amax / ((1 << 7) - 1); const float id = d ? 1.0f/d : 0.0f; y[i].d = GGML_FP32_TO_FP16(d); for (int j = 0; j < QK8_0; ++j) { const float x0 = x[i*QK8_0 + j]*id; y[i].qs[j] = roundf(x0); } } } void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) { assert(QK8_0 == 32); assert(k % QK8_0 == 0); const int nb = k / QK8_0; block_q8_0 * restrict y = vy; #if defined(__ARM_NEON) for (int i = 0; i < nb; i++) { float32x4_t srcv [8]; float32x4_t asrcv[8]; float32x4_t amaxv[8]; for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j); for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]); for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]); for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]); for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]); const float amax = vmaxvq_f32(amaxv[0]); const float d = amax / ((1 << 7) - 1); const float id = d ? 1.0f/d : 0.0f; y[i].d = GGML_FP32_TO_FP16(d); for (int j = 0; j < 8; j++) { const float32x4_t v = vmulq_n_f32(srcv[j], id); const int32x4_t vi = vcvtnq_s32_f32(v); y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0); y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1); y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2); y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3); } } #elif defined(__wasm_simd128__) for (int i = 0; i < nb; i++) { v128_t srcv [8]; v128_t asrcv[8]; v128_t amaxv[8]; for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j); for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]); for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]); for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]); for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]); const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)), MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3))); const float d = amax / ((1 << 7) - 1); const float id = d ? 1.0f/d : 0.0f; y[i].d = GGML_FP32_TO_FP16(d); for (int j = 0; j < 8; j++) { const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id)); const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v); y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0); y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1); y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2); y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3); } } #elif defined(__AVX2__) || defined(__AVX__) for (int i = 0; i < nb; i++) { // Load elements into 4 AVX vectors __m256 v0 = _mm256_loadu_ps( x ); __m256 v1 = _mm256_loadu_ps( x + 8 ); __m256 v2 = _mm256_loadu_ps( x + 16 ); __m256 v3 = _mm256_loadu_ps( x + 24 ); x += 32; // Compute max(abs(e)) for the block const __m256 signBit = _mm256_set1_ps( -0.0f ); __m256 maxAbs = _mm256_andnot_ps( signBit, v0 ); maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) ); maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) ); maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) ); __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) ); max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) ); max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) ); const float maxScalar = _mm_cvtss_f32( max4 ); // Quantize these floats const float d = maxScalar / 127.f; y[i].d = GGML_FP32_TO_FP16(d); const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f; const __m256 mul = _mm256_set1_ps( id ); // Apply the multiplier v0 = _mm256_mul_ps( v0, mul ); v1 = _mm256_mul_ps( v1, mul ); v2 = _mm256_mul_ps( v2, mul ); v3 = _mm256_mul_ps( v3, mul ); // Round to nearest integer v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST ); v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST ); v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST ); v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST ); // Convert floats to integers __m256i i0 = _mm256_cvtps_epi32( v0 ); __m256i i1 = _mm256_cvtps_epi32( v1 ); __m256i i2 = _mm256_cvtps_epi32( v2 ); __m256i i3 = _mm256_cvtps_epi32( v3 ); #if defined(__AVX2__) // Convert int32 to int16 i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15 i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31 // Convert int16 to int8 i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 // We got our precious signed bytes, but the order is now wrong // These AVX2 pack instructions process 16-byte pieces independently // The following instruction is fixing the order const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 ); i0 = _mm256_permutevar8x32_epi32( i0, perm ); _mm256_storeu_si256((__m256i *)y[i].qs, i0); #else // Since we don't have in AVX some necessary functions, // we split the registers in half and call AVX2 analogs from SSE __m128i ni0 = _mm256_castsi256_si128( i0 ); __m128i ni1 = _mm256_extractf128_si256( i0, 1); __m128i ni2 = _mm256_castsi256_si128( i1 ); __m128i ni3 = _mm256_extractf128_si256( i1, 1); __m128i ni4 = _mm256_castsi256_si128( i2 ); __m128i ni5 = _mm256_extractf128_si256( i2, 1); __m128i ni6 = _mm256_castsi256_si128( i3 ); __m128i ni7 = _mm256_extractf128_si256( i3, 1); // Convert int32 to int16 ni0 = _mm_packs_epi32( ni0, ni1 ); ni2 = _mm_packs_epi32( ni2, ni3 ); ni4 = _mm_packs_epi32( ni4, ni5 ); ni6 = _mm_packs_epi32( ni6, ni7 ); // Convert int16 to int8 ni0 = _mm_packs_epi16( ni0, ni2 ); ni4 = _mm_packs_epi16( ni4, ni6 ); _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0); _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4); #endif } #elif defined(__riscv_v_intrinsic) size_t vl = __riscv_vsetvl_e32m4(QK8_0); for (int i = 0; i < nb; i++) { // load elements vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_0, vl); vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl); vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0f, vl); vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl); float amax = __riscv_vfmv_f_s_f32m1_f32(vmax); const float d = amax / ((1 << 7) - 1); const float id = d ? 1.0f/d : 0.0f; y[i].d = GGML_FP32_TO_FP16(d); vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl); // convert to integer vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl); vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl); // store result __riscv_vse8_v_i8m1(y[i].qs , vs, vl); } #else GGML_UNUSED(nb); // scalar quantize_row_q8_0_reference(x, y, k); #endif } // reference implementation for deterministic creation of model files void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) { assert(QK8_1 == 32); assert(k % QK8_1 == 0); const int nb = k / QK8_1; for (int i = 0; i < nb; i++) { float amax = 0.0f; // absolute max for (int j = 0; j < QK8_1; j++) { const float v = x[i*QK8_1 + j]; amax = MAX(amax, fabsf(v)); } const float d = amax / ((1 << 7) - 1); const float id = d ? 1.0f/d : 0.0f; y[i].d = d; int sum = 0; for (int j = 0; j < QK8_1/2; ++j) { const float v0 = x[i*QK8_1 + j]*id; const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id; y[i].qs[ j] = roundf(v0); y[i].qs[QK8_1/2 + j] = roundf(v1); sum += y[i].qs[ j]; sum += y[i].qs[QK8_1/2 + j]; } y[i].s = sum*d; } } void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) { assert(k % QK8_1 == 0); const int nb = k / QK8_1; block_q8_1 * restrict y = vy; #if defined(__ARM_NEON) for (int i = 0; i < nb; i++) { float32x4_t srcv [8]; float32x4_t asrcv[8]; float32x4_t amaxv[8]; for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j); for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]); for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]); for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]); for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]); const float amax = vmaxvq_f32(amaxv[0]); const float d = amax / ((1 << 7) - 1); const float id = d ? 1.0f/d : 0.0f; y[i].d = d; int32x4_t accv = vdupq_n_s32(0); for (int j = 0; j < 8; j++) { const float32x4_t v = vmulq_n_f32(srcv[j], id); const int32x4_t vi = vcvtnq_s32_f32(v); y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0); y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1); y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2); y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3); accv = vaddq_s32(accv, vi); } y[i].s = d * vaddvq_s32(accv); } #elif defined(__wasm_simd128__) for (int i = 0; i < nb; i++) { v128_t srcv [8]; v128_t asrcv[8]; v128_t amaxv[8]; for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j); for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]); for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]); for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]); for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]); const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)), MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3))); const float d = amax / ((1 << 7) - 1); const float id = d ? 1.0f/d : 0.0f; y[i].d = d; v128_t accv = wasm_i32x4_splat(0); for (int j = 0; j < 8; j++) { const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id)); const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v); y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0); y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1); y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2); y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3); accv = wasm_i32x4_add(accv, vi); } y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) + wasm_i32x4_extract_lane(accv, 1) + wasm_i32x4_extract_lane(accv, 2) + wasm_i32x4_extract_lane(accv, 3)); } #elif defined(__AVX2__) || defined(__AVX__) for (int i = 0; i < nb; i++) { // Load elements into 4 AVX vectors __m256 v0 = _mm256_loadu_ps( x ); __m256 v1 = _mm256_loadu_ps( x + 8 ); __m256 v2 = _mm256_loadu_ps( x + 16 ); __m256 v3 = _mm256_loadu_ps( x + 24 ); x += 32; // Compute max(abs(e)) for the block const __m256 signBit = _mm256_set1_ps( -0.0f ); __m256 maxAbs = _mm256_andnot_ps( signBit, v0 ); maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) ); maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) ); maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) ); __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) ); max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) ); max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) ); const float maxScalar = _mm_cvtss_f32( max4 ); // Quantize these floats const float d = maxScalar / 127.f; y[i].d = d; const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f; const __m256 mul = _mm256_set1_ps( id ); // Apply the multiplier v0 = _mm256_mul_ps( v0, mul ); v1 = _mm256_mul_ps( v1, mul ); v2 = _mm256_mul_ps( v2, mul ); v3 = _mm256_mul_ps( v3, mul ); // Round to nearest integer v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST ); v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST ); v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST ); v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST ); // Convert floats to integers __m256i i0 = _mm256_cvtps_epi32( v0 ); __m256i i1 = _mm256_cvtps_epi32( v1 ); __m256i i2 = _mm256_cvtps_epi32( v2 ); __m256i i3 = _mm256_cvtps_epi32( v3 ); #if defined(__AVX2__) // Compute the sum of the quants and set y[i].s y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3))); // Convert int32 to int16 i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15 i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31 // Convert int16 to int8 i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 // We got our precious signed bytes, but the order is now wrong // These AVX2 pack instructions process 16-byte pieces independently // The following instruction is fixing the order const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 ); i0 = _mm256_permutevar8x32_epi32( i0, perm ); _mm256_storeu_si256((__m256i *)y[i].qs, i0); #else // Since we don't have in AVX some necessary functions, // we split the registers in half and call AVX2 analogs from SSE __m128i ni0 = _mm256_castsi256_si128( i0 ); __m128i ni1 = _mm256_extractf128_si256( i0, 1); __m128i ni2 = _mm256_castsi256_si128( i1 ); __m128i ni3 = _mm256_extractf128_si256( i1, 1); __m128i ni4 = _mm256_castsi256_si128( i2 ); __m128i ni5 = _mm256_extractf128_si256( i2, 1); __m128i ni6 = _mm256_castsi256_si128( i3 ); __m128i ni7 = _mm256_extractf128_si256( i3, 1); // Compute the sum of the quants and set y[i].s const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3)); const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7)); y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1)); // Convert int32 to int16 ni0 = _mm_packs_epi32( ni0, ni1 ); ni2 = _mm_packs_epi32( ni2, ni3 ); ni4 = _mm_packs_epi32( ni4, ni5 ); ni6 = _mm_packs_epi32( ni6, ni7 ); // Convert int16 to int8 ni0 = _mm_packs_epi16( ni0, ni2 ); ni4 = _mm_packs_epi16( ni4, ni6 ); _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0); _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4); #endif } #elif defined(__riscv_v_intrinsic) size_t vl = __riscv_vsetvl_e32m4(QK8_1); for (int i = 0; i < nb; i++) { // load elements vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_1, vl); vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl); vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0, vl); vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl); float amax = __riscv_vfmv_f_s_f32m1_f32(vmax); const float d = amax / ((1 << 7) - 1); const float id = d ? 1.0f/d : 0.0f; y[i].d = d; vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl); // convert to integer vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl); vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl); // store result __riscv_vse8_v_i8m1(y[i].qs , vs, vl); // compute sum for y[i].s vint16m1_t tmp2 = __riscv_vmv_v_x_i16m1(0, vl); vint16m1_t vwrs = __riscv_vwredsum_vs_i8m1_i16m1(vs, tmp2, vl); // set y[i].s int sum = __riscv_vmv_x_s_i16m1_i16(vwrs); y[i].s = sum*d; } #else GGML_UNUSED(nb); // scalar quantize_row_q8_1_reference(x, y, k); #endif } void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) { static const int qk = QK4_0; assert(k % qk == 0); const int nb = k / qk; for (int i = 0; i < nb; i++) { const float d = GGML_FP16_TO_FP32(x[i].d); for (int j = 0; j < qk/2; ++j) { const int x0 = (x[i].qs[j] & 0x0F) - 8; const int x1 = (x[i].qs[j] >> 4) - 8; y[i*qk + j + 0 ] = x0*d; y[i*qk + j + qk/2] = x1*d; } } } void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) { static const int qk = QK4_1; assert(k % qk == 0); const int nb = k / qk; for (int i = 0; i < nb; i++) { const float d = GGML_FP16_TO_FP32(x[i].d); const float m = GGML_FP16_TO_FP32(x[i].m); for (int j = 0; j < qk/2; ++j) { const int x0 = (x[i].qs[j] & 0x0F); const int x1 = (x[i].qs[j] >> 4); y[i*qk + j + 0 ] = x0*d + m; y[i*qk + j + qk/2] = x1*d + m; } } } void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) { static const int qk = QK5_0; assert(k % qk == 0); const int nb = k / qk; for (int i = 0; i < nb; i++) { const float d = GGML_FP16_TO_FP32(x[i].d); uint32_t qh; memcpy(&qh, x[i].qh, sizeof(qh)); for (int j = 0; j < qk/2; ++j) { const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10; const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10; const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16; const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16; y[i*qk + j + 0 ] = x0*d; y[i*qk + j + qk/2] = x1*d; } } } void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) { static const int qk = QK5_1; assert(k % qk == 0); const int nb = k / qk; for (int i = 0; i < nb; i++) { const float d = GGML_FP16_TO_FP32(x[i].d); const float m = GGML_FP16_TO_FP32(x[i].m); uint32_t qh; memcpy(&qh, x[i].qh, sizeof(qh)); for (int j = 0; j < qk/2; ++j) { const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10; const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10; const int x0 = (x[i].qs[j] & 0x0F) | xh_0; const int x1 = (x[i].qs[j] >> 4) | xh_1; y[i*qk + j + 0 ] = x0*d + m; y[i*qk + j + qk/2] = x1*d + m; } } } void dequantize_row_q8_0(const block_q8_0 * restrict x, float * restrict y, int k) { static const int qk = QK8_0; assert(k % qk == 0); const int nb = k / qk; for (int i = 0; i < nb; i++) { const float d = GGML_FP16_TO_FP32(x[i].d); for (int j = 0; j < qk; ++j) { y[i*qk + j] = x[i].qs[j]*d; } } } // // 2-6 bit quantization in super-blocks // // // ===================== Helper functions // static inline int nearest_int(float fval) { assert(fval <= 4194303.f); float val = fval + 12582912.f; int i; memcpy(&i, &val, sizeof(int)); return (i & 0x007fffff) - 0x00400000; } static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type, const float * restrict qw) { float max = 0; float amax = 0; for (int i = 0; i < n; ++i) { float ax = fabsf(x[i]); if (ax > amax) { amax = ax; max = x[i]; } } if (amax < 1e-30f) { // all zero for (int i = 0; i < n; ++i) { L[i] = 0; } return 0.f; } float iscale = -nmax / max; if (rmse_type == 0) { for (int i = 0; i < n; ++i) { int l = nearest_int(iscale * x[i]); L[i] = nmax + MAX(-nmax, MIN(nmax-1, l)); } return 1/iscale; } bool return_early = false; if (rmse_type < 0) { rmse_type = -rmse_type; return_early = true; } float sumlx = 0; float suml2 = 0; #ifdef HAVE_BUGGY_APPLE_LINKER // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7 for (volatile int i = 0; i < n; ++i) { #else for (int i = 0; i < n; ++i) { #endif int l = nearest_int(iscale * x[i]); l = MAX(-nmax, MIN(nmax-1, l)); L[i] = l + nmax; float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i])); sumlx += w*x[i]*l; suml2 += w*l*l; } float scale = sumlx/suml2; if (return_early) return suml2 > 0 ? 0.5f*(scale + 1/iscale) : 1/iscale; float best = scale * sumlx; for (int is = -9; is <= 9; ++is) { if (is == 0) { continue; } iscale = -(nmax + 0.1f*is) / max; sumlx = suml2 = 0; for (int i = 0; i < n; ++i) { int l = nearest_int(iscale * x[i]); l = MAX(-nmax, MIN(nmax-1, l)); float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i])); sumlx += w*x[i]*l; suml2 += w*l*l; } if (suml2 > 0 && sumlx*sumlx > best*suml2) { for (int i = 0; i < n; ++i) { int l = nearest_int(iscale * x[i]); L[i] = nmax + MAX(-nmax, MIN(nmax-1, l)); } scale = sumlx/suml2; best = scale*sumlx; } } return scale; } static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, bool do_rmse) { float max = 0; float amax = 0; for (int i = 0; i < n; ++i) { float ax = fabsf(x[i]); if (ax > amax) { amax = ax; max = x[i]; } } if (!amax) { // all zero for (int i = 0; i < n; ++i) { L[i] = 0; } return 0.f; } float iscale = -nmax / max; if (do_rmse) { float sumlx = 0; float suml2 = 0; for (int i = 0; i < n; ++i) { int l = nearest_int(iscale * x[i]); l = MAX(-nmax, MIN(nmax-1, l)); L[i] = l; float w = x[i]*x[i]; sumlx += w*x[i]*l; suml2 += w*l*l; } for (int itry = 0; itry < 5; ++itry) { int n_changed = 0; for (int i = 0; i < n; ++i) { float w = x[i]*x[i]; float slx = sumlx - w*x[i]*L[i]; if (slx > 0) { float sl2 = suml2 - w*L[i]*L[i]; int new_l = nearest_int(x[i] * sl2 / slx); new_l = MAX(-nmax, MIN(nmax-1, new_l)); if (new_l != L[i]) { slx += w*x[i]*new_l; sl2 += w*new_l*new_l; if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) { L[i] = new_l; sumlx = slx; suml2 = sl2; ++n_changed; } } } } if (!n_changed) { break; } } for (int i = 0; i < n; ++i) { L[i] += nmax; } return sumlx / suml2; } for (int i = 0; i < n; ++i) { int l = nearest_int(iscale * x[i]); l = MAX(-nmax, MIN(nmax-1, l)); L[i] = l + nmax; } return 1/iscale; } static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min, int ntry, float alpha) { float min = x[0]; float max = x[0]; for (int i = 1; i < n; ++i) { if (x[i] < min) min = x[i]; if (x[i] > max) max = x[i]; } if (max == min) { for (int i = 0; i < n; ++i) L[i] = 0; *the_min = 0; return 0.f; } if (min > 0) min = 0; float iscale = nmax/(max - min); float scale = 1/iscale; for (int itry = 0; itry < ntry; ++itry) { float sumlx = 0; int suml2 = 0; bool did_change = false; for (int i = 0; i < n; ++i) { int l = nearest_int(iscale*(x[i] - min)); l = MAX(0, MIN(nmax, l)); if (l != L[i]) { L[i] = l; did_change = true; } sumlx += (x[i] - min)*l; suml2 += l*l; } scale = sumlx/suml2; float sum = 0; for (int i = 0; i < n; ++i) { sum += x[i] - scale*L[i]; } min = alpha*min + (1 - alpha)*sum/n; if (min > 0) min = 0; iscale = 1/scale; if (!did_change) break; } *the_min = -min; return scale; } static float make_qkx2_quants(int n, int nmax, const float * restrict x, const float * restrict weights, uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux, float rmin, float rdelta, int nstep, bool use_mad) { float min = x[0]; float max = x[0]; float sum_w = weights[0]; float sum_x = sum_w * x[0]; #ifdef HAVE_BUGGY_APPLE_LINKER // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7 for (volatile int i = 1; i < n; ++i) { #else for (int i = 1; i < n; ++i) { #endif if (x[i] < min) min = x[i]; if (x[i] > max) max = x[i]; float w = weights[i]; sum_w += w; sum_x += w * x[i]; } if (min > 0) min = 0; if (max == min) { for (int i = 0; i < n; ++i) L[i] = 0; *the_min = -min; return 0.f; } float iscale = nmax/(max - min); float scale = 1/iscale; float best_mad = 0; for (int i = 0; i < n; ++i) { int l = nearest_int(iscale*(x[i] - min)); L[i] = MAX(0, MIN(nmax, l)); float diff = scale * L[i] + min - x[i]; diff = use_mad ? fabsf(diff) : diff * diff; float w = weights[i]; best_mad += w * diff; } if (nstep < 1) { *the_min = -min; return scale; } for (int is = 0; is <= nstep; ++is) { iscale = (rmin + rdelta*is + nmax)/(max - min); float sum_l = 0, sum_l2 = 0, sum_xl = 0; for (int i = 0; i < n; ++i) { int l = nearest_int(iscale*(x[i] - min)); l = MAX(0, MIN(nmax, l)); Laux[i] = l; float w = weights[i]; sum_l += w*l; sum_l2 += w*l*l; sum_xl += w*l*x[i]; } float D = sum_w * sum_l2 - sum_l * sum_l; if (D > 0) { float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D; float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D; if (this_min > 0) { this_min = 0; this_scale = sum_xl / sum_l2; } float mad = 0; for (int i = 0; i < n; ++i) { float diff = this_scale * Laux[i] + this_min - x[i]; diff = use_mad ? fabsf(diff) : diff * diff; float w = weights[i]; mad += w * diff; } if (mad < best_mad) { for (int i = 0; i < n; ++i) { L[i] = Laux[i]; } best_mad = mad; scale = this_scale; min = this_min; } } } *the_min = -min; return scale; } #if QK_K == 256 static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) { if (j < 4) { *d = q[j] & 63; *m = q[j + 4] & 63; } else { *d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4); *m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4); } } #endif //========================- 2-bit (de)-quantization void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; uint8_t L[QK_K]; uint8_t Laux[16]; float weights[16]; float mins[QK_K/16]; float scales[QK_K/16]; const float q4scale = 15.f; for (int i = 0; i < nb; i++) { float max_scale = 0; // as we are deducting the min, scales are always positive float max_min = 0; for (int j = 0; j < QK_K/16; ++j) { for (int l = 0; l < 16; ++l) weights[l] = fabsf(x[16*j + l]); scales[j] = make_qkx2_quants(16, 3, x + 16*j, weights, L + 16*j, &mins[j], Laux, -0.5f, 0.1f, 15, true); float scale = scales[j]; if (scale > max_scale) { max_scale = scale; } float min = mins[j]; if (min > max_min) { max_min = min; } } if (max_scale > 0) { float iscale = q4scale/max_scale; for (int j = 0; j < QK_K/16; ++j) { int l = nearest_int(iscale*scales[j]); y[i].scales[j] = l; } y[i].d = GGML_FP32_TO_FP16(max_scale/q4scale); } else { for (int j = 0; j < QK_K/16; ++j) y[i].scales[j] = 0; y[i].d = GGML_FP32_TO_FP16(0.f); } if (max_min > 0) { float iscale = q4scale/max_min; for (int j = 0; j < QK_K/16; ++j) { int l = nearest_int(iscale*mins[j]); y[i].scales[j] |= (l << 4); } y[i].dmin = GGML_FP32_TO_FP16(max_min/q4scale); } else { y[i].dmin = GGML_FP32_TO_FP16(0.f); } for (int j = 0; j < QK_K/16; ++j) { const float d = GGML_FP16_TO_FP32(y[i].d) * (y[i].scales[j] & 0xF); if (!d) continue; const float dm = GGML_FP16_TO_FP32(y[i].dmin) * (y[i].scales[j] >> 4); for (int ii = 0; ii < 16; ++ii) { int l = nearest_int((x[16*j + ii] + dm)/d); l = MAX(0, MIN(3, l)); L[16*j + ii] = l; } } #if QK_K == 256 for (int j = 0; j < QK_K; j += 128) { for (int l = 0; l < 32; ++l) { y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6); } } #else for (int l = 0; l < 16; ++l) { y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6); } #endif x += QK_K; } } void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; for (int i = 0; i < nb; i++) { const float d = GGML_FP16_TO_FP32(x[i].d); const float min = GGML_FP16_TO_FP32(x[i].dmin); const uint8_t * q = x[i].qs; #if QK_K == 256 int is = 0; float dl, ml; for (int n = 0; n < QK_K; n += 128) { int shift = 0; for (int j = 0; j < 4; ++j) { uint8_t sc = x[i].scales[is++]; dl = d * (sc & 0xF); ml = min * (sc >> 4); for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml; sc = x[i].scales[is++]; dl = d * (sc & 0xF); ml = min * (sc >> 4); for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml; shift += 2; } q += 32; } #else float dl1 = d * (x[i].scales[0] & 0xF), ml1 = min * (x[i].scales[0] >> 4); float dl2 = d * (x[i].scales[1] & 0xF), ml2 = min * (x[i].scales[1] >> 4); float dl3 = d * (x[i].scales[2] & 0xF), ml3 = min * (x[i].scales[2] >> 4); float dl4 = d * (x[i].scales[3] & 0xF), ml4 = min * (x[i].scales[3] >> 4); for (int l = 0; l < 16; ++l) { y[l+ 0] = dl1 * ((int8_t)((q[l] >> 0) & 3)) - ml1; y[l+16] = dl2 * ((int8_t)((q[l] >> 2) & 3)) - ml2; y[l+32] = dl3 * ((int8_t)((q[l] >> 4) & 3)) - ml3; y[l+48] = dl4 * ((int8_t)((q[l] >> 6) & 3)) - ml4; } y += QK_K; #endif } } void quantize_row_q2_K(const float * restrict x, void * restrict vy, int k) { quantize_row_q2_K_reference(x, vy, k); } size_t ggml_quantize_q2_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) { (void)hist; // TODO: collect histograms for (int j = 0; j < n; j += k) { block_q2_K * restrict y = (block_q2_K *)dst + j/QK_K; quantize_row_q2_K_reference(src + j, y, k); } return (n/QK_K*sizeof(block_q2_K)); } static float make_qkx3_quants(int n, int nmax, const float * restrict x, const float * restrict weights, uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux, float rmin, float rdelta, int nstep, bool use_mad) { float min = x[0]; float max = x[0]; float sum_w = weights ? weights[0] : x[0]*x[0]; float sum_x = sum_w * x[0]; #ifdef HAVE_BUGGY_APPLE_LINKER // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7 for (volatile int i = 1; i < n; ++i) { #else for (int i = 1; i < n; ++i) { #endif if (x[i] < min) min = x[i]; if (x[i] > max) max = x[i]; float w = weights ? weights[i] : x[i]*x[i]; sum_w += w; sum_x += w * x[i]; } if (min > 0) { min = 0; } if (max <= min) { memset(L, 0, n); *the_min = -min; return 0.f; } float iscale = nmax/(max - min); float scale = 1/iscale; float best_mad = 0; for (int i = 0; i < n; ++i) { int l = nearest_int(iscale*(x[i] - min)); L[i] = MAX(0, MIN(nmax, l)); float diff = scale * L[i] + min - x[i]; diff = use_mad ? fabsf(diff) : diff*diff; float w = weights ? weights[i] : x[i]*x[i]; best_mad += w * diff; } if (nstep < 1) { *the_min = -min; return scale; } for (int is = 0; is <= nstep; ++is) { iscale = (rmin + rdelta*is + nmax)/(max - min); float sum_l = 0, sum_l2 = 0, sum_xl = 0; for (int i = 0; i < n; ++i) { int l = nearest_int(iscale*(x[i] - min)); l = MAX(0, MIN(nmax, l)); Laux[i] = l; float w = weights ? weights[i] : x[i]*x[i]; sum_l += w*l; sum_l2 += w*l*l; sum_xl += w*l*x[i]; } float D = sum_w * sum_l2 - sum_l * sum_l; if (D > 0) { float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D; float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D; if (this_min > 0) { this_min = 0; this_scale = sum_xl / sum_l2; } float mad = 0; for (int i = 0; i < n; ++i) { float diff = this_scale * Laux[i] + this_min - x[i]; diff = use_mad ? fabsf(diff) : diff*diff; float w = weights ? weights[i] : x[i]*x[i]; mad += w * diff; } if (mad < best_mad) { for (int i = 0; i < n; ++i) { L[i] = Laux[i]; } best_mad = mad; scale = this_scale; min = this_min; } } } *the_min = -min; return scale; } static float make_qp_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, const float * quant_weights) { float max = 0; for (int i = 0; i < n; ++i) { max = MAX(max, x[i]); } if (!max) { // all zero for (int i = 0; i < n; ++i) { L[i] = 0; } return 0.f; } float iscale = nmax / max; for (int i = 0; i < n; ++i) { L[i] = nearest_int(iscale * x[i]); } float scale = 1/iscale; float best_mse = 0; for (int i = 0; i < n; ++i) { float diff = x[i] - scale*L[i]; float w = quant_weights[i]; best_mse += w*diff*diff; } for (int is = -4; is <= 4; ++is) { if (is == 0) continue; float iscale_is = (0.1f*is + nmax)/max; float scale_is = 1/iscale_is; float mse = 0; for (int i = 0; i < n; ++i) { int l = nearest_int(iscale_is*x[i]); l = MIN(nmax, l); float diff = x[i] - scale_is*l; float w = quant_weights[i]; mse += w*diff*diff; } if (mse < best_mse) { best_mse = mse; iscale = iscale_is; } } float sumlx = 0; float suml2 = 0; for (int i = 0; i < n; ++i) { int l = nearest_int(iscale * x[i]); l = MIN(nmax, l); L[i] = l; float w = quant_weights[i]; sumlx += w*x[i]*l; suml2 += w*l*l; } for (int itry = 0; itry < 5; ++itry) { int n_changed = 0; for (int i = 0; i < n; ++i) { float w = quant_weights[i]; float slx = sumlx - w*x[i]*L[i]; float sl2 = suml2 - w*L[i]*L[i]; if (slx > 0 && sl2 > 0) { int new_l = nearest_int(x[i] * sl2 / slx); new_l = MIN(nmax, new_l); if (new_l != L[i]) { slx += w*x[i]*new_l; sl2 += w*new_l*new_l; if (slx*slx*suml2 > sumlx*sumlx*sl2) { L[i] = new_l; sumlx = slx; suml2 = sl2; ++n_changed; } } } } if (!n_changed) { break; } } return sumlx / suml2; } static void quantize_row_q2_K_impl(const float * restrict x, block_q2_K * restrict y, int k, const float * restrict quant_weights) { GGML_ASSERT(quant_weights); assert(k % QK_K == 0); const int nb = k / QK_K; const bool requantize = true; uint8_t L[QK_K]; uint8_t Laux[16]; float mins[QK_K/16]; float scales[QK_K/16]; float sw[QK_K/16]; float weight[QK_K/16]; uint8_t Ls[QK_K/16], Lm[QK_K/16]; for (int i = 0; i < nb; i++) { memset(sw, 0, QK_K/16*sizeof(float)); float sumx2 = 0; for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j]; float sigma2 = sumx2/QK_K; for (int j = 0; j < QK_K/16; ++j) { const float * restrict qw = quant_weights + QK_K * i + 16*j; for (int l = 0; l < QK_K/16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j + l]*x[16*j + l]); for (int l = 0; l < QK_K/16; ++l) sw[j] += weight[l]; scales[j] = make_qkx3_quants(QK_K/16, 3, x + 16*j, weight, L + 16*j, &mins[j], Laux, -0.9f, 0.05f, 36, false); } float dm = make_qp_quants(QK_K/16, 15, scales, Ls, sw); float mm = make_qp_quants(QK_K/16, 15, mins, Lm, sw); y[i].d = GGML_FP32_TO_FP16(dm); y[i].dmin = GGML_FP32_TO_FP16(mm); dm = GGML_FP16_TO_FP32(y[i].d); mm = GGML_FP16_TO_FP32(y[i].dmin); for (int j = 0; j < QK_K/16; ++j) { y[i].scales[j] = Ls[j] | (Lm[j] << 4); } if (requantize) { for (int j = 0; j < QK_K/16; ++j) { const float d = dm * (y[i].scales[j] & 0xF); if (!d) continue; const float m = mm * (y[i].scales[j] >> 4); for (int ii = 0; ii < 16; ++ii) { int l = nearest_int((x[16*j + ii] + m)/d); l = MAX(0, MIN(3, l)); L[16*j + ii] = l; } } } #if QK_K == 256 for (int j = 0; j < QK_K; j += 128) { for (int l = 0; l < 32; ++l) { y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6); } } #else for (int l = 0; l < 16; ++l) { y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6); } #endif x += QK_K; } } size_t quantize_q2_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { (void)hist; size_t row_size = ggml_row_size(GGML_TYPE_Q2_K, n_per_row); if (!quant_weights) { quantize_row_q2_K_reference(src, dst, nrow*n_per_row); } else { char * qrow = (char *)dst; for (int row = 0; row < nrow; ++row) { quantize_row_q2_K_impl(src, (block_q2_K*)qrow, n_per_row, quant_weights); src += n_per_row; qrow += row_size; } } return nrow * row_size; } //========================= 3-bit (de)-quantization void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; int8_t L[QK_K]; float scales[QK_K / 16]; for (int i = 0; i < nb; i++) { float max_scale = 0; float amax = 0; for (int j = 0; j < QK_K/16; ++j) { scales[j] = make_q3_quants(16, 4, x + 16*j, L + 16*j, true); float scale = fabsf(scales[j]); if (scale > amax) { amax = scale; max_scale = scales[j]; } } #if QK_K == 256 memset(y[i].scales, 0, 12); if (max_scale) { float iscale = -32.f/max_scale; for (int j = 0; j < QK_K/16; ++j) { int8_t l = nearest_int(iscale*scales[j]); l = MAX(-32, MIN(31, l)) + 32; if (j < 8) { y[i].scales[j] = l & 0xF; } else { y[i].scales[j-8] |= ((l & 0xF) << 4); } l >>= 4; y[i].scales[j%4 + 8] |= (l << (2*(j/4))); } y[i].d = GGML_FP32_TO_FP16(1/iscale); } else { y[i].d = GGML_FP32_TO_FP16(0.f); } int8_t sc; for (int j = 0; j < QK_K/16; ++j) { sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4; sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32; float d = GGML_FP16_TO_FP32(y[i].d) * sc; if (!d) { continue; } for (int ii = 0; ii < 16; ++ii) { int l = nearest_int(x[16*j + ii]/d); l = MAX(-4, MIN(3, l)); L[16*j + ii] = l + 4; } } #else if (max_scale) { float iscale = -8.f/max_scale; for (int j = 0; j < QK_K/16; j+=2) { int l1 = nearest_int(iscale*scales[j]); l1 = 8 + MAX(-8, MIN(7, l1)); int l2 = nearest_int(iscale*scales[j+1]); l2 = 8 + MAX(-8, MIN(7, l2)); y[i].scales[j/2] = l1 | (l2 << 4); } y[i].d = GGML_FP32_TO_FP16(1/iscale); } else { for (int j = 0; j < QK_K/16; j+=2) { y[i].scales[j/2] = 0; } y[i].d = GGML_FP32_TO_FP16(0.f); } for (int j = 0; j < QK_K/16; ++j) { int s = j%2 == 0 ? y[i].scales[j/2] & 0xF : y[i].scales[j/2] >> 4; float d = GGML_FP16_TO_FP32(y[i].d) * (s - 8); if (!d) { continue; } for (int ii = 0; ii < 16; ++ii) { int l = nearest_int(x[16*j + ii]/d); l = MAX(-4, MIN(3, l)); L[16*j + ii] = l + 4; } } #endif memset(y[i].hmask, 0, QK_K/8); // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc. int m = 0; uint8_t hm = 1; for (int j = 0; j < QK_K; ++j) { if (L[j] > 3) { y[i].hmask[m] |= hm; L[j] -= 4; } if (++m == QK_K/8) { m = 0; hm <<= 1; } } #if QK_K == 256 for (int j = 0; j < QK_K; j += 128) { for (int l = 0; l < 32; ++l) { y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6); } } #else for (int l = 0; l < 16; ++l) { y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6); } #endif x += QK_K; } } #if QK_K == 256 void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; const uint32_t kmask1 = 0x03030303; const uint32_t kmask2 = 0x0f0f0f0f; uint32_t aux[4]; const int8_t * scales = (const int8_t*)aux; for (int i = 0; i < nb; i++) { const float d_all = GGML_FP16_TO_FP32(x[i].d); const uint8_t * restrict q = x[i].qs; const uint8_t * restrict hm = x[i].hmask; uint8_t m = 1; memcpy(aux, x[i].scales, 12); uint32_t tmp = aux[2]; aux[2] = ((aux[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4); aux[3] = ((aux[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4); aux[0] = (aux[0] & kmask2) | (((tmp >> 0) & kmask1) << 4); aux[1] = (aux[1] & kmask2) | (((tmp >> 2) & kmask1) << 4); int is = 0; float dl; for (int n = 0; n < QK_K; n += 128) { int shift = 0; for (int j = 0; j < 4; ++j) { dl = d_all * (scales[is++] - 32); for (int l = 0; l < 16; ++l) { *y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((hm[l+ 0] & m) ? 0 : 4)); } dl = d_all * (scales[is++] - 32); for (int l = 0; l < 16; ++l) { *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((hm[l+16] & m) ? 0 : 4)); } shift += 2; m <<= 1; } q += 32; } } } #else void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) { assert(k % QK_K == 0); assert(QK_K == 64); const int nb = k / QK_K; for (int i = 0; i < nb; i++) { const float d_all = GGML_FP16_TO_FP32(x[i].d); const uint8_t * restrict q = x[i].qs; const uint8_t * restrict hm = x[i].hmask; const float d1 = d_all * ((x[i].scales[0] & 0xF) - 8); const float d2 = d_all * ((x[i].scales[0] >> 4) - 8); const float d3 = d_all * ((x[i].scales[1] & 0xF) - 8); const float d4 = d_all * ((x[i].scales[1] >> 4) - 8); for (int l=0; l<8; ++l) { uint8_t h = hm[l]; y[l+ 0] = d1 * ((int8_t)((q[l+0] >> 0) & 3) - ((h & 0x01) ? 0 : 4)); y[l+ 8] = d1 * ((int8_t)((q[l+8] >> 0) & 3) - ((h & 0x02) ? 0 : 4)); y[l+16] = d2 * ((int8_t)((q[l+0] >> 2) & 3) - ((h & 0x04) ? 0 : 4)); y[l+24] = d2 * ((int8_t)((q[l+8] >> 2) & 3) - ((h & 0x08) ? 0 : 4)); y[l+32] = d3 * ((int8_t)((q[l+0] >> 4) & 3) - ((h & 0x10) ? 0 : 4)); y[l+40] = d3 * ((int8_t)((q[l+8] >> 4) & 3) - ((h & 0x20) ? 0 : 4)); y[l+48] = d4 * ((int8_t)((q[l+0] >> 6) & 3) - ((h & 0x40) ? 0 : 4)); y[l+56] = d4 * ((int8_t)((q[l+8] >> 6) & 3) - ((h & 0x80) ? 0 : 4)); } y += QK_K; } } #endif void quantize_row_q3_K(const float * restrict x, void * restrict vy, int k) { quantize_row_q3_K_reference(x, vy, k); } size_t ggml_quantize_q3_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) { (void)hist; // TODO: collect histograms for (int j = 0; j < n; j += k) { block_q3_K * restrict y = (block_q3_K *)dst + j/QK_K; quantize_row_q3_K_reference(src + j, y, k); } return (n/QK_K*sizeof(block_q3_K)); } static void quantize_row_q3_K_impl(const float * restrict x, block_q3_K * restrict y, int n_per_row, const float * restrict quant_weights) { #if QK_K != 256 (void)quant_weights; quantize_row_q3_K_reference(x, y, n_per_row); #else assert(n_per_row % QK_K == 0); const int nb = n_per_row / QK_K; int8_t L[QK_K]; float scales[QK_K / 16]; float weight[16]; float sw[QK_K / 16]; int8_t Ls[QK_K / 16]; for (int i = 0; i < nb; i++) { float sumx2 = 0; for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j]; float sigma2 = 2*sumx2/QK_K; for (int j = 0; j < QK_K/16; ++j) { if (quant_weights) { const float * qw = quant_weights ? quant_weights + QK_K * i + 16*j : NULL; for (int l = 0; l < 16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j+l]*x[16*j+l]); } else { for (int l = 0; l < 16; ++l) weight[l] = x[16*j+l]*x[16*j+l]; } float sumw = 0; for (int l = 0; l < 16; ++l) sumw += weight[l]; sw[j] = sumw; scales[j] = make_qx_quants(16, 4, x + 16*j, L + 16*j, 1, weight); } memset(y[i].scales, 0, 12); float d_block = make_qx_quants(QK_K/16, 32, scales, Ls, 1, sw); for (int j = 0; j < QK_K/16; ++j) { int l = Ls[j]; if (j < 8) { y[i].scales[j] = l & 0xF; } else { y[i].scales[j-8] |= ((l & 0xF) << 4); } l >>= 4; y[i].scales[j%4 + 8] |= (l << (2*(j/4))); } y[i].d = GGML_FP32_TO_FP16(d_block); int8_t sc; for (int j = 0; j < QK_K/16; ++j) { sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4; sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32; float d = GGML_FP16_TO_FP32(y[i].d) * sc; if (!d) { continue; } for (int ii = 0; ii < 16; ++ii) { int l = nearest_int(x[16*j + ii]/d); l = MAX(-4, MIN(3, l)); L[16*j + ii] = l + 4; } } memset(y[i].hmask, 0, QK_K/8); // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc. int m = 0; uint8_t hm = 1; for (int j = 0; j < QK_K; ++j) { if (L[j] > 3) { y[i].hmask[m] |= hm; L[j] -= 4; } if (++m == QK_K/8) { m = 0; hm <<= 1; } } for (int j = 0; j < QK_K; j += 128) { for (int l = 0; l < 32; ++l) { y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6); } } x += QK_K; } #endif } size_t quantize_q3_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { (void)hist; size_t row_size = ggml_row_size(GGML_TYPE_Q3_K, n_per_row); if (!quant_weights) { quantize_row_q3_K_reference(src, dst, nrow*n_per_row); } else { char * qrow = (char *)dst; for (int row = 0; row < nrow; ++row) { quantize_row_q3_K_impl(src, (block_q3_K*)qrow, n_per_row, quant_weights); src += n_per_row; qrow += row_size; } } return nrow * row_size; } // ====================== 4-bit (de)-quantization void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; uint8_t L[QK_K]; uint8_t Laux[32]; float weights[32]; float mins[QK_K/32]; float scales[QK_K/32]; for (int i = 0; i < nb; i++) { float max_scale = 0; // as we are deducting the min, scales are always positive float max_min = 0; for (int j = 0; j < QK_K/32; ++j) { //scales[j] = make_qkx1_quants(32, 15, x + 32*j, L + 32*j, &mins[j], 9, 0.5f); float sum_x2 = 0; for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l]; float av_x = sqrtf(sum_x2/32); for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]); scales[j] = make_qkx2_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -1.f, 0.1f, 20, false); float scale = scales[j]; if (scale > max_scale) { max_scale = scale; } float min = mins[j]; if (min > max_min) { max_min = min; } } #if QK_K == 256 float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f; float inv_min = max_min > 0 ? 63.f/max_min : 0.f; for (int j = 0; j < QK_K/32; ++j) { uint8_t ls = nearest_int(inv_scale*scales[j]); uint8_t lm = nearest_int(inv_min*mins[j]); ls = MIN(63, ls); lm = MIN(63, lm); if (j < 4) { y[i].scales[j] = ls; y[i].scales[j+4] = lm; } else { y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4); y[i].scales[j-4] |= ((ls >> 4) << 6); y[i].scales[j-0] |= ((lm >> 4) << 6); } } y[i].d = GGML_FP32_TO_FP16(max_scale/63.f); y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f); uint8_t sc, m; for (int j = 0; j < QK_K/32; ++j) { get_scale_min_k4(j, y[i].scales, &sc, &m); const float d = GGML_FP16_TO_FP32(y[i].d) * sc; if (!d) continue; const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m; for (int ii = 0; ii < 32; ++ii) { int l = nearest_int((x[32*j + ii] + dm)/d); l = MAX(0, MIN(15, l)); L[32*j + ii] = l; } } #else const float s_factor = 15.f; float inv_scale = max_scale > 0 ? s_factor/max_scale : 0.f; float inv_min = max_min > 0 ? s_factor/max_min : 0.f; int d1 = nearest_int(inv_scale*scales[0]); int m1 = nearest_int(inv_min*mins[0]); int d2 = nearest_int(inv_scale*scales[1]); int m2 = nearest_int(inv_min*mins[1]); y[i].scales[0] = d1 | (m1 << 4); y[i].scales[1] = d2 | (m2 << 4); y[i].d[0] = GGML_FP32_TO_FP16(max_scale/s_factor); y[i].d[1] = GGML_FP32_TO_FP16(max_min/s_factor); float sumlx = 0; int suml2 = 0; for (int j = 0; j < QK_K/32; ++j) { const uint8_t sd = y[i].scales[j] & 0xF; const uint8_t sm = y[i].scales[j] >> 4; const float d = GGML_FP16_TO_FP32(y[i].d[0]) * sd; if (!d) continue; const float m = GGML_FP16_TO_FP32(y[i].d[1]) * sm; for (int ii = 0; ii < 32; ++ii) { int l = nearest_int((x[32*j + ii] + m)/d); l = MAX(0, MIN(15, l)); L[32*j + ii] = l; sumlx += (x[32*j + ii] + m)*l*sd; suml2 += l*l*sd*sd; } } if (suml2) { y[i].d[0] = GGML_FP32_TO_FP16(sumlx/suml2); } #endif uint8_t * q = y[i].qs; for (int j = 0; j < QK_K; j += 64) { for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4); q += 32; } x += QK_K; } } void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; for (int i = 0; i < nb; i++) { const uint8_t * q = x[i].qs; #if QK_K == 256 const float d = GGML_FP16_TO_FP32(x[i].d); const float min = GGML_FP16_TO_FP32(x[i].dmin); int is = 0; uint8_t sc, m; for (int j = 0; j < QK_K; j += 64) { get_scale_min_k4(is + 0, x[i].scales, &sc, &m); const float d1 = d * sc; const float m1 = min * m; get_scale_min_k4(is + 1, x[i].scales, &sc, &m); const float d2 = d * sc; const float m2 = min * m; for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1; for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l] >> 4) - m2; q += 32; is += 2; } #else const float dall = GGML_FP16_TO_FP32(x[i].d[0]); const float mall = GGML_FP16_TO_FP32(x[i].d[1]); const float d1 = dall * (x[i].scales[0] & 0xF), m1 = mall * (x[i].scales[0] >> 4); const float d2 = dall * (x[i].scales[1] & 0xF), m2 = mall * (x[i].scales[1] >> 4); for (int l = 0; l < 32; ++l) { y[l+ 0] = d1 * (q[l] & 0xF) - m1; y[l+32] = d2 * (q[l] >> 4) - m2; } y += QK_K; #endif } } void quantize_row_q4_K(const float * restrict x, void * restrict vy, int k) { assert(k % QK_K == 0); block_q4_K * restrict y = vy; quantize_row_q4_K_reference(x, y, k); } size_t ggml_quantize_q4_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) { assert(k % QK_K == 0); (void)hist; // TODO: collect histograms for (int j = 0; j < n; j += k) { block_q4_K * restrict y = (block_q4_K *)dst + j/QK_K; quantize_row_q4_K_reference(src + j, y, k); } return (n/QK_K*sizeof(block_q4_K)); } static void quantize_row_q4_K_impl(const float * restrict x, block_q4_K * restrict y, int n_per_row, const float * quant_weights) { #if QK_K != 256 (void)quant_weights; quantize_row_q4_K_reference(x, y, n_per_row); #else assert(n_per_row % QK_K == 0); const int nb = n_per_row / QK_K; uint8_t L[QK_K]; uint8_t Laux[32]; uint8_t Ls[QK_K/32]; uint8_t Lm[QK_K/32]; float weights[32]; float sw[QK_K/32]; float mins[QK_K/32]; float scales[QK_K/32]; for (int i = 0; i < nb; i++) { float sum_x2 = 0; for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l]; float sigma2 = 2*sum_x2/QK_K; float av_x = sqrtf(sigma2); for (int j = 0; j < QK_K/32; ++j) { if (quant_weights) { const float * qw = quant_weights + QK_K*i + 32*j; for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]); } else { for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]); } float sumw = 0; for (int l = 0; l < 32; ++l) sumw += weights[l]; sw[j] = sumw; scales[j] = make_qkx3_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false); } float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw); float m_block = make_qp_quants(QK_K/32, 63, mins, Lm, sw); for (int j = 0; j < QK_K/32; ++j) { uint8_t ls = Ls[j]; uint8_t lm = Lm[j]; if (j < 4) { y[i].scales[j] = ls; y[i].scales[j+4] = lm; } else { y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4); y[i].scales[j-4] |= ((ls >> 4) << 6); y[i].scales[j-0] |= ((lm >> 4) << 6); } } y[i].d = GGML_FP32_TO_FP16(d_block); y[i].dmin = GGML_FP32_TO_FP16(m_block); uint8_t sc, m; for (int j = 0; j < QK_K/32; ++j) { get_scale_min_k4(j, y[i].scales, &sc, &m); const float d = GGML_FP16_TO_FP32(y[i].d) * sc; if (!d) continue; const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m; for (int ii = 0; ii < 32; ++ii) { int l = nearest_int((x[32*j + ii] + dm)/d); l = MAX(0, MIN(15, l)); L[32*j + ii] = l; } } uint8_t * q = y[i].qs; for (int j = 0; j < QK_K; j += 64) { for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4); q += 32; } x += QK_K; } #endif } size_t quantize_q4_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { (void)hist; size_t row_size = ggml_row_size(GGML_TYPE_Q4_K, n_per_row); if (!quant_weights) { quantize_row_q4_K_reference(src, dst, nrow*n_per_row); } else { char * qrow = (char *)dst; for (int row = 0; row < nrow; ++row) { quantize_row_q4_K_impl(src, (block_q4_K*)qrow, n_per_row, quant_weights); src += n_per_row; qrow += row_size; } } return nrow * row_size; } // ====================== 5-bit (de)-quantization void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; #if QK_K == 256 uint8_t L[QK_K]; float mins[QK_K/32]; float scales[QK_K/32]; float weights[32]; uint8_t Laux[32]; #else int8_t L[QK_K]; float scales[QK_K/16]; #endif for (int i = 0; i < nb; i++) { #if QK_K == 256 float max_scale = 0; // as we are deducting the min, scales are always positive float max_min = 0; for (int j = 0; j < QK_K/32; ++j) { //scales[j] = make_qkx1_quants(32, 31, x + 32*j, L + 32*j, &mins[j], 9, 0.5f); float sum_x2 = 0; for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l]; float av_x = sqrtf(sum_x2/32); for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]); scales[j] = make_qkx2_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.5f, 0.1f, 15, false); float scale = scales[j]; if (scale > max_scale) { max_scale = scale; } float min = mins[j]; if (min > max_min) { max_min = min; } } float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f; float inv_min = max_min > 0 ? 63.f/max_min : 0.f; for (int j = 0; j < QK_K/32; ++j) { uint8_t ls = nearest_int(inv_scale*scales[j]); uint8_t lm = nearest_int(inv_min*mins[j]); ls = MIN(63, ls); lm = MIN(63, lm); if (j < 4) { y[i].scales[j] = ls; y[i].scales[j+4] = lm; } else { y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4); y[i].scales[j-4] |= ((ls >> 4) << 6); y[i].scales[j-0] |= ((lm >> 4) << 6); } } y[i].d = GGML_FP32_TO_FP16(max_scale/63.f); y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f); uint8_t sc, m; for (int j = 0; j < QK_K/32; ++j) { get_scale_min_k4(j, y[i].scales, &sc, &m); const float d = GGML_FP16_TO_FP32(y[i].d) * sc; if (!d) continue; const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m; for (int ii = 0; ii < 32; ++ii) { int l = nearest_int((x[32*j + ii] + dm)/d); l = MAX(0, MIN(31, l)); L[32*j + ii] = l; } } uint8_t * restrict qh = y[i].qh; uint8_t * restrict ql = y[i].qs; memset(qh, 0, QK_K/8); uint8_t m1 = 1, m2 = 2; for (int n = 0; n < QK_K; n += 64) { for (int j = 0; j < 32; ++j) { int l1 = L[n + j]; if (l1 > 15) { l1 -= 16; qh[j] |= m1; } int l2 = L[n + j + 32]; if (l2 > 15) { l2 -= 16; qh[j] |= m2; } ql[j] = l1 | (l2 << 4); } m1 <<= 2; m2 <<= 2; ql += 32; } #else float max_scale = 0, amax = 0; for (int j = 0; j < QK_K/16; ++j) { scales[j] = make_qx_quants(16, 16, x + 16*j, L + 16*j, 1, NULL); float abs_scale = fabsf(scales[j]); if (abs_scale > amax) { amax = abs_scale; max_scale = scales[j]; } } float iscale = -128.f/max_scale; for (int j = 0; j < QK_K/16; ++j) { int l = nearest_int(iscale*scales[j]); y[i].scales[j] = MAX(-128, MIN(127, l)); } y[i].d = GGML_FP32_TO_FP16(1/iscale); for (int j = 0; j < QK_K/16; ++j) { const float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j]; if (!d) continue; for (int ii = 0; ii < 16; ++ii) { int l = nearest_int(x[16*j + ii]/d); l = MAX(-16, MIN(15, l)); L[16*j + ii] = l + 16; } } uint8_t * restrict qh = y[i].qh; uint8_t * restrict ql = y[i].qs; memset(qh, 0, QK_K/8); for (int j = 0; j < 32; ++j) { int jm = j%8; int is = j/8; int l1 = L[j]; if (l1 > 15) { l1 -= 16; qh[jm] |= (1 << is); } int l2 = L[j + 32]; if (l2 > 15) { l2 -= 16; qh[jm] |= (1 << (4 + is)); } ql[j] = l1 | (l2 << 4); } #endif x += QK_K; } } void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; for (int i = 0; i < nb; i++) { const uint8_t * ql = x[i].qs; const uint8_t * qh = x[i].qh; #if QK_K == 256 const float d = GGML_FP16_TO_FP32(x[i].d); const float min = GGML_FP16_TO_FP32(x[i].dmin); int is = 0; uint8_t sc, m; uint8_t u1 = 1, u2 = 2; for (int j = 0; j < QK_K; j += 64) { get_scale_min_k4(is + 0, x[i].scales, &sc, &m); const float d1 = d * sc; const float m1 = min * m; get_scale_min_k4(is + 1, x[i].scales, &sc, &m); const float d2 = d * sc; const float m2 = min * m; for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1; for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l] >> 4) + (qh[l] & u2 ? 16 : 0)) - m2; ql += 32; is += 2; u1 <<= 2; u2 <<= 2; } #else float d = GGML_FP16_TO_FP32(x[i].d); const int8_t * restrict s = x[i].scales; for (int l = 0; l < 8; ++l) { y[l+ 0] = d * s[0] * ((ql[l+ 0] & 0xF) - (qh[l] & 0x01 ? 0 : 16)); y[l+ 8] = d * s[0] * ((ql[l+ 8] & 0xF) - (qh[l] & 0x02 ? 0 : 16)); y[l+16] = d * s[1] * ((ql[l+16] & 0xF) - (qh[l] & 0x04 ? 0 : 16)); y[l+24] = d * s[1] * ((ql[l+24] & 0xF) - (qh[l] & 0x08 ? 0 : 16)); y[l+32] = d * s[2] * ((ql[l+ 0] >> 4) - (qh[l] & 0x10 ? 0 : 16)); y[l+40] = d * s[2] * ((ql[l+ 8] >> 4) - (qh[l] & 0x20 ? 0 : 16)); y[l+48] = d * s[3] * ((ql[l+16] >> 4) - (qh[l] & 0x40 ? 0 : 16)); y[l+56] = d * s[3] * ((ql[l+24] >> 4) - (qh[l] & 0x80 ? 0 : 16)); } y += QK_K; #endif } } void quantize_row_q5_K(const float * restrict x, void * restrict vy, int k) { assert(k % QK_K == 0); block_q5_K * restrict y = vy; quantize_row_q5_K_reference(x, y, k); } size_t ggml_quantize_q5_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) { assert(k % QK_K == 0); (void)hist; // TODO: collect histograms for (int j = 0; j < n; j += k) { block_q5_K * restrict y = (block_q5_K *)dst + j/QK_K; quantize_row_q5_K_reference(src + j, y, k); } return (n/QK_K*sizeof(block_q5_K)); } static void quantize_row_q5_K_impl(const float * restrict x, block_q5_K * restrict y, int n_per_row, const float * quant_weights) { #if QK_K != 256 (void)quant_weights; quantize_row_q5_K_reference(x, y, n_per_row); #else assert(n_per_row % QK_K == 0); const int nb = n_per_row / QK_K; uint8_t L[QK_K]; uint8_t Laux[32]; uint8_t Ls[QK_K/32]; uint8_t Lm[QK_K/32]; float mins[QK_K/32]; float scales[QK_K/32]; float sw[QK_K/32]; float weights[32]; for (int i = 0; i < nb; i++) { float sum_x2 = 0; for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l]; float sigma2 = 2*sum_x2/QK_K; float av_x = sqrtf(sigma2); for (int j = 0; j < QK_K/32; ++j) { if (quant_weights) { const float * qw = quant_weights + QK_K*i + 32*j; for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]); } else { for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]); } float sumw = 0; for (int l = 0; l < 32; ++l) sumw += weights[l]; sw[j] = sumw; scales[j] = make_qkx3_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false); } float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw); float m_block = make_qp_quants(QK_K/32, 63, mins, Lm, sw); for (int j = 0; j < QK_K/32; ++j) { uint8_t ls = Ls[j]; uint8_t lm = Lm[j]; ls = MIN(63, ls); lm = MIN(63, lm); if (j < 4) { y[i].scales[j] = ls; y[i].scales[j+4] = lm; } else { y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4); y[i].scales[j-4] |= ((ls >> 4) << 6); y[i].scales[j-0] |= ((lm >> 4) << 6); } } y[i].d = GGML_FP32_TO_FP16(d_block); y[i].dmin = GGML_FP32_TO_FP16(m_block); uint8_t sc, m; for (int j = 0; j < QK_K/32; ++j) { get_scale_min_k4(j, y[i].scales, &sc, &m); const float d = GGML_FP16_TO_FP32(y[i].d) * sc; if (!d) continue; const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m; for (int ii = 0; ii < 32; ++ii) { int l = nearest_int((x[32*j + ii] + dm)/d); l = MAX(0, MIN(31, l)); L[32*j + ii] = l; } } uint8_t * restrict qh = y[i].qh; uint8_t * restrict ql = y[i].qs; memset(qh, 0, QK_K/8); uint8_t m1 = 1, m2 = 2; for (int n = 0; n < QK_K; n += 64) { for (int j = 0; j < 32; ++j) { int l1 = L[n + j]; if (l1 > 15) { l1 -= 16; qh[j] |= m1; } int l2 = L[n + j + 32]; if (l2 > 15) { l2 -= 16; qh[j] |= m2; } ql[j] = l1 | (l2 << 4); } m1 <<= 2; m2 <<= 2; ql += 32; } x += QK_K; } #endif } size_t quantize_q5_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { (void)hist; size_t row_size = ggml_row_size(GGML_TYPE_Q5_K, n_per_row); if (!quant_weights) { quantize_row_q5_K_reference(src, dst, nrow*n_per_row); } else { char * qrow = (char *)dst; for (int row = 0; row < nrow; ++row) { quantize_row_q5_K_impl(src, (block_q5_K*)qrow, n_per_row, quant_weights); src += n_per_row; qrow += row_size; } } return nrow * row_size; } // ====================== 6-bit (de)-quantization void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; int8_t L[QK_K]; float scales[QK_K/16]; for (int i = 0; i < nb; i++) { float max_scale = 0; float max_abs_scale = 0; for (int ib = 0; ib < QK_K/16; ++ib) { const float scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL); scales[ib] = scale; const float abs_scale = fabsf(scale); if (abs_scale > max_abs_scale) { max_abs_scale = abs_scale; max_scale = scale; } } if (!max_abs_scale) { memset(&y[i], 0, sizeof(block_q6_K)); y[i].d = GGML_FP32_TO_FP16(0.f); x += QK_K; continue; } float iscale = -128.f/max_scale; y[i].d = GGML_FP32_TO_FP16(1/iscale); for (int ib = 0; ib < QK_K/16; ++ib) { y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib])); } for (int j = 0; j < QK_K/16; ++j) { float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j]; if (!d) { continue; } for (int ii = 0; ii < 16; ++ii) { int l = nearest_int(x[16*j + ii]/d); l = MAX(-32, MIN(31, l)); L[16*j + ii] = l + 32; } } uint8_t * restrict ql = y[i].ql; uint8_t * restrict qh = y[i].qh; #if QK_K == 256 for (int j = 0; j < QK_K; j += 128) { for (int l = 0; l < 32; ++l) { const uint8_t q1 = L[j + l + 0] & 0xF; const uint8_t q2 = L[j + l + 32] & 0xF; const uint8_t q3 = L[j + l + 64] & 0xF; const uint8_t q4 = L[j + l + 96] & 0xF; ql[l+ 0] = q1 | (q3 << 4); ql[l+32] = q2 | (q4 << 4); qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6); } ql += 64; qh += 32; } #else for (int l = 0; l < 32; ++l) { const uint8_t q1 = L[l + 0] & 0xF; const uint8_t q2 = L[l + 32] & 0xF; ql[l] = q1 | (q2 << 4); } for (int l = 0; l < 16; ++l) { qh[l] = (L[l] >> 4) | ((L[l + 16] >> 4) << 2) | ((L[l + 32] >> 4) << 4) | ((L[l + 48] >> 4) << 6); } #endif x += QK_K; } } void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; for (int i = 0; i < nb; i++) { const float d = GGML_FP16_TO_FP32(x[i].d); const uint8_t * restrict ql = x[i].ql; const uint8_t * restrict qh = x[i].qh; const int8_t * restrict sc = x[i].scales; #if QK_K == 256 for (int n = 0; n < QK_K; n += 128) { for (int l = 0; l < 32; ++l) { int is = l/16; const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32; const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32; const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32; const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32; y[l + 0] = d * sc[is + 0] * q1; y[l + 32] = d * sc[is + 2] * q2; y[l + 64] = d * sc[is + 4] * q3; y[l + 96] = d * sc[is + 6] * q4; } y += 128; ql += 64; qh += 32; sc += 8; } #else for (int l = 0; l < 16; ++l) { const int8_t q1 = (int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32; const int8_t q2 = (int8_t)((ql[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32; const int8_t q3 = (int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32; const int8_t q4 = (int8_t)((ql[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32; y[l+ 0] = d * sc[0] * q1; y[l+16] = d * sc[1] * q2; y[l+32] = d * sc[2] * q3; y[l+48] = d * sc[3] * q4; } y += 64; #endif } } void quantize_row_q6_K(const float * restrict x, void * restrict vy, int k) { assert(k % QK_K == 0); block_q6_K * restrict y = vy; quantize_row_q6_K_reference(x, y, k); } size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist) { assert(k % QK_K == 0); (void)hist; // TODO: collect histograms for (int j = 0; j < n; j += k) { block_q6_K * restrict y = (block_q6_K *)dst + j/QK_K; quantize_row_q6_K_reference(src + j, y, k); } return (n/QK_K*sizeof(block_q6_K)); } static void quantize_row_q6_K_impl(const float * restrict x, block_q6_K * restrict y, int n_per_row, const float * quant_weights) { #if QK_K != 256 (void)quant_weights; quantize_row_q6_K_reference(x, y, n_per_row); #else assert(n_per_row % QK_K == 0); const int nb = n_per_row / QK_K; int8_t L[QK_K]; float scales[QK_K/16]; //float weights[16]; for (int i = 0; i < nb; i++) { //float sum_x2 = 0; //for (int j = 0; j < QK_K; ++j) sum_x2 += x[j]*x[j]; //float sigma2 = sum_x2/QK_K; float max_scale = 0; float max_abs_scale = 0; for (int ib = 0; ib < QK_K/16; ++ib) { float scale; if (quant_weights) { const float * qw = quant_weights + QK_K*i + 16*ib; //for (int j = 0; j < 16; ++j) weights[j] = qw[j] * sqrtf(sigma2 + x[16*ib + j]*x[16*ib + j]); //scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, weights); scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, qw); } else { scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL); } scales[ib] = scale; const float abs_scale = fabsf(scale); if (abs_scale > max_abs_scale) { max_abs_scale = abs_scale; max_scale = scale; } } if (!max_abs_scale) { memset(&y[i], 0, sizeof(block_q6_K)); y[i].d = GGML_FP32_TO_FP16(0.f); x += QK_K; continue; } float iscale = -128.f/max_scale; y[i].d = GGML_FP32_TO_FP16(1/iscale); for (int ib = 0; ib < QK_K/16; ++ib) { y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib])); } for (int j = 0; j < QK_K/16; ++j) { float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j]; if (!d) { continue; } for (int ii = 0; ii < 16; ++ii) { int l = nearest_int(x[16*j + ii]/d); l = MAX(-32, MIN(31, l)); L[16*j + ii] = l + 32; } } uint8_t * restrict ql = y[i].ql; uint8_t * restrict qh = y[i].qh; for (int j = 0; j < QK_K; j += 128) { for (int l = 0; l < 32; ++l) { const uint8_t q1 = L[j + l + 0] & 0xF; const uint8_t q2 = L[j + l + 32] & 0xF; const uint8_t q3 = L[j + l + 64] & 0xF; const uint8_t q4 = L[j + l + 96] & 0xF; ql[l+ 0] = q1 | (q3 << 4); ql[l+32] = q2 | (q4 << 4); qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6); } ql += 64; qh += 32; } x += QK_K; } #endif } size_t quantize_q6_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { (void)hist; size_t row_size = ggml_row_size(GGML_TYPE_Q6_K, n_per_row); if (!quant_weights) { quantize_row_q6_K_reference(src, dst, nrow*n_per_row); } else { char * qrow = (char *)dst; for (int row = 0; row < nrow; ++row) { quantize_row_q6_K_impl(src, (block_q6_K*)qrow, n_per_row, quant_weights); src += n_per_row; qrow += row_size; } } return nrow * row_size; } static void quantize_row_q4_0_impl(const float * restrict x, block_q4_0 * restrict y, int n_per_row, const float * quant_weights) { static_assert(QK4_0 == 32, "QK4_0 must be 32"); if (!quant_weights) { quantize_row_q4_0_reference(x, y, n_per_row); return; } float weight[QK4_0]; int8_t L[QK4_0]; float sum_x2 = 0; for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j]; float sigma2 = sum_x2/n_per_row; const int nb = n_per_row/QK4_0; for (int ib = 0; ib < nb; ++ib) { const float * xb = x + QK4_0 * ib; const float * qw = quant_weights + QK4_0 * ib; for (int j = 0; j < QK4_0; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); float d = make_qx_quants(QK4_0, 8, xb, L, 1, weight); y[ib].d = GGML_FP32_TO_FP16(d); for (int j = 0; j < 16; ++j) { y[ib].qs[j] = L[j] | (L[j+16] << 4); } } } size_t quantize_q4_0(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { if (!quant_weights) { return ggml_quantize_q4_0(src, dst, nrow*n_per_row, n_per_row, hist); } size_t row_size = ggml_row_size(GGML_TYPE_Q4_0, n_per_row); char * qrow = (char *)dst; for (int row = 0; row < nrow; ++row) { quantize_row_q4_0_impl(src, (block_q4_0*)qrow, n_per_row, quant_weights); src += n_per_row; qrow += row_size; } return nrow * row_size; } static void quantize_row_q4_1_impl(const float * restrict x, block_q4_1 * restrict y, int n_per_row, const float * quant_weights) { static_assert(QK4_1 == 32, "QK4_1 must be 32"); if (!quant_weights) { quantize_row_q4_1_reference(x, y, n_per_row); return; } float weight[QK4_1]; uint8_t L[QK4_1], Laux[QK4_1]; float sum_x2 = 0; for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j]; float sigma2 = sum_x2/n_per_row; const int nb = n_per_row/QK4_1; for (int ib = 0; ib < nb; ++ib) { const float * xb = x + QK4_1 * ib; const float * qw = quant_weights + QK4_1 * ib; for (int j = 0; j < QK4_1; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); float min; float d = make_qkx3_quants(QK4_1, 15, xb, weight, L, &min, Laux, -0.9f, 0.05f, 36, false); y[ib].d = GGML_FP32_TO_FP16(d); y[ib].m = GGML_FP32_TO_FP16(-min); for (int j = 0; j < 16; ++j) { y[ib].qs[j] = L[j] | (L[j+16] << 4); } } } size_t quantize_q4_1(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { if (!quant_weights) { return ggml_quantize_q4_1(src, dst, nrow*n_per_row, n_per_row, hist); } size_t row_size = ggml_row_size(GGML_TYPE_Q4_1, n_per_row); char * qrow = (char *)dst; for (int row = 0; row < nrow; ++row) { quantize_row_q4_1_impl(src, (block_q4_1*)qrow, n_per_row, quant_weights); src += n_per_row; qrow += row_size; } return nrow * row_size; } static void quantize_row_q5_0_impl(const float * restrict x, block_q5_0 * restrict y, int n_per_row, const float * quant_weights) { static_assert(QK5_0 == 32, "QK5_0 must be 32"); if (!quant_weights) { quantize_row_q5_0_reference(x, y, n_per_row); return; } float weight[QK5_0]; int8_t L[QK5_0]; float sum_x2 = 0; for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j]; float sigma2 = sum_x2/n_per_row; const int nb = n_per_row/QK5_0; for (int ib = 0; ib < nb; ++ib) { const float * xb = x + QK5_0 * ib; const float * qw = quant_weights + QK5_0 * ib; for (int j = 0; j < QK5_0; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); float d = make_qx_quants(QK5_0, 16, xb, L, 1, weight); y[ib].d = GGML_FP32_TO_FP16(d); uint32_t qh = 0; for (int j = 0; j < 16; ++j) { const uint8_t xi0 = L[j]; const uint8_t xi1 = L[j+16]; y[ib].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4); // get the 5-th bit and store it in qh at the right position qh |= ((xi0 & 0x10u) >> 4) << (j + 0); qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2); } memcpy(&y[ib].qh, &qh, sizeof(qh)); } } size_t quantize_q5_0(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { if (!quant_weights) { return ggml_quantize_q5_0(src, dst, nrow*n_per_row, n_per_row, hist); } size_t row_size = ggml_row_size(GGML_TYPE_Q5_0, n_per_row); char * qrow = (char *)dst; for (int row = 0; row < nrow; ++row) { quantize_row_q5_0_impl(src, (block_q5_0*)qrow, n_per_row, quant_weights); src += n_per_row; qrow += row_size; } return nrow * row_size; } static void quantize_row_q5_1_impl(const float * restrict x, block_q5_1 * restrict y, int n_per_row, const float * quant_weights) { static_assert(QK5_1 == 32, "QK5_1 must be 32"); if (!quant_weights) { quantize_row_q5_1_reference(x, y, n_per_row); return; } float weight[QK5_1]; uint8_t L[QK5_1], Laux[QK5_1]; float sum_x2 = 0; for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j]; float sigma2 = sum_x2/n_per_row; const int nb = n_per_row/QK5_1; for (int ib = 0; ib < nb; ++ib) { const float * xb = x + QK5_1 * ib; const float * qw = quant_weights + QK5_1 * ib; for (int j = 0; j < QK5_1; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); float min; float d = make_qkx3_quants(QK5_1, 31, xb, weight, L, &min, Laux, -0.9f, 0.05f, 36, false); y[ib].d = GGML_FP32_TO_FP16(d); y[ib].m = GGML_FP32_TO_FP16(-min); uint32_t qh = 0; for (int j = 0; j < 16; ++j) { const uint8_t xi0 = L[j]; const uint8_t xi1 = L[j+16]; y[ib].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4); // get the 5-th bit and store it in qh at the right position qh |= ((xi0 & 0x10u) >> 4) << (j + 0); qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2); } memcpy(&y[ib].qh, &qh, sizeof(qh)); } } size_t quantize_q5_1(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { if (!quant_weights) { return ggml_quantize_q5_1(src, dst, nrow*n_per_row, n_per_row, hist); } size_t row_size = ggml_row_size(GGML_TYPE_Q5_1, n_per_row); char * qrow = (char *)dst; for (int row = 0; row < nrow; ++row) { quantize_row_q5_1_impl(src, (block_q5_1*)qrow, n_per_row, quant_weights); src += n_per_row; qrow += row_size; } return nrow * row_size; } // ====================== "True" 2-bit (de)-quantization static const uint64_t iq2xxs_grid[256] = { 0x0808080808080808, 0x080808080808082b, 0x0808080808081919, 0x0808080808082b08, 0x0808080808082b2b, 0x0808080808190819, 0x0808080808191908, 0x08080808082b0808, 0x08080808082b082b, 0x08080808082b2b08, 0x08080808082b2b2b, 0x0808080819080819, 0x0808080819081908, 0x0808080819190808, 0x0808080819192b08, 0x08080808192b0819, 0x08080808192b1908, 0x080808082b080808, 0x080808082b08082b, 0x080808082b082b2b, 0x080808082b2b082b, 0x0808081908080819, 0x0808081908081908, 0x0808081908190808, 0x0808081908191919, 0x0808081919080808, 0x080808192b081908, 0x080808192b192b08, 0x0808082b08080808, 0x0808082b0808082b, 0x0808082b082b082b, 0x0808082b2b08082b, 0x0808190808080819, 0x0808190808081908, 0x0808190808190808, 0x08081908082b0819, 0x08081908082b1908, 0x0808190819080808, 0x080819081908082b, 0x0808190819082b08, 0x08081908192b0808, 0x080819082b080819, 0x080819082b081908, 0x080819082b190808, 0x080819082b2b1908, 0x0808191908080808, 0x080819190808082b, 0x0808191908082b08, 0x08081919082b0808, 0x080819191908192b, 0x08081919192b2b19, 0x080819192b080808, 0x080819192b190819, 0x0808192b08082b19, 0x0808192b08190808, 0x0808192b19080808, 0x0808192b2b081908, 0x0808192b2b2b1908, 0x08082b0808080808, 0x08082b0808081919, 0x08082b0808082b08, 0x08082b0808191908, 0x08082b08082b2b08, 0x08082b0819080819, 0x08082b0819081908, 0x08082b0819190808, 0x08082b081919082b, 0x08082b082b082b08, 0x08082b1908081908, 0x08082b1919080808, 0x08082b2b0808082b, 0x08082b2b08191908, 0x0819080808080819, 0x0819080808081908, 0x0819080808190808, 0x08190808082b0819, 0x0819080819080808, 0x08190808192b0808, 0x081908082b081908, 0x081908082b190808, 0x081908082b191919, 0x0819081908080808, 0x0819081908082b08, 0x08190819082b0808, 0x0819081919190808, 0x0819081919192b2b, 0x081908192b080808, 0x0819082b082b1908, 0x0819082b19081919, 0x0819190808080808, 0x0819190808082b08, 0x08191908082b0808, 0x08191908082b1919, 0x0819190819082b19, 0x081919082b080808, 0x0819191908192b08, 0x08191919192b082b, 0x0819192b08080808, 0x0819192b0819192b, 0x08192b0808080819, 0x08192b0808081908, 0x08192b0808190808, 0x08192b0819080808, 0x08192b082b080819, 0x08192b1908080808, 0x08192b1908081919, 0x08192b192b2b0808, 0x08192b2b19190819, 0x082b080808080808, 0x082b08080808082b, 0x082b080808082b2b, 0x082b080819081908, 0x082b0808192b0819, 0x082b08082b080808, 0x082b08082b08082b, 0x082b0819082b2b19, 0x082b081919082b08, 0x082b082b08080808, 0x082b082b0808082b, 0x082b190808080819, 0x082b190808081908, 0x082b190808190808, 0x082b190819080808, 0x082b19081919192b, 0x082b191908080808, 0x082b191919080819, 0x082b1919192b1908, 0x082b192b2b190808, 0x082b2b0808082b08, 0x082b2b08082b0808, 0x082b2b082b191908, 0x082b2b2b19081908, 0x1908080808080819, 0x1908080808081908, 0x1908080808190808, 0x1908080808192b08, 0x19080808082b0819, 0x19080808082b1908, 0x1908080819080808, 0x1908080819082b08, 0x190808081919192b, 0x19080808192b0808, 0x190808082b080819, 0x190808082b081908, 0x190808082b190808, 0x1908081908080808, 0x19080819082b0808, 0x19080819192b0819, 0x190808192b080808, 0x190808192b081919, 0x1908082b08080819, 0x1908082b08190808, 0x1908082b19082b08, 0x1908082b1919192b, 0x1908082b192b2b08, 0x1908190808080808, 0x1908190808082b08, 0x19081908082b0808, 0x190819082b080808, 0x190819082b192b19, 0x190819190819082b, 0x19081919082b1908, 0x1908192b08080808, 0x19082b0808080819, 0x19082b0808081908, 0x19082b0808190808, 0x19082b0819080808, 0x19082b0819081919, 0x19082b1908080808, 0x19082b1919192b08, 0x19082b19192b0819, 0x19082b192b08082b, 0x19082b2b19081919, 0x19082b2b2b190808, 0x1919080808080808, 0x1919080808082b08, 0x1919080808190819, 0x1919080808192b19, 0x19190808082b0808, 0x191908082b080808, 0x191908082b082b08, 0x1919081908081908, 0x191908191908082b, 0x191908192b2b1908, 0x1919082b2b190819, 0x191919082b190808, 0x191919082b19082b, 0x1919191908082b2b, 0x1919192b08080819, 0x1919192b19191908, 0x19192b0808080808, 0x19192b0808190819, 0x19192b0808192b19, 0x19192b08192b1908, 0x19192b1919080808, 0x19192b2b08082b08, 0x192b080808081908, 0x192b080808190808, 0x192b080819080808, 0x192b0808192b2b08, 0x192b081908080808, 0x192b081919191919, 0x192b082b08192b08, 0x192b082b192b0808, 0x192b190808080808, 0x192b190808081919, 0x192b191908190808, 0x192b19190819082b, 0x192b19192b081908, 0x192b2b081908082b, 0x2b08080808080808, 0x2b0808080808082b, 0x2b08080808082b2b, 0x2b08080819080819, 0x2b0808082b08082b, 0x2b08081908081908, 0x2b08081908192b08, 0x2b08081919080808, 0x2b08082b08190819, 0x2b08190808080819, 0x2b08190808081908, 0x2b08190808190808, 0x2b08190808191919, 0x2b08190819080808, 0x2b081908192b0808, 0x2b08191908080808, 0x2b0819191908192b, 0x2b0819192b191908, 0x2b08192b08082b19, 0x2b08192b19080808, 0x2b08192b192b0808, 0x2b082b080808082b, 0x2b082b1908081908, 0x2b082b2b08190819, 0x2b19080808081908, 0x2b19080808190808, 0x2b190808082b1908, 0x2b19080819080808, 0x2b1908082b2b0819, 0x2b1908190819192b, 0x2b1908192b080808, 0x2b19082b19081919, 0x2b19190808080808, 0x2b191908082b082b, 0x2b19190819081908, 0x2b19191919190819, 0x2b192b082b080819, 0x2b192b19082b0808, 0x2b2b08080808082b, 0x2b2b080819190808, 0x2b2b08082b081919, 0x2b2b081908082b19, 0x2b2b082b08080808, 0x2b2b190808192b08, 0x2b2b2b0819190808, 0x2b2b2b1908081908, }; static const uint64_t iq2xs_grid[512] = { 0x0808080808080808, 0x080808080808082b, 0x0808080808081919, 0x0808080808082b08, 0x0808080808082b2b, 0x0808080808190819, 0x0808080808191908, 0x080808080819192b, 0x0808080808192b19, 0x08080808082b0808, 0x08080808082b082b, 0x08080808082b1919, 0x08080808082b2b08, 0x0808080819080819, 0x0808080819081908, 0x080808081908192b, 0x0808080819082b19, 0x0808080819190808, 0x080808081919082b, 0x0808080819191919, 0x0808080819192b08, 0x08080808192b0819, 0x08080808192b1908, 0x080808082b080808, 0x080808082b08082b, 0x080808082b081919, 0x080808082b082b08, 0x080808082b190819, 0x080808082b191908, 0x080808082b192b19, 0x080808082b2b0808, 0x0808081908080819, 0x0808081908081908, 0x080808190808192b, 0x0808081908082b19, 0x0808081908190808, 0x080808190819082b, 0x0808081908191919, 0x0808081908192b08, 0x0808081908192b2b, 0x08080819082b0819, 0x08080819082b1908, 0x0808081919080808, 0x080808191908082b, 0x0808081919081919, 0x0808081919082b08, 0x0808081919190819, 0x0808081919191908, 0x08080819192b0808, 0x08080819192b2b08, 0x080808192b080819, 0x080808192b081908, 0x080808192b190808, 0x0808082b08080808, 0x0808082b0808082b, 0x0808082b08081919, 0x0808082b08082b08, 0x0808082b08190819, 0x0808082b08191908, 0x0808082b082b0808, 0x0808082b19080819, 0x0808082b19081908, 0x0808082b19190808, 0x0808082b19191919, 0x0808082b2b080808, 0x0808082b2b082b2b, 0x0808190808080819, 0x0808190808081908, 0x080819080808192b, 0x0808190808082b19, 0x0808190808190808, 0x080819080819082b, 0x0808190808191919, 0x0808190808192b08, 0x08081908082b0819, 0x08081908082b1908, 0x0808190819080808, 0x080819081908082b, 0x0808190819081919, 0x0808190819082b08, 0x0808190819190819, 0x0808190819191908, 0x080819081919192b, 0x08081908192b0808, 0x080819082b080819, 0x080819082b081908, 0x080819082b190808, 0x0808191908080808, 0x080819190808082b, 0x0808191908081919, 0x0808191908082b08, 0x0808191908190819, 0x0808191908191908, 0x08081919082b0808, 0x0808191919080819, 0x0808191919081908, 0x0808191919190808, 0x08081919192b0819, 0x080819192b080808, 0x0808192b08080819, 0x0808192b08081908, 0x0808192b08190808, 0x0808192b082b192b, 0x0808192b19080808, 0x0808192b1908082b, 0x0808192b2b081908, 0x08082b0808080808, 0x08082b080808082b, 0x08082b0808081919, 0x08082b0808082b08, 0x08082b0808082b2b, 0x08082b0808190819, 0x08082b0808191908, 0x08082b08082b0808, 0x08082b08082b1919, 0x08082b0819080819, 0x08082b0819081908, 0x08082b0819190808, 0x08082b0819192b08, 0x08082b082b080808, 0x08082b082b2b0808, 0x08082b082b2b2b2b, 0x08082b1908080819, 0x08082b1908081908, 0x08082b1908190808, 0x08082b1919080808, 0x08082b192b080819, 0x08082b192b082b19, 0x08082b2b08080808, 0x08082b2b082b0808, 0x08082b2b082b2b08, 0x08082b2b2b19192b, 0x08082b2b2b2b0808, 0x0819080808080819, 0x0819080808081908, 0x081908080808192b, 0x0819080808082b19, 0x0819080808190808, 0x081908080819082b, 0x0819080808191919, 0x0819080808192b08, 0x08190808082b0819, 0x08190808082b1908, 0x0819080819080808, 0x081908081908082b, 0x0819080819081919, 0x0819080819082b08, 0x0819080819190819, 0x0819080819191908, 0x08190808192b0808, 0x08190808192b2b2b, 0x081908082b080819, 0x081908082b081908, 0x081908082b190808, 0x0819081908080808, 0x081908190808082b, 0x0819081908081919, 0x0819081908082b08, 0x0819081908190819, 0x0819081908191908, 0x08190819082b0808, 0x0819081919080819, 0x0819081919081908, 0x0819081919190808, 0x081908192b080808, 0x081908192b191908, 0x081908192b19192b, 0x0819082b08080819, 0x0819082b08081908, 0x0819082b0808192b, 0x0819082b08190808, 0x0819082b19080808, 0x0819082b192b0808, 0x0819190808080808, 0x081919080808082b, 0x0819190808081919, 0x0819190808082b08, 0x0819190808190819, 0x0819190808191908, 0x08191908082b0808, 0x0819190819080819, 0x0819190819081908, 0x0819190819082b19, 0x0819190819190808, 0x08191908192b1908, 0x081919082b080808, 0x0819191908080819, 0x0819191908081908, 0x0819191908190808, 0x0819191919080808, 0x0819192b08080808, 0x0819192b08191908, 0x0819192b19082b19, 0x08192b0808080819, 0x08192b0808081908, 0x08192b0808190808, 0x08192b080819082b, 0x08192b0819080808, 0x08192b0819191908, 0x08192b082b08192b, 0x08192b1908080808, 0x08192b1908081919, 0x08192b19192b192b, 0x08192b2b19190819, 0x08192b2b2b2b2b19, 0x082b080808080808, 0x082b08080808082b, 0x082b080808081919, 0x082b080808082b08, 0x082b080808082b2b, 0x082b080808190819, 0x082b080808191908, 0x082b0808082b0808, 0x082b080819080819, 0x082b080819081908, 0x082b080819190808, 0x082b08082b080808, 0x082b08082b2b0808, 0x082b081908080819, 0x082b081908081908, 0x082b081908190808, 0x082b081919080808, 0x082b081919082b08, 0x082b0819192b1919, 0x082b082b08080808, 0x082b082b082b082b, 0x082b082b2b080808, 0x082b082b2b2b2b08, 0x082b190808080819, 0x082b190808081908, 0x082b190808190808, 0x082b1908082b2b19, 0x082b190819080808, 0x082b191908080808, 0x082b191919080819, 0x082b19191919082b, 0x082b19192b192b19, 0x082b192b08080819, 0x082b192b08192b2b, 0x082b192b2b2b192b, 0x082b2b0808080808, 0x082b2b0808082b08, 0x082b2b0808082b2b, 0x082b2b08082b0808, 0x082b2b0819191919, 0x082b2b082b082b08, 0x082b2b082b2b082b, 0x082b2b19192b2b08, 0x082b2b192b190808, 0x082b2b2b08082b08, 0x082b2b2b082b0808, 0x082b2b2b2b08082b, 0x082b2b2b2b082b08, 0x082b2b2b2b082b2b, 0x1908080808080819, 0x1908080808081908, 0x190808080808192b, 0x1908080808082b19, 0x1908080808190808, 0x190808080819082b, 0x1908080808191919, 0x1908080808192b08, 0x19080808082b0819, 0x19080808082b1908, 0x1908080819080808, 0x190808081908082b, 0x1908080819081919, 0x1908080819082b08, 0x1908080819082b2b, 0x1908080819190819, 0x1908080819191908, 0x19080808192b0808, 0x19080808192b1919, 0x190808082b080819, 0x190808082b081908, 0x190808082b190808, 0x1908081908080808, 0x190808190808082b, 0x1908081908081919, 0x1908081908082b08, 0x1908081908190819, 0x1908081908191908, 0x19080819082b0808, 0x1908081919080819, 0x1908081919081908, 0x1908081919190808, 0x190808192b080808, 0x190808192b081919, 0x190808192b2b082b, 0x1908082b08080819, 0x1908082b08081908, 0x1908082b08190808, 0x1908082b0819082b, 0x1908082b082b2b19, 0x1908082b19080808, 0x1908190808080808, 0x190819080808082b, 0x1908190808081919, 0x1908190808082b08, 0x1908190808190819, 0x1908190808191908, 0x1908190808192b19, 0x19081908082b0808, 0x1908190819080819, 0x1908190819081908, 0x1908190819190808, 0x190819082b080808, 0x190819082b191908, 0x1908191908080819, 0x1908191908081908, 0x1908191908190808, 0x19081919082b1908, 0x1908191919080808, 0x190819192b192b2b, 0x1908192b08080808, 0x1908192b08082b2b, 0x1908192b19081908, 0x1908192b19190808, 0x19082b0808080819, 0x19082b0808081908, 0x19082b0808190808, 0x19082b0819080808, 0x19082b0819081919, 0x19082b0819191908, 0x19082b08192b082b, 0x19082b1908080808, 0x19082b1908190819, 0x19082b1919081908, 0x19082b1919190808, 0x19082b19192b2b19, 0x19082b2b08081908, 0x1919080808080808, 0x191908080808082b, 0x1919080808081919, 0x1919080808082b08, 0x1919080808190819, 0x1919080808191908, 0x19190808082b0808, 0x19190808082b2b08, 0x1919080819080819, 0x1919080819081908, 0x1919080819190808, 0x191908082b080808, 0x1919081908080819, 0x1919081908081908, 0x1919081908190808, 0x1919081908191919, 0x1919081919080808, 0x191908191908082b, 0x1919082b08080808, 0x1919082b19081908, 0x1919082b2b2b2b2b, 0x1919190808080819, 0x1919190808081908, 0x1919190808190808, 0x19191908082b0819, 0x1919190819080808, 0x19191908192b0808, 0x191919082b080819, 0x191919082b2b0819, 0x1919191908080808, 0x1919191908082b08, 0x191919192b080808, 0x191919192b082b08, 0x1919192b082b0819, 0x1919192b192b2b08, 0x1919192b2b2b0819, 0x19192b0808080808, 0x19192b0808191908, 0x19192b0819080819, 0x19192b0819190808, 0x19192b082b192b19, 0x19192b1908192b2b, 0x19192b1919080808, 0x19192b191908082b, 0x19192b2b2b081919, 0x192b080808080819, 0x192b080808081908, 0x192b080808190808, 0x192b080819080808, 0x192b080819191908, 0x192b0808192b082b, 0x192b08082b08192b, 0x192b08082b2b2b19, 0x192b081908080808, 0x192b082b082b1908, 0x192b082b19082b2b, 0x192b082b2b19082b, 0x192b190808080808, 0x192b19080819192b, 0x192b191908190808, 0x192b191919080808, 0x192b191919081919, 0x192b19192b2b1908, 0x192b2b0808080819, 0x192b2b08192b2b2b, 0x192b2b19082b1919, 0x192b2b2b0808192b, 0x192b2b2b19191908, 0x192b2b2b192b082b, 0x2b08080808080808, 0x2b0808080808082b, 0x2b08080808081919, 0x2b08080808082b08, 0x2b08080808190819, 0x2b08080808191908, 0x2b080808082b0808, 0x2b080808082b2b2b, 0x2b08080819080819, 0x2b08080819081908, 0x2b08080819190808, 0x2b0808082b080808, 0x2b0808082b08082b, 0x2b0808082b2b2b08, 0x2b0808082b2b2b2b, 0x2b08081908080819, 0x2b08081908081908, 0x2b0808190808192b, 0x2b08081908190808, 0x2b08081919080808, 0x2b08081919190819, 0x2b08081919192b19, 0x2b08082b08080808, 0x2b08082b082b0808, 0x2b08082b2b080808, 0x2b08082b2b08082b, 0x2b08082b2b2b0808, 0x2b08082b2b2b2b08, 0x2b08190808080819, 0x2b08190808081908, 0x2b08190808190808, 0x2b0819080819082b, 0x2b08190808191919, 0x2b08190819080808, 0x2b081908192b0808, 0x2b0819082b082b19, 0x2b08191908080808, 0x2b08191919081908, 0x2b0819192b2b1919, 0x2b08192b08192b08, 0x2b08192b192b2b2b, 0x2b082b0808080808, 0x2b082b0808082b08, 0x2b082b08082b1919, 0x2b082b0819192b2b, 0x2b082b082b080808, 0x2b082b082b08082b, 0x2b082b082b2b2b08, 0x2b082b190808192b, 0x2b082b2b082b082b, 0x2b082b2b2b080808, 0x2b082b2b2b082b08, 0x2b082b2b2b19192b, 0x2b082b2b2b2b2b08, 0x2b19080808080819, 0x2b19080808081908, 0x2b19080808190808, 0x2b19080819080808, 0x2b1908081919192b, 0x2b1908082b081908, 0x2b19081908080808, 0x2b190819082b082b, 0x2b190819192b1908, 0x2b19082b1919192b, 0x2b19082b2b082b19, 0x2b19190808080808, 0x2b19190808081919, 0x2b19190819081908, 0x2b19190819190808, 0x2b19190819192b08, 0x2b191919082b2b19, 0x2b1919192b190808, 0x2b1919192b19082b, 0x2b19192b19080819, 0x2b192b0819190819, 0x2b192b082b2b192b, 0x2b192b1919082b19, 0x2b192b2b08191919, 0x2b192b2b192b0808, 0x2b2b080808080808, 0x2b2b08080808082b, 0x2b2b080808082b08, 0x2b2b080808082b2b, 0x2b2b0808082b0808, 0x2b2b0808082b2b2b, 0x2b2b08082b2b0808, 0x2b2b081919190819, 0x2b2b081919192b19, 0x2b2b08192b2b192b, 0x2b2b082b08080808, 0x2b2b082b0808082b, 0x2b2b082b08082b08, 0x2b2b082b082b2b2b, 0x2b2b082b2b080808, 0x2b2b082b2b2b0808, 0x2b2b190819080808, 0x2b2b19082b191919, 0x2b2b192b192b1919, 0x2b2b192b2b192b08, 0x2b2b2b0808082b2b, 0x2b2b2b08082b0808, 0x2b2b2b08082b082b, 0x2b2b2b08082b2b08, 0x2b2b2b082b2b0808, 0x2b2b2b082b2b2b08, 0x2b2b2b1908081908, 0x2b2b2b192b081908, 0x2b2b2b192b08192b, 0x2b2b2b2b082b2b08, 0x2b2b2b2b082b2b2b, 0x2b2b2b2b2b190819, 0x2b2b2b2b2b2b2b2b, }; static const uint32_t iq3xxs_grid[256] = { 0x04040404, 0x04040414, 0x04040424, 0x04040c0c, 0x04040c1c, 0x04040c3e, 0x04041404, 0x04041414, 0x04041c0c, 0x04042414, 0x04043e1c, 0x04043e2c, 0x040c040c, 0x040c041c, 0x040c0c04, 0x040c0c14, 0x040c140c, 0x040c142c, 0x040c1c04, 0x040c1c14, 0x040c240c, 0x040c2c24, 0x040c3e04, 0x04140404, 0x04140414, 0x04140424, 0x04140c0c, 0x04141404, 0x04141414, 0x04141c0c, 0x04141c1c, 0x04141c3e, 0x04142c0c, 0x04142c3e, 0x04143e2c, 0x041c040c, 0x041c043e, 0x041c0c04, 0x041c0c14, 0x041c142c, 0x041c3e04, 0x04240c1c, 0x04241c3e, 0x04242424, 0x04242c3e, 0x04243e1c, 0x04243e2c, 0x042c040c, 0x042c043e, 0x042c1c14, 0x042c2c14, 0x04341c2c, 0x04343424, 0x043e0c04, 0x043e0c24, 0x043e0c34, 0x043e241c, 0x043e340c, 0x0c04040c, 0x0c04041c, 0x0c040c04, 0x0c040c14, 0x0c04140c, 0x0c04141c, 0x0c041c04, 0x0c041c14, 0x0c041c24, 0x0c04243e, 0x0c042c04, 0x0c0c0404, 0x0c0c0414, 0x0c0c0c0c, 0x0c0c1404, 0x0c0c1414, 0x0c14040c, 0x0c14041c, 0x0c140c04, 0x0c140c14, 0x0c14140c, 0x0c141c04, 0x0c143e14, 0x0c1c0404, 0x0c1c0414, 0x0c1c1404, 0x0c1c1c0c, 0x0c1c2434, 0x0c1c3434, 0x0c24040c, 0x0c24042c, 0x0c242c04, 0x0c2c1404, 0x0c2c1424, 0x0c2c2434, 0x0c2c3e0c, 0x0c34042c, 0x0c3e1414, 0x0c3e2404, 0x14040404, 0x14040414, 0x14040c0c, 0x14040c1c, 0x14041404, 0x14041414, 0x14041434, 0x14041c0c, 0x14042414, 0x140c040c, 0x140c041c, 0x140c042c, 0x140c0c04, 0x140c0c14, 0x140c140c, 0x140c1c04, 0x140c341c, 0x140c343e, 0x140c3e04, 0x14140404, 0x14140414, 0x14140c0c, 0x14140c3e, 0x14141404, 0x14141414, 0x14141c3e, 0x14142404, 0x14142c2c, 0x141c040c, 0x141c0c04, 0x141c0c24, 0x141c3e04, 0x141c3e24, 0x14241c2c, 0x14242c1c, 0x142c041c, 0x142c143e, 0x142c240c, 0x142c3e24, 0x143e040c, 0x143e041c, 0x143e0c34, 0x143e242c, 0x1c04040c, 0x1c040c04, 0x1c040c14, 0x1c04140c, 0x1c04141c, 0x1c042c04, 0x1c04342c, 0x1c043e14, 0x1c0c0404, 0x1c0c0414, 0x1c0c1404, 0x1c0c1c0c, 0x1c0c2424, 0x1c0c2434, 0x1c14040c, 0x1c14041c, 0x1c140c04, 0x1c14142c, 0x1c142c14, 0x1c143e14, 0x1c1c0c0c, 0x1c1c1c1c, 0x1c241c04, 0x1c24243e, 0x1c243e14, 0x1c2c0404, 0x1c2c0434, 0x1c2c1414, 0x1c2c2c2c, 0x1c340c24, 0x1c341c34, 0x1c34341c, 0x1c3e1c1c, 0x1c3e3404, 0x24040424, 0x24040c3e, 0x24041c2c, 0x24041c3e, 0x24042c1c, 0x24042c3e, 0x240c3e24, 0x24141404, 0x24141c3e, 0x24142404, 0x24143404, 0x24143434, 0x241c043e, 0x241c242c, 0x24240424, 0x24242c0c, 0x24243424, 0x242c142c, 0x242c241c, 0x242c3e04, 0x243e042c, 0x243e0c04, 0x243e0c14, 0x243e1c04, 0x2c040c14, 0x2c04240c, 0x2c043e04, 0x2c0c0404, 0x2c0c0434, 0x2c0c1434, 0x2c0c2c2c, 0x2c140c24, 0x2c141c14, 0x2c143e14, 0x2c1c0414, 0x2c1c2c1c, 0x2c240c04, 0x2c24141c, 0x2c24143e, 0x2c243e14, 0x2c2c0414, 0x2c2c1c0c, 0x2c342c04, 0x2c3e1424, 0x2c3e2414, 0x34041424, 0x34042424, 0x34042434, 0x34043424, 0x340c140c, 0x340c340c, 0x34140c3e, 0x34143424, 0x341c1c04, 0x341c1c34, 0x34242424, 0x342c042c, 0x342c2c14, 0x34341c1c, 0x343e041c, 0x343e140c, 0x3e04041c, 0x3e04042c, 0x3e04043e, 0x3e040c04, 0x3e041c14, 0x3e042c14, 0x3e0c1434, 0x3e0c2404, 0x3e140c14, 0x3e14242c, 0x3e142c14, 0x3e1c0404, 0x3e1c0c2c, 0x3e1c1c1c, 0x3e1c3404, 0x3e24140c, 0x3e24240c, 0x3e2c0404, 0x3e2c0414, 0x3e2c1424, 0x3e341c04, }; #define NGRID_IQ2XXS 512 static const uint64_t iq1s_grid[NGRID_IQ2XXS] = { 0xffffffffffff0101, 0xffffffffff01ff00, 0xffffffffff010100, 0xffffffff00000000, 0xffffffff01ff00ff, 0xffffffff01ff0001, 0xffffffff0101ffff, 0xffffffff0101ff01, 0xffffff00ff000000, 0xffffff000000ff00, 0xffffff00000000ff, 0xffffff0000000100, 0xffffff0000010000, 0xffffff0001000000, 0xffffff01ffff00ff, 0xffffff01ff01ff00, 0xffffff01ff010100, 0xffffff0100000001, 0xffffff0101ffff00, 0xffffff0101ff0101, 0xffffff0101010100, 0xffff00ffff00ff01, 0xffff00ffff0000ff, 0xffff00ff00ff0100, 0xffff00ff0100ff00, 0xffff00ff010001ff, 0xffff0000ff0101ff, 0xffff000000ffff00, 0xffff000000000000, 0xffff00000001ff01, 0xffff000001000101, 0xffff0000010100ff, 0xffff0001ffff0100, 0xffff00010000ff00, 0xffff000100010101, 0xffff000101000000, 0xffff01ffffff0000, 0xffff01ffff01ffff, 0xffff01ffff010100, 0xffff01ff00000000, 0xffff01ff01ffffff, 0xffff01ff01ff0001, 0xffff01ff0101ffff, 0xffff01ff01010001, 0xffff0100ffffff01, 0xffff01000000ffff, 0xffff010000000100, 0xffff010001ff01ff, 0xffff010001000000, 0xffff0101ff000000, 0xffff0101000101ff, 0xffff010101ffff01, 0xffff01010101ff00, 0xff00ffffff000000, 0xff00ffff00ffff00, 0xff00ffff00000001, 0xff00ffff000001ff, 0xff00ffff01010000, 0xff00ff00ffff0000, 0xff00ff00ff00ff00, 0xff00ff00ff0000ff, 0xff00ff00ff000100, 0xff00ff00ff010001, 0xff00ff0000ff0001, 0xff00ff000000ffff, 0xff00ff0000000000, 0xff00ff000001ff00, 0xff00ff0000010100, 0xff00ff0001ff0000, 0xff00ff000100ff00, 0xff00ff0001000100, 0xff00ff01ff000000, 0xff00ff0100ff0000, 0xff00ff01000001ff, 0xff00ff0101010001, 0xff0000ff00000000, 0xff0000ff0001ff00, 0xff0000ff00010100, 0xff000000ffff0101, 0xff000000ff000000, 0xff000000ff01ff00, 0xff00000000ff0000, 0xff0000000000ff00, 0xff000000000000ff, 0xff00000000000000, 0xff00000000000001, 0xff00000000000100, 0xff0000000001ffff, 0xff00000000010000, 0xff00000001000000, 0xff00000001010100, 0xff000001ff00ff01, 0xff000001ff0100ff, 0xff00000100000000, 0xff0000010001ff00, 0xff00000101ff0100, 0xff0000010100ff00, 0xff0001ff00ff00ff, 0xff0001ff00000101, 0xff0001ff000100ff, 0xff0001ff01000000, 0xff000100ff0001ff, 0xff0001000000ff01, 0xff00010000000000, 0xff00010000010001, 0xff00010000010100, 0xff00010001ffff00, 0xff00010001ff0101, 0xff00010001010000, 0xff000101ffffffff, 0xff000101ff000101, 0xff00010101ff00ff, 0xff00010101000001, 0xff000101010100ff, 0xff01ffffff000101, 0xff01ffffff01ffff, 0xff01ffffff01ff01, 0xff01ffffff0101ff, 0xff01ffff00000000, 0xff01ffff01ff0001, 0xff01ffff0101ff01, 0xff01ff00ff000000, 0xff01ff0000ff0100, 0xff01ff000000ff01, 0xff01ff0000010000, 0xff01ff00010000ff, 0xff01ff01ff01ff00, 0xff01ff0100000101, 0xff0100ffffff0000, 0xff0100ffff010000, 0xff0100ff01ff00ff, 0xff0100ff01000100, 0xff0100ff010100ff, 0xff010000ffffff01, 0xff01000000000000, 0xff0100000101ff00, 0xff010001ffff00ff, 0xff010001ff000100, 0xff01000100ffff00, 0xff01000100010001, 0xff01000101ff0001, 0xff010001010001ff, 0xff0101ffffffffff, 0xff0101ffff01ffff, 0xff0101ffff010101, 0xff0101ff0000ff00, 0xff0101ff01010001, 0xff010100ff000000, 0xff010100ff01ff01, 0xff01010000ff0001, 0xff01010000000100, 0xff01010001000000, 0xff0101010100ffff, 0x00ffffff0000ff01, 0x00ffffff000000ff, 0x00ffffff00000100, 0x00ffffff00010000, 0x00ffff00ffff0001, 0x00ffff00ff0000ff, 0x00ffff00ff000100, 0x00ffff0000000000, 0x00ffff0001000100, 0x00ffff0001010001, 0x00ffff01ff00ff01, 0x00ffff0100ff0100, 0x00ffff010000ff00, 0x00ffff01000100ff, 0x00ffff0101ff00ff, 0x00ffff010101ff00, 0x00ff00ffffffffff, 0x00ff00ffffff01ff, 0x00ff00ffff000101, 0x00ff00ff00000000, 0x00ff00ff000101ff, 0x00ff00ff01010101, 0x00ff0000ff000000, 0x00ff0000ff01ffff, 0x00ff000000ff0000, 0x00ff00000000ff00, 0x00ff0000000000ff, 0x00ff000000000000, 0x00ff000000000001, 0x00ff000000000100, 0x00ff000000010000, 0x00ff000001ffff01, 0x00ff000001000000, 0x00ff0001ff000101, 0x00ff000100ffffff, 0x00ff000100000000, 0x00ff0001010001ff, 0x00ff01ffff000000, 0x00ff01ff0001ff00, 0x00ff01ff01ff0100, 0x00ff0100ff01ff01, 0x00ff010000ff00ff, 0x00ff010000ff0101, 0x00ff010000000000, 0x00ff010000010101, 0x00ff01000100ff00, 0x00ff010001010000, 0x00ff0101ffffff00, 0x00ff01010000ff01, 0x00ff010100000100, 0x00ff010101ff0000, 0x0000ffffffff0100, 0x0000ffffff00ff00, 0x0000ffffff0000ff, 0x0000ffffff010000, 0x0000ffff00000000, 0x0000ffff00010101, 0x0000ffff01ffff01, 0x0000ffff01000100, 0x0000ff00ff000000, 0x0000ff00ff01ff00, 0x0000ff00ff0101ff, 0x0000ff0000ff0000, 0x0000ff000000ff00, 0x0000ff00000000ff, 0x0000ff0000000000, 0x0000ff0000000001, 0x0000ff0000000100, 0x0000ff0000010000, 0x0000ff0001ffffff, 0x0000ff0001ff01ff, 0x0000ff0001000000, 0x0000ff000101ffff, 0x0000ff01ffff0101, 0x0000ff01ff010000, 0x0000ff0100000000, 0x0000ff0101000101, 0x000000ffffff0001, 0x000000ffff000000, 0x000000ff00ff0000, 0x000000ff0000ff00, 0x000000ff000000ff, 0x000000ff00000000, 0x000000ff00000001, 0x000000ff00000100, 0x000000ff00010000, 0x000000ff01000000, 0x000000ff0101ff00, 0x00000000ffff0000, 0x00000000ff00ff00, 0x00000000ff0000ff, 0x00000000ff000000, 0x00000000ff000001, 0x00000000ff000100, 0x00000000ff010000, 0x0000000000ffff00, 0x0000000000ff00ff, 0x0000000000ff0000, 0x0000000000ff0001, 0x0000000000ff0100, 0x000000000000ffff, 0x000000000000ff00, 0x000000000000ff01, 0x00000000000000ff, 0x0000000000000001, 0x00000000000001ff, 0x0000000000000100, 0x0000000000000101, 0x000000000001ff00, 0x00000000000100ff, 0x0000000000010000, 0x0000000000010001, 0x0000000000010100, 0x0000000001ff0000, 0x000000000100ff00, 0x00000000010000ff, 0x0000000001000000, 0x0000000001000001, 0x0000000001000100, 0x0000000001010000, 0x00000001ffff01ff, 0x00000001ff000000, 0x0000000100ff0000, 0x000000010000ff00, 0x00000001000000ff, 0x0000000100000000, 0x0000000100000001, 0x0000000100000100, 0x0000000100010000, 0x0000000101000000, 0x000001ffff00ff00, 0x000001ffff010001, 0x000001ffff0101ff, 0x000001ff00ffff01, 0x000001ff0000ffff, 0x000001ff00000000, 0x000001ff010000ff, 0x000001ff01010100, 0x00000100ffff0100, 0x00000100ff000000, 0x0000010000ff0000, 0x000001000000ff00, 0x00000100000000ff, 0x0000010000000000, 0x0000010000000001, 0x0000010000000100, 0x0000010000010000, 0x0000010001000000, 0x000001000101ff01, 0x00000101ffff0001, 0x00000101ff01ffff, 0x0000010100000000, 0x0000010101010100, 0x0001ffffff000000, 0x0001ffff00ffffff, 0x0001ffff00000100, 0x0001ffff0001ff00, 0x0001ffff01000000, 0x0001ff00ffffff00, 0x0001ff00ffff01ff, 0x0001ff00ff010000, 0x0001ff0000000000, 0x0001ff0000010001, 0x0001ff0001ff0000, 0x0001ff0001010100, 0x0001ff01ff0000ff, 0x0001ff01ff000001, 0x0001ff0100ffffff, 0x0001ff010001ffff, 0x0001ff01000101ff, 0x0001ff010100ff01, 0x000100ffff00ffff, 0x000100ffff00ff01, 0x000100ffff000100, 0x000100ff00000000, 0x000100ff000101ff, 0x000100ff01ff0101, 0x000100ff0100ffff, 0x000100ff01010101, 0x00010000ff000000, 0x00010000ff010100, 0x0001000000ff0000, 0x000100000000ff00, 0x00010000000000ff, 0x0001000000000000, 0x0001000000000001, 0x0001000000000100, 0x0001000000010000, 0x0001000001ffff01, 0x0001000001000000, 0x0001000100ff0101, 0x0001000100000000, 0x00010001010100ff, 0x000101ffffff01ff, 0x000101ffffff0101, 0x000101ff00010000, 0x000101ff01ff0000, 0x000101ff0100ff01, 0x00010100ffff0000, 0x0001010000000000, 0x000101000001ffff, 0x0001010000010101, 0x00010100010001ff, 0x00010101ff00ff00, 0x00010101ff010001, 0x0001010100ffffff, 0x0001010100ff01ff, 0x00010101000101ff, 0x0001010101ff0000, 0x000101010100ff01, 0x0001010101000101, 0x01ffffffffff0101, 0x01ffffffff01ffff, 0x01ffffffff01ff01, 0x01ffffffff0101ff, 0x01ffffffff010101, 0x01ffffff00000000, 0x01ffffff01ff01ff, 0x01ffffff01000101, 0x01ffffff0101ff01, 0x01ffffff010100ff, 0x01ffff000000ff00, 0x01ffff0000000001, 0x01ffff00000001ff, 0x01ffff0000010000, 0x01ffff0001ff0000, 0x01ffff01ffffffff, 0x01ffff01ffff01ff, 0x01ffff01ff000000, 0x01ffff01ff01ffff, 0x01ffff01ff0101ff, 0x01ffff010100ffff, 0x01ff00ffffff0000, 0x01ff00ffff010000, 0x01ff00ff00ffff01, 0x01ff0000ff0000ff, 0x01ff000000000000, 0x01ff00000001ff01, 0x01ff000001ffffff, 0x01ff000001010100, 0x01ff0001ffffff01, 0x01ff0001ff010001, 0x01ff000101ff0100, 0x01ff000101000001, 0x01ff0001010100ff, 0x01ff01ffff00ffff, 0x01ff01ff00010001, 0x01ff01ff01000000, 0x01ff01ff010101ff, 0x01ff0100ff000001, 0x01ff010000ffff00, 0x01ff010000000100, 0x01ff010001ff01ff, 0x01ff01000101ffff, 0x01ff0101ffff00ff, 0x01ff0101ffff0101, 0x01ff0101ff0101ff, 0x01ff010100010000, 0x0100ffff00ff00ff, 0x0100ffff00ff0001, 0x0100ffff00000100, 0x0100ffff0100ff00, 0x0100ff00ffff0000, 0x0100ff00ff00ffff, 0x0100ff00ff00ff01, 0x0100ff00ff000100, 0x0100ff00ff010000, 0x0100ff0000000000, 0x0100ff00000100ff, 0x0100ff0001ff0101, 0x0100ff0001010101, 0x0100ff0100ff00ff, 0x0100ff0100ff0001, 0x0100ff0100000100, 0x0100ff0100010001, 0x0100ff0101000000, 0x010000ffff00ff00, 0x010000ff0000ffff, 0x010000ff00000000, 0x010000ff010001ff, 0x010000ff01010001, 0x01000000ffffff00, 0x01000000ffff0101, 0x01000000ff000000, 0x01000000ff0100ff, 0x01000000ff010101, 0x0100000000ff0000, 0x010000000000ff00, 0x01000000000000ff, 0x0100000000000000, 0x0100000000000001, 0x0100000000000100, 0x0100000000010000, 0x0100000001000000, 0x0100000100000000, 0x01000001000101ff, 0x0100000101ffff01, 0x010001ffff000101, 0x010001ff00ff0100, 0x010001ff0000ff00, 0x010001ff000100ff, 0x010001ff01ffffff, 0x01000100ffff0000, 0x01000100ff0001ff, 0x0100010000000000, 0x010001000001ff00, 0x0100010001ff0000, 0x01000100010000ff, 0x0100010001000101, 0x01000101ff00ff01, 0x0100010100ff0100, 0x010001010000ffff, 0x0100010101010001, 0x0101ffffffff0101, 0x0101ffffff0001ff, 0x0101ffffff01ffff, 0x0101ffffff010101, 0x0101ffff00000000, 0x0101ffff0101ffff, 0x0101ffff010101ff, 0x0101ff00ff000000, 0x0101ff0000ff0100, 0x0101ff000000ff00, 0x0101ff0000010000, 0x0101ff00010000ff, 0x0101ff0001000001, 0x0101ff01ff010101, 0x0101ff0100000000, 0x0101ff010101ff00, 0x010100ffffff0000, 0x010100ffff010000, 0x010100ff00ff01ff, 0x010100ff000000ff, 0x010100ff00000101, 0x010100ff01ffff00, 0x01010000ffffff01, 0x01010000ff000100, 0x01010000ff01ff01, 0x0101000000000000, 0x01010000000100ff, 0x010100000101ff01, 0x01010001ffff0000, 0x01010001ff00ffff, 0x01010001ff010000, 0x0101000101ffffff, 0x0101000101ff01ff, 0x0101000101010101, 0x010101ffff01ffff, 0x010101ff00000000, 0x010101ff0001ff01, 0x010101ff0101ffff, 0x010101ff010101ff, 0x01010100ffffffff, 0x01010100ff000001, 0x010101000000ff00, 0x0101010001010000, 0x0101010100ff0001, 0x010101010001ff01, 0x010101010101ffff, }; static const uint8_t ksigns_iq2xs[128] = { 0, 129, 130, 3, 132, 5, 6, 135, 136, 9, 10, 139, 12, 141, 142, 15, 144, 17, 18, 147, 20, 149, 150, 23, 24, 153, 154, 27, 156, 29, 30, 159, 160, 33, 34, 163, 36, 165, 166, 39, 40, 169, 170, 43, 172, 45, 46, 175, 48, 177, 178, 51, 180, 53, 54, 183, 184, 57, 58, 187, 60, 189, 190, 63, 192, 65, 66, 195, 68, 197, 198, 71, 72, 201, 202, 75, 204, 77, 78, 207, 80, 209, 210, 83, 212, 85, 86, 215, 216, 89, 90, 219, 92, 221, 222, 95, 96, 225, 226, 99, 228, 101, 102, 231, 232, 105, 106, 235, 108, 237, 238, 111, 240, 113, 114, 243, 116, 245, 246, 119, 120, 249, 250, 123, 252, 125, 126, 255, }; static const uint8_t kmask_iq2xs[8] = {1, 2, 4, 8, 16, 32, 64, 128}; void dequantize_row_iq2_xxs(const block_iq2_xxs * restrict x, float * restrict y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; uint32_t aux32[2]; const uint8_t * aux8 = (const uint8_t *)aux32; for (int i = 0; i < nb; i++) { const float d = GGML_FP16_TO_FP32(x[i].d); for (int ib32 = 0; ib32 < QK_K/32; ++ib32) { memcpy(aux32, x[i].qs + 4*ib32, 2*sizeof(uint32_t)); const float db = d * (0.5f + (aux32[1] >> 28)) * 0.25f; for (int l = 0; l < 4; ++l) { const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]); const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127]; for (int j = 0; j < 8; ++j) { y[j] = db * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f); } y += 8; } } } } // ====================== 2.3125 bpw (de)-quantization void dequantize_row_iq2_xs(const block_iq2_xs * restrict x, float * restrict y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; float db[2]; for (int i = 0; i < nb; i++) { const float d = GGML_FP16_TO_FP32(x[i].d); for (int ib32 = 0; ib32 < QK_K/32; ++ib32) { db[0] = d * (0.5f + (x[i].scales[ib32] & 0xf)) * 0.25f; db[1] = d * (0.5f + (x[i].scales[ib32] >> 4)) * 0.25f; for (int l = 0; l < 4; ++l) { const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (x[i].qs[4*ib32 + l] & 511)); const uint8_t signs = ksigns_iq2xs[x[i].qs[4*ib32 + l] >> 9]; for (int j = 0; j < 8; ++j) { y[j] = db[l/2] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f); } y += 8; } } } } // ====================== 3.0625 bpw (de)-quantization void dequantize_row_iq3_xxs(const block_iq3_xxs * restrict x, float * restrict y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; uint32_t aux32; for (int i = 0; i < nb; i++) { const float d = GGML_FP16_TO_FP32(x[i].d); const uint8_t * qs = x[i].qs; const uint8_t * scales_and_signs = qs + QK_K/4; for (int ib32 = 0; ib32 < QK_K/32; ++ib32) { memcpy(&aux32, scales_and_signs + 4*ib32, sizeof(uint32_t)); const float db = d * (0.5f + (aux32 >> 28)) * 0.5f; for (int l = 0; l < 4; ++l) { const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127]; const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + qs[2*l+0]); const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + qs[2*l+1]); for (int j = 0; j < 4; ++j) { y[j+0] = db * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f); y[j+4] = db * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f); } y += 8; } qs += 8; } } } // ====================== 1.5625 bpw (de)-quantization void dequantize_row_iq1_s(const block_iq1_s * restrict x, float * restrict y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; float db[4]; uint16_t idx[4]; //const int8_t * grid[4]; for (int i = 0; i < nb; i++) { const float d = GGML_FP16_TO_FP32(x[i].d); const uint8_t * sc = x[i].scales; const uint8_t * qs = x[i].qs; for (int i8 = 0; i8 < QK_K/8; i8 += 4) { idx[0] = qs[0] | ((sc[0] & 0x08) << 5); idx[1] = qs[1] | ((sc[0] & 0x80) << 1); idx[2] = qs[2] | ((sc[1] & 0x08) << 5); idx[3] = qs[3] | ((sc[1] & 0x80) << 1); //grid[0] = (const int8_t *)(iq1s_grid + (qs[0] | ((sc[0] & 0x08) << 5))); //grid[1] = (const int8_t *)(iq1s_grid + (qs[1] | ((sc[0] & 0x80) << 1))); //grid[2] = (const int8_t *)(iq1s_grid + (qs[2] | ((sc[1] & 0x08) << 5))); //grid[3] = (const int8_t *)(iq1s_grid + (qs[3] | ((sc[1] & 0x80) << 1))); db[0] = d * (2*(sc[0] & 7) + 1); db[1] = d * (2*((sc[0] >> 4) & 7) + 1); db[2] = d * (2*(sc[1] & 7) + 1); db[3] = d * (2*((sc[1] >> 4) & 7) + 1); for (int l = 0; l < 4; ++l) { const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]); for (int j = 0; j < 8; ++j) { //y[j] = db[l] * grid[l][j]; y[j] = db[l] * grid[j]; } y += 8; } qs += 4; sc += 2; } } } //===================================== Q8_K ============================================== void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; for (int i = 0; i < nb; i++) { float max = 0; float amax = 0; for (int j = 0; j < QK_K; ++j) { float ax = fabsf(x[j]); if (ax > amax) { amax = ax; max = x[j]; } } if (!amax) { y[i].d = 0; memset(y[i].qs, 0, QK_K); x += QK_K; continue; } //const float iscale = -128.f/max; // We need this change for IQ2_XXS, else the AVX implementation becomes very awkward const float iscale = -127.f/max; for (int j = 0; j < QK_K; ++j) { int v = nearest_int(iscale*x[j]); y[i].qs[j] = MIN(127, v); } for (int j = 0; j < QK_K/16; ++j) { int sum = 0; for (int ii = 0; ii < 16; ++ii) { sum += y[i].qs[j*16 + ii]; } y[i].bsums[j] = sum; } y[i].d = 1/iscale; x += QK_K; } } void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; for (int i = 0; i < nb; i++) { for (int j = 0; j < QK_K; ++j) { *y++ = x[i].d * x[i].qs[j]; } } } void quantize_row_q8_K(const float * restrict x, void * restrict y, int k) { quantize_row_q8_K_reference(x, y, k); } //===================================== Dot ptoducts ================================= // // Helper functions // #if __AVX__ || __AVX2__ || __AVX512F__ // shuffles to pick the required scales in dot products static inline __m256i get_scale_shuffle_q3k(int i) { static const uint8_t k_shuffle[128] = { 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11, 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15, }; return _mm256_loadu_si256((const __m256i*)k_shuffle + i); } static inline __m256i get_scale_shuffle_k4(int i) { static const uint8_t k_shuffle[256] = { 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11, 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15 }; return _mm256_loadu_si256((const __m256i*)k_shuffle + i); } static inline __m128i get_scale_shuffle(int i) { static const uint8_t k_shuffle[128] = { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11, 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13, 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15 }; return _mm_loadu_si128((const __m128i*)k_shuffle + i); } #endif void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bbx, const void * restrict vy, size_t bby, int nrc) { const int qk = QK8_0; const int nb = n / qk; assert(n % qk == 0); #if defined(__ARM_FEATURE_MATMUL_INT8) assert((nrc == 2) || (nrc == 1)); #else assert(nrc == 1); #endif UNUSED(nrc); UNUSED(bbx); UNUSED(bby); UNUSED(bs); const block_q4_0 * restrict x = vx; const block_q8_0 * restrict y = vy; #if defined(__ARM_FEATURE_MATMUL_INT8) if (nrc == 2) { const block_q4_0 * restrict vx0 = vx; const block_q4_0 * restrict vx1 = vx + bx; const block_q8_0 * restrict vy0 = vy; const block_q8_0 * restrict vy1 = vy + by; float32x4_t sumv0 = vdupq_n_f32(0.0f); for (int i = 0; i < nb; i++) { const block_q4_0 * restrict b_x0 = &vx0[i]; const block_q4_0 * restrict b_x1 = &vx1[i]; const block_q8_0 * restrict b_y0 = &vy0[i]; const block_q8_0 * restrict b_y1 = &vy1[i]; const uint8x16_t m4b = vdupq_n_u8(0x0F); const int8x16_t s8b = vdupq_n_s8(0x8); const uint8x16_t v0_0 = vld1q_u8(b_x0->qs); const uint8x16_t v0_1 = vld1q_u8(b_x1->qs); // 4-bit -> 8-bit const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b)); const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4)); const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b)); const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4)); // sub 8 const int8x16_t x0_l = vsubq_s8(v0_0l, s8b); const int8x16_t x0_h = vsubq_s8(v0_0h, s8b); const int8x16_t x1_l = vsubq_s8(v0_1l, s8b); const int8x16_t x1_h = vsubq_s8(v0_1h, s8b); // load y const int8x16_t y0_l = vld1q_s8(b_y0->qs); const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16); const int8x16_t y1_l = vld1q_s8(b_y1->qs); const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16); float32x4_t scale = {GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d), GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d), GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d), GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)}; int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l))); int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l))); int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h))); int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h))); int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l))); int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l))); int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h))); int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h))); sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)), l1, r1)), l2, r2)), l3, r3))), scale); } float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2); float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1); vst1_f32(s, vget_low_f32(sumv2)); vst1_f32(s + bs, vget_high_f32(sumv2)); return; } #endif #if defined(__ARM_NEON) float32x4_t sumv0 = vdupq_n_f32(0.0f); float32x4_t sumv1 = vdupq_n_f32(0.0f); assert(nb % 2 == 0); // TODO: handle odd nb for (int i = 0; i < nb; i += 2) { const block_q4_0 * restrict x0 = &x[i + 0]; const block_q4_0 * restrict x1 = &x[i + 1]; const block_q8_0 * restrict y0 = &y[i + 0]; const block_q8_0 * restrict y1 = &y[i + 1]; const uint8x16_t m4b = vdupq_n_u8(0x0F); const int8x16_t s8b = vdupq_n_s8(0x8); const uint8x16_t v0_0 = vld1q_u8(x0->qs); const uint8x16_t v0_1 = vld1q_u8(x1->qs); // 4-bit -> 8-bit const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b)); const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4)); const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b)); const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4)); // sub 8 const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b); const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b); const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b); const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b); // load y const int8x16_t v1_0l = vld1q_s8(y0->qs); const int8x16_t v1_0h = vld1q_s8(y0->qs + 16); const int8x16_t v1_1l = vld1q_s8(y1->qs); const int8x16_t v1_1h = vld1q_s8(y1->qs + 16); // dot product into int32x4_t const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h); const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h); sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d)); sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d)); } *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1); #elif defined(__AVX2__) // Initialize accumulator with zeros __m256 acc = _mm256_setzero_ps(); // Main loop for (int i = 0; i < nb; ++i) { /* Compute combined scale for the block */ const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) ); __m256i qx = bytes_from_nibbles_32(x[i].qs); // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. const __m256i off = _mm256_set1_epi8( 8 ); qx = _mm256_sub_epi8( qx, off ); __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs); const __m256 q = mul_sum_i8_pairs_float(qx, qy); /* Multiply q with scale and accumulate */ acc = _mm256_fmadd_ps( d, q, acc ); } *s = hsum_float_8(acc); #elif defined(__AVX__) // Initialize accumulator with zeros __m256 acc = _mm256_setzero_ps(); // Main loop for (int i = 0; i < nb; ++i) { // Compute combined scale for the block const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) ); const __m128i lowMask = _mm_set1_epi8(0xF); const __m128i off = _mm_set1_epi8(8); const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs); __m128i bx = _mm_and_si128(lowMask, tmp); __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs); bx = _mm_sub_epi8(bx, off); const __m128i i32_0 = mul_sum_i8_pairs(bx, by); bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4)); by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16)); bx = _mm_sub_epi8(bx, off); const __m128i i32_1 = mul_sum_i8_pairs(bx, by); // Convert int32_t to float __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1)); // Apply the scale, and accumulate acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc); } *s = hsum_float_8(acc); #elif defined(__SSSE3__) // set constants const __m128i lowMask = _mm_set1_epi8(0xF); const __m128i off = _mm_set1_epi8(8); // Initialize accumulator with zeros __m128 acc_0 = _mm_setzero_ps(); __m128 acc_1 = _mm_setzero_ps(); __m128 acc_2 = _mm_setzero_ps(); __m128 acc_3 = _mm_setzero_ps(); // First round without accumulation { _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0); _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0); // Compute combined scale for the block 0 and 1 const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) ); const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs); __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1); __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs); bx_0 = _mm_sub_epi8(bx_0, off); const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0); __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4)); __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16)); bx_1 = _mm_sub_epi8(bx_1, off); const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1); _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0); _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0); // Compute combined scale for the block 2 and 3 const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) ); const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs); __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3); __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs); bx_2 = _mm_sub_epi8(bx_2, off); const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2); __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4)); __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16)); bx_3 = _mm_sub_epi8(bx_3, off); const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3); // Convert int32_t to float __m128 p0 = _mm_cvtepi32_ps(i32_0); __m128 p1 = _mm_cvtepi32_ps(i32_1); __m128 p2 = _mm_cvtepi32_ps(i32_2); __m128 p3 = _mm_cvtepi32_ps(i32_3); // Apply the scale acc_0 = _mm_mul_ps( d_0_1, p0 ); acc_1 = _mm_mul_ps( d_0_1, p1 ); acc_2 = _mm_mul_ps( d_2_3, p2 ); acc_3 = _mm_mul_ps( d_2_3, p3 ); } assert(nb % 2 == 0); // TODO: handle odd nb // Main loop for (int i = 2; i < nb; i+=2) { _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0); _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0); // Compute combined scale for the block 0 and 1 const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) ); const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs); __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1); __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs); bx_0 = _mm_sub_epi8(bx_0, off); const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0); __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4)); __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16)); bx_1 = _mm_sub_epi8(bx_1, off); const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1); _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0); _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0); // Compute combined scale for the block 2 and 3 const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) ); const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs); __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3); __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs); bx_2 = _mm_sub_epi8(bx_2, off); const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2); __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4)); __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16)); bx_3 = _mm_sub_epi8(bx_3, off); const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3); // Convert int32_t to float __m128 p0 = _mm_cvtepi32_ps(i32_0); __m128 p1 = _mm_cvtepi32_ps(i32_1); __m128 p2 = _mm_cvtepi32_ps(i32_2); __m128 p3 = _mm_cvtepi32_ps(i32_3); // Apply the scale __m128 p0_d = _mm_mul_ps( d_0_1, p0 ); __m128 p1_d = _mm_mul_ps( d_0_1, p1 ); __m128 p2_d = _mm_mul_ps( d_2_3, p2 ); __m128 p3_d = _mm_mul_ps( d_2_3, p3 ); // Acummulate acc_0 = _mm_add_ps(p0_d, acc_0); acc_1 = _mm_add_ps(p1_d, acc_1); acc_2 = _mm_add_ps(p2_d, acc_2); acc_3 = _mm_add_ps(p3_d, acc_3); } *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3); #elif defined(__riscv_v_intrinsic) float sumf = 0.0; size_t vl = __riscv_vsetvl_e8m1(qk/2); for (int i = 0; i < nb; i++) { // load elements vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl); vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl); vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl); // mask and store lower part of x, and then upper part vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl); vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl); vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a); vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l); // subtract offset vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 8, vl); vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 8, vl); vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl); vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl); vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl); vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl); vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl); int sumi = __riscv_vmv_x_s_i32m1_i32(vs2); sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d); } *s = sumf; #else // scalar float sumf = 0.0; for (int i = 0; i < nb; i++) { int sumi = 0; for (int j = 0; j < qk/2; ++j) { const int v0 = (x[i].qs[j] & 0x0F) - 8; const int v1 = (x[i].qs[j] >> 4) - 8; sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]); } sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d); } *s = sumf; #endif } void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bbx, const void * restrict vy, size_t bby, int nrc) { const int qk = QK8_1; const int nb = n / qk; assert(n % qk == 0); #if defined(__ARM_FEATURE_MATMUL_INT8) assert((nrc == 2) || (nrc == 1)); #else assert(nrc == 1); #endif UNUSED(nrc); UNUSED(bbx); UNUSED(bby); UNUSED(bs); const block_q4_1 * restrict x = vx; const block_q8_1 * restrict y = vy; #if defined(__ARM_FEATURE_MATMUL_INT8) if (nrc == 2) { const block_q4_1 * restrict vx0 = vx; const block_q4_1 * restrict vx1 = vx + bx; const block_q8_1 * restrict vy0 = vy; const block_q8_1 * restrict vy1 = vy + by; float32x4_t sumv0 = vdupq_n_f32(0.0f); float32x4_t summs0 = vdupq_n_f32(0.0f); for (int i = 0; i < nb; i++) { const block_q4_1 * restrict b_x0 = &vx0[i]; const block_q4_1 * restrict b_x1 = &vx1[i]; const block_q8_1 * restrict b_y0 = &vy0[i]; const block_q8_1 * restrict b_y1 = &vy1[i]; float32x4_t summs_t = {GGML_FP16_TO_FP32(b_x0->m) * b_y0->s, GGML_FP16_TO_FP32(b_x1->m) * b_y0->s, GGML_FP16_TO_FP32(b_x0->m) * b_y1->s, GGML_FP16_TO_FP32(b_x1->m) * b_y1->s}; summs0 += summs_t; const uint8x16_t m4b = vdupq_n_u8(0x0F); const uint8x16_t v0_0 = vld1q_u8(b_x0->qs); const uint8x16_t v0_1 = vld1q_u8(b_x1->qs); // 4-bit -> 8-bit const int8x16_t x0_l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b)); const int8x16_t x0_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4)); const int8x16_t x1_l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b)); const int8x16_t x1_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4)); // load y const int8x16_t y0_l = vld1q_s8(b_y0->qs); const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16); const int8x16_t y1_l = vld1q_s8(b_y1->qs); const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16); // mmla into int32x4_t float32x4_t scale = {GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d), GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d), GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d), GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)}; int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l))); int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l))); int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h))); int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h))); int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l))); int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l))); int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h))); int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h))); sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)), l1, r1)), l2, r2)), l3, r3))), scale); } float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2); float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1); sumv2 = sumv2 + summs0; vst1_f32(s, vget_low_f32(sumv2)); vst1_f32(s + bs, vget_high_f32(sumv2)); return; } #endif // TODO: add WASM SIMD #if defined(__ARM_NEON) float32x4_t sumv0 = vdupq_n_f32(0.0f); float32x4_t sumv1 = vdupq_n_f32(0.0f); float summs = 0; assert(nb % 2 == 0); // TODO: handle odd nb for (int i = 0; i < nb; i += 2) { const block_q4_1 * restrict x0 = &x[i + 0]; const block_q4_1 * restrict x1 = &x[i + 1]; const block_q8_1 * restrict y0 = &y[i + 0]; const block_q8_1 * restrict y1 = &y[i + 1]; summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s; const uint8x16_t m4b = vdupq_n_u8(0x0F); const uint8x16_t v0_0 = vld1q_u8(x0->qs); const uint8x16_t v0_1 = vld1q_u8(x1->qs); // 4-bit -> 8-bit const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b)); const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4)); const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b)); const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4)); // load y const int8x16_t v1_0l = vld1q_s8(y0->qs); const int8x16_t v1_0h = vld1q_s8(y0->qs + 16); const int8x16_t v1_1l = vld1q_s8(y1->qs); const int8x16_t v1_1h = vld1q_s8(y1->qs + 16); // dot product into int32x4_t const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h); const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h); sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d); sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d); } *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs; #elif defined(__AVX2__) || defined(__AVX__) // Initialize accumulator with zeros __m256 acc = _mm256_setzero_ps(); float summs = 0; // Main loop for (int i = 0; i < nb; ++i) { const float d0 = GGML_FP16_TO_FP32(x[i].d); const float d1 = y[i].d; summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s; const __m256 d0v = _mm256_set1_ps( d0 ); const __m256 d1v = _mm256_set1_ps( d1 ); // Compute combined scales const __m256 d0d1 = _mm256_mul_ps( d0v, d1v ); // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes const __m256i qx = bytes_from_nibbles_32(x[i].qs); const __m256i qy = _mm256_loadu_si256( (const __m256i *)y[i].qs ); const __m256 xy = mul_sum_us8_pairs_float(qx, qy); // Accumulate d0*d1*x*y #if defined(__AVX2__) acc = _mm256_fmadd_ps( d0d1, xy, acc ); #else acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc ); #endif } *s = hsum_float_8(acc) + summs; #elif defined(__riscv_v_intrinsic) float sumf = 0.0; size_t vl = __riscv_vsetvl_e8m1(qk/2); for (int i = 0; i < nb; i++) { // load elements vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl); vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl); vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl); // mask and store lower part of x, and then upper part vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl); vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl); vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a); vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l); vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl); vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl); vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl); vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl); vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl); int sumi = __riscv_vmv_x_s_i32m1_i32(vs2); sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s; } *s = sumf; #else // scalar float sumf = 0.0; for (int i = 0; i < nb; i++) { int sumi = 0; for (int j = 0; j < qk/2; ++j) { const int v0 = (x[i].qs[j] & 0x0F); const int v1 = (x[i].qs[j] >> 4); sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]); } sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s; } *s = sumf; #endif } void ggml_vec_dot_q5_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bbx, const void * restrict vy, size_t bby, int nrc) { const int qk = QK8_0; const int nb = n / qk; assert(n % qk == 0); assert(qk == QK5_0); assert(nrc == 1); UNUSED(nrc); UNUSED(bbx); UNUSED(bby); UNUSED(bs); const block_q5_0 * restrict x = vx; const block_q8_0 * restrict y = vy; #if defined(__ARM_NEON) float32x4_t sumv0 = vdupq_n_f32(0.0f); float32x4_t sumv1 = vdupq_n_f32(0.0f); uint32_t qh0; uint32_t qh1; uint64_t tmp0[4]; uint64_t tmp1[4]; assert(nb % 2 == 0); // TODO: handle odd nb for (int i = 0; i < nb; i += 2) { const block_q5_0 * restrict x0 = &x[i]; const block_q5_0 * restrict x1 = &x[i + 1]; const block_q8_0 * restrict y0 = &y[i]; const block_q8_0 * restrict y1 = &y[i + 1]; const uint8x16_t m4b = vdupq_n_u8(0x0F); // extract the 5th bit via lookup table ((!b) << 4) memcpy(&qh0, x0->qh, sizeof(qh0)); memcpy(&qh1, x1->qh, sizeof(qh1)); tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF]; tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF]; tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF]; tmp0[3] = table_b2b_1[(qh0 >> 24) ]; tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF]; tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF]; tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF]; tmp1[3] = table_b2b_1[(qh1 >> 24) ]; const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0)); const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2)); const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0)); const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2)); const uint8x16_t v0_0 = vld1q_u8(x0->qs); const uint8x16_t v0_1 = vld1q_u8(x1->qs); // 4-bit -> 8-bit int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b)); int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4)); int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b)); int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4)); // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero) const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0); const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0); const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1); const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1); // load y const int8x16_t v1_0l = vld1q_s8(y0->qs); const int8x16_t v1_0h = vld1q_s8(y0->qs + 16); const int8x16_t v1_1l = vld1q_s8(y1->qs); const int8x16_t v1_1h = vld1q_s8(y1->qs + 16); sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32( ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l), ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d)); sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32( ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l), ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d)); } *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1); #elif defined(__wasm_simd128__) v128_t sumv = wasm_f32x4_splat(0.0f); uint32_t qh; uint64_t tmp[4]; // TODO: check if unrolling this is better for (int i = 0; i < nb; ++i) { const block_q5_0 * restrict x0 = &x[i]; const block_q8_0 * restrict y0 = &y[i]; const v128_t m4b = wasm_i8x16_splat(0x0F); // extract the 5th bit memcpy(&qh, x0->qh, sizeof(qh)); tmp[0] = table_b2b_1[(qh >> 0) & 0xFF]; tmp[1] = table_b2b_1[(qh >> 8) & 0xFF]; tmp[2] = table_b2b_1[(qh >> 16) & 0xFF]; tmp[3] = table_b2b_1[(qh >> 24) ]; const v128_t qhl = wasm_v128_load(tmp + 0); const v128_t qhh = wasm_v128_load(tmp + 2); const v128_t v0 = wasm_v128_load(x0->qs); // 4-bit -> 8-bit const v128_t v0l = wasm_v128_and (v0, m4b); const v128_t v0h = wasm_u8x16_shr(v0, 4); // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero) const v128_t v0lf = wasm_i8x16_sub(v0l, qhl); const v128_t v0hf = wasm_i8x16_sub(v0h, qhh); // load y const v128_t v1l = wasm_v128_load(y0->qs); const v128_t v1h = wasm_v128_load(y0->qs + 16); // int8x16 -> int16x8 const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf); const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf); const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf); const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf); const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l); const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l); const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h); const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h); // dot product sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4( wasm_i32x4_add( wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll), wasm_i32x4_dot_i16x8(v0lfh, v1lh)), wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl), wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d)))); } *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) + wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3); #elif defined(__AVX2__) // Initialize accumulator with zeros __m256 acc = _mm256_setzero_ps(); // Main loop for (int i = 0; i < nb; i++) { /* Compute combined scale for the block */ const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d)); __m256i qx = bytes_from_nibbles_32(x[i].qs); __m256i bxhi = bytes_from_bits_32(x[i].qh); bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0)); qx = _mm256_or_si256(qx, bxhi); __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs); const __m256 q = mul_sum_i8_pairs_float(qx, qy); /* Multiply q with scale and accumulate */ acc = _mm256_fmadd_ps(d, q, acc); } *s = hsum_float_8(acc); #elif defined(__AVX__) // Initialize accumulator with zeros __m256 acc = _mm256_setzero_ps(); __m128i mask = _mm_set1_epi8((char)0xF0); // Main loop for (int i = 0; i < nb; i++) { /* Compute combined scale for the block */ const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d)); __m256i bx = bytes_from_nibbles_32(x[i].qs); const __m256i bxhi = bytes_from_bits_32(x[i].qh); __m128i bxhil = _mm256_castsi256_si128(bxhi); __m128i bxhih = _mm256_extractf128_si256(bxhi, 1); bxhil = _mm_andnot_si128(bxhil, mask); bxhih = _mm_andnot_si128(bxhih, mask); __m128i bxl = _mm256_castsi256_si128(bx); __m128i bxh = _mm256_extractf128_si256(bx, 1); bxl = _mm_or_si128(bxl, bxhil); bxh = _mm_or_si128(bxh, bxhih); bx = MM256_SET_M128I(bxh, bxl); const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs); const __m256 q = mul_sum_i8_pairs_float(bx, by); /* Multiply q with scale and accumulate */ acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc); } *s = hsum_float_8(acc); #elif defined(__riscv_v_intrinsic) float sumf = 0.0; uint32_t qh; size_t vl = __riscv_vsetvl_e8m1(qk/2); // These temporary registers are for masking and shift operations vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl); vuint32m2_t vt_2 = __riscv_vsll_vv_u32m2(__riscv_vmv_v_x_u32m2(1, vl), vt_1, vl); vuint32m2_t vt_3 = __riscv_vsll_vx_u32m2(vt_2, 16, vl); vuint32m2_t vt_4 = __riscv_vadd_vx_u32m2(vt_1, 12, vl); for (int i = 0; i < nb; i++) { memcpy(&qh, x[i].qh, sizeof(uint32_t)); // ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4; vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(vt_2, qh, vl); vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(xha_0, vt_1, vl); vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl); // ((qh & (1u << (j + 16))) >> (j + 12)); vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(vt_3, qh, vl); vuint32m2_t xhl_1 = __riscv_vsrl_vv_u32m2(xha_1, vt_4, vl); // narrowing vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xhl_0, vl); vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl); vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xhl_1, vl); vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl); // load vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl); vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl); vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl); vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl); vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl); vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl); vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl); vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a); vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l); vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 16, vl); vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 16, vl); vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl); vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl); vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl); vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl); vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl); int sumi = __riscv_vmv_x_s_i32m1_i32(vs2); sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi; } *s = sumf; #else // scalar float sumf = 0.0; for (int i = 0; i < nb; i++) { uint32_t qh; memcpy(&qh, x[i].qh, sizeof(qh)); int sumi = 0; for (int j = 0; j < qk/2; ++j) { const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4; const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12)); const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16; const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16; sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]); } sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi; } *s = sumf; #endif } void ggml_vec_dot_q5_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bbx, const void * restrict vy, size_t bby, int nrc) { const int qk = QK8_1; const int nb = n / qk; assert(n % qk == 0); assert(qk == QK5_1); assert(nrc == 1); UNUSED(nrc); UNUSED(bbx); UNUSED(bby); UNUSED(bs); const block_q5_1 * restrict x = vx; const block_q8_1 * restrict y = vy; #if defined(__ARM_NEON) float32x4_t sumv0 = vdupq_n_f32(0.0f); float32x4_t sumv1 = vdupq_n_f32(0.0f); float summs0 = 0.0f; float summs1 = 0.0f; uint32_t qh0; uint32_t qh1; uint64_t tmp0[4]; uint64_t tmp1[4]; assert(nb % 2 == 0); // TODO: handle odd nb for (int i = 0; i < nb; i += 2) { const block_q5_1 * restrict x0 = &x[i]; const block_q5_1 * restrict x1 = &x[i + 1]; const block_q8_1 * restrict y0 = &y[i]; const block_q8_1 * restrict y1 = &y[i + 1]; const uint8x16_t m4b = vdupq_n_u8(0x0F); summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s; summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s; // extract the 5th bit via lookup table ((b) << 4) memcpy(&qh0, x0->qh, sizeof(qh0)); memcpy(&qh1, x1->qh, sizeof(qh1)); tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF]; tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF]; tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF]; tmp0[3] = table_b2b_0[(qh0 >> 24) ]; tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF]; tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF]; tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF]; tmp1[3] = table_b2b_0[(qh1 >> 24) ]; const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0)); const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2)); const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0)); const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2)); const uint8x16_t v0_0 = vld1q_u8(x0->qs); const uint8x16_t v0_1 = vld1q_u8(x1->qs); // 4-bit -> 8-bit const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b)); const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4)); const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b)); const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4)); // add high bit const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0); const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0); const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1); const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1); // load y const int8x16_t v1_0l = vld1q_s8(y0->qs); const int8x16_t v1_0h = vld1q_s8(y0->qs + 16); const int8x16_t v1_1l = vld1q_s8(y1->qs); const int8x16_t v1_1h = vld1q_s8(y1->qs + 16); sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32( ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l), ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d); sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32( ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l), ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d); } *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1; #elif defined(__wasm_simd128__) v128_t sumv = wasm_f32x4_splat(0.0f); float summs = 0.0f; uint32_t qh; uint64_t tmp[4]; // TODO: check if unrolling this is better for (int i = 0; i < nb; ++i) { const block_q5_1 * restrict x0 = &x[i]; const block_q8_1 * restrict y0 = &y[i]; summs += GGML_FP16_TO_FP32(x0->m) * y0->s; const v128_t m4b = wasm_i8x16_splat(0x0F); // extract the 5th bit memcpy(&qh, x0->qh, sizeof(qh)); tmp[0] = table_b2b_0[(qh >> 0) & 0xFF]; tmp[1] = table_b2b_0[(qh >> 8) & 0xFF]; tmp[2] = table_b2b_0[(qh >> 16) & 0xFF]; tmp[3] = table_b2b_0[(qh >> 24) ]; const v128_t qhl = wasm_v128_load(tmp + 0); const v128_t qhh = wasm_v128_load(tmp + 2); const v128_t v0 = wasm_v128_load(x0->qs); // 4-bit -> 8-bit const v128_t v0l = wasm_v128_and (v0, m4b); const v128_t v0h = wasm_u8x16_shr(v0, 4); // add high bit const v128_t v0lf = wasm_v128_or(v0l, qhl); const v128_t v0hf = wasm_v128_or(v0h, qhh); // load y const v128_t v1l = wasm_v128_load(y0->qs); const v128_t v1h = wasm_v128_load(y0->qs + 16); // int8x16 -> int16x8 const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf); const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf); const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf); const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf); const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l); const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l); const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h); const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h); // dot product sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add( wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll), wasm_i32x4_dot_i16x8(v0lfh, v1lh)), wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl), wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d))); } *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) + wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs; #elif defined(__AVX2__) // Initialize accumulator with zeros __m256 acc = _mm256_setzero_ps(); float summs = 0.0f; // Main loop for (int i = 0; i < nb; i++) { const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)); summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s; __m256i qx = bytes_from_nibbles_32(x[i].qs); __m256i bxhi = bytes_from_bits_32(x[i].qh); bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10)); qx = _mm256_or_si256(qx, bxhi); const __m256 dy = _mm256_set1_ps(y[i].d); const __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs); const __m256 q = mul_sum_us8_pairs_float(qx, qy); acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc); } *s = hsum_float_8(acc) + summs; #elif defined(__AVX__) // Initialize accumulator with zeros __m256 acc = _mm256_setzero_ps(); __m128i mask = _mm_set1_epi8(0x10); float summs = 0.0f; // Main loop for (int i = 0; i < nb; i++) { const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)); summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s; __m256i bx = bytes_from_nibbles_32(x[i].qs); const __m256i bxhi = bytes_from_bits_32(x[i].qh); __m128i bxhil = _mm256_castsi256_si128(bxhi); __m128i bxhih = _mm256_extractf128_si256(bxhi, 1); bxhil = _mm_and_si128(bxhil, mask); bxhih = _mm_and_si128(bxhih, mask); __m128i bxl = _mm256_castsi256_si128(bx); __m128i bxh = _mm256_extractf128_si256(bx, 1); bxl = _mm_or_si128(bxl, bxhil); bxh = _mm_or_si128(bxh, bxhih); bx = MM256_SET_M128I(bxh, bxl); const __m256 dy = _mm256_set1_ps(y[i].d); const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs); const __m256 q = mul_sum_us8_pairs_float(bx, by); acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc); } *s = hsum_float_8(acc) + summs; #elif defined(__riscv_v_intrinsic) float sumf = 0.0; uint32_t qh; size_t vl = __riscv_vsetvl_e8m1(qk/2); // temporary registers for shift operations vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl); vuint32m2_t vt_2 = __riscv_vadd_vx_u32m2(vt_1, 12, vl); for (int i = 0; i < nb; i++) { memcpy(&qh, x[i].qh, sizeof(uint32_t)); // load qh vuint32m2_t vqh = __riscv_vmv_v_x_u32m2(qh, vl); // ((qh >> (j + 0)) << 4) & 0x10; vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(vqh, vt_1, vl); vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl); vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(xhl_0, 0x10, vl); // ((qh >> (j + 12)) ) & 0x10; vuint32m2_t xhr_1 = __riscv_vsrl_vv_u32m2(vqh, vt_2, vl); vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(xhr_1, 0x10, vl); // narrowing vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xha_0, vl); vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl); vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xha_1, vl); vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl); // load vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl); vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl); vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl); vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl); vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl); vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl); vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl); vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a); vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l); vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl); vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl); vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl); vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl); vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl); int sumi = __riscv_vmv_x_s_i32m1_i32(vs2); sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s; } *s = sumf; #else // scalar float sumf = 0.0; for (int i = 0; i < nb; i++) { uint32_t qh; memcpy(&qh, x[i].qh, sizeof(qh)); int sumi = 0; for (int j = 0; j < qk/2; ++j) { const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10; const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10; const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0; const int32_t x1 = (x[i].qs[j] >> 4) | xh_1; sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]); } sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s; } *s = sumf; #endif } void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bbx, const void * restrict vy, size_t bby, int nrc) { const int qk = QK8_0; const int nb = n / qk; assert(n % qk == 0); #if defined(__ARM_FEATURE_MATMUL_INT8) assert((nrc == 2) || (nrc == 1)); #else assert(nrc == 1); #endif UNUSED(nrc); UNUSED(bbx); UNUSED(bby); UNUSED(bs); const block_q8_0 * restrict x = vx; const block_q8_0 * restrict y = vy; #if defined(__ARM_FEATURE_MATMUL_INT8) if (nrc == 2) { const block_q8_0 * restrict vx0 = vx; const block_q8_0 * restrict vx1 = vx + bx; const block_q8_0 * restrict vy0 = vy; const block_q8_0 * restrict vy1 = vy + by; float32x4_t sumv0 = vdupq_n_f32(0.0f); for (int i = 0; i < nb; i++) { const block_q8_0 * restrict b_x0 = &vx0[i]; const block_q8_0 * restrict b_y0 = &vy0[i]; const block_q8_0 * restrict b_x1 = &vx1[i]; const block_q8_0 * restrict b_y1 = &vy1[i]; const int8x16_t x0_l = vld1q_s8(b_x0->qs); const int8x16_t x0_h = vld1q_s8(b_x0->qs + 16); const int8x16_t x1_l = vld1q_s8(b_x1->qs); const int8x16_t x1_h = vld1q_s8(b_x1->qs + 16); // load y const int8x16_t y0_l = vld1q_s8(b_y0->qs); const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16); const int8x16_t y1_l = vld1q_s8(b_y1->qs); const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16); float32x4_t scale = {GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d), GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d), GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d), GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)}; int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l))); int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l))); int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h))); int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h))); int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l))); int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l))); int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h))); int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h))); sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)), l1, r1)), l2, r2)), l3, r3))), scale); } float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2); float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1); vst1_f32(s, vget_low_f32(sumv2)); vst1_f32(s + bs, vget_high_f32(sumv2)); return; } #endif #if defined(__ARM_NEON) float32x4_t sumv0 = vdupq_n_f32(0.0f); float32x4_t sumv1 = vdupq_n_f32(0.0f); assert(nb % 2 == 0); // TODO: handle odd nb for (int i = 0; i < nb; i += 2) { const block_q8_0 * restrict x0 = &x[i + 0]; const block_q8_0 * restrict x1 = &x[i + 1]; const block_q8_0 * restrict y0 = &y[i + 0]; const block_q8_0 * restrict y1 = &y[i + 1]; const int8x16_t x0_0 = vld1q_s8(x0->qs); const int8x16_t x0_1 = vld1q_s8(x0->qs + 16); const int8x16_t x1_0 = vld1q_s8(x1->qs); const int8x16_t x1_1 = vld1q_s8(x1->qs + 16); // load y const int8x16_t y0_0 = vld1q_s8(y0->qs); const int8x16_t y0_1 = vld1q_s8(y0->qs + 16); const int8x16_t y1_0 = vld1q_s8(y1->qs); const int8x16_t y1_1 = vld1q_s8(y1->qs + 16); sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32( ggml_vdotq_s32(vdupq_n_s32(0), x0_0, y0_0), ggml_vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d)); sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32( ggml_vdotq_s32(vdupq_n_s32(0), x1_0, y1_0), ggml_vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d)); } *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1); #elif defined(__AVX2__) || defined(__AVX__) // Initialize accumulator with zeros __m256 acc = _mm256_setzero_ps(); // Main loop for (int i = 0; i < nb; ++i) { // Compute combined scale for the block const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d)); __m256i qx = _mm256_loadu_si256((const __m256i *)x[i].qs); __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs); const __m256 q = mul_sum_i8_pairs_float(qx, qy); // Multiply q with scale and accumulate #if defined(__AVX2__) acc = _mm256_fmadd_ps( d, q, acc ); #else acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc ); #endif } *s = hsum_float_8(acc); #elif defined(__riscv_v_intrinsic) float sumf = 0.0; size_t vl = __riscv_vsetvl_e8m1(qk); for (int i = 0; i < nb; i++) { // load elements vint8m1_t bx = __riscv_vle8_v_i8m1(x[i].qs, vl); vint8m1_t by = __riscv_vle8_v_i8m1(y[i].qs, vl); vint16m2_t vw_mul = __riscv_vwmul_vv_i16m2(bx, by, vl); vint32m1_t v_zero = __riscv_vmv_v_x_i32m1(0, vl); vint32m1_t v_sum = __riscv_vwredsum_vs_i16m2_i32m1(vw_mul, v_zero, vl); int sumi = __riscv_vmv_x_s_i32m1_i32(v_sum); sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)); } *s = sumf; #else // scalar float sumf = 0.0; for (int i = 0; i < nb; i++) { int sumi = 0; for (int j = 0; j < qk; j++) { sumi += x[i].qs[j]*y[i].qs[j]; } sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)); } *s = sumf; #endif } #if QK_K == 256 void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { assert(nrc == 1); UNUSED(nrc); UNUSED(bx); UNUSED(by); UNUSED(bs); const block_q2_K * restrict x = vx; const block_q8_K * restrict y = vy; const int nb = n / QK_K; #ifdef __ARM_NEON const uint8x16_t m3 = vdupq_n_u8(0x3); const uint8x16_t m4 = vdupq_n_u8(0xF); const int32x4_t vzero = vdupq_n_s32(0); ggml_int8x16x2_t q2bytes; uint8_t aux[16]; float sum = 0; for (int i = 0; i < nb; ++i) { const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); const uint8_t * restrict q2 = x[i].qs; const int8_t * restrict q8 = y[i].qs; const uint8_t * restrict sc = x[i].scales; const uint8x16_t mins_and_scales = vld1q_u8(sc); const uint8x16_t scales = vandq_u8(mins_and_scales, m4); vst1q_u8(aux, scales); const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4); const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums); const ggml_int16x8x2_t mins16 = {{vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))}}; const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])), vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0]))); const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])), vmull_s16(vget_high_s16(mins16.val[1]), vget_high_s16(q8sums.val[1]))); sum += dmin * vaddvq_s32(vaddq_s32(s0, s1)); int isum = 0; int is = 0; // We use this macro instead of a function call because for some reason // the code runs 2-3% slower, even if the function is declared inline #define MULTIPLY_ACCUM_WITH_SCALE(index)\ isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\ isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)]; #define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\ q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;\ q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[0], (shift)), m3));\ q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\ MULTIPLY_ACCUM_WITH_SCALE((index)); for (int j = 0; j < QK_K/128; ++j) { const ggml_uint8x16x2_t q2bits = ggml_vld1q_u8_x2(q2); q2 += 32; ggml_int8x16x2_t q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32; q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3)); q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3)); MULTIPLY_ACCUM_WITH_SCALE(0); SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2); SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4); SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6); is += 8; } sum += d * isum; } *s = sum; #elif defined __AVX2__ const __m256i m3 = _mm256_set1_epi8(3); const __m128i m4 = _mm_set1_epi8(0xF); __m256 acc = _mm256_setzero_ps(); for (int i = 0; i < nb; ++i) { const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); const uint8_t * restrict q2 = x[i].qs; const int8_t * restrict q8 = y[i].qs; const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales); const __m128i scales8 = _mm_and_si128(mins_and_scales, m4); const __m128i mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4); const __m256i mins = _mm256_cvtepi8_epi16(mins8); const __m256i prod = _mm256_madd_epi16(mins, _mm256_loadu_si256((const __m256i*)y[i].bsums)); acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(prod), acc); const __m256i all_scales = _mm256_cvtepi8_epi16(scales8); const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0); const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1); const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)}; __m256i sumi = _mm256_setzero_si256(); for (int j = 0; j < QK_K/128; ++j) { const __m256i q2bits = _mm256_loadu_si256((const __m256i*)q2); q2 += 32; const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; const __m256i q2_0 = _mm256_and_si256(q2bits, m3); const __m256i q2_1 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), m3); const __m256i q2_2 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), m3); const __m256i q2_3 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), m3); __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0); __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1); __m256i p2 = _mm256_maddubs_epi16(q2_2, q8_2); __m256i p3 = _mm256_maddubs_epi16(q2_3, q8_3); p0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(0)), p0); p1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(1)), p1); p2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(2)), p2); p3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(3)), p3); p0 = _mm256_add_epi32(p0, p1); p2 = _mm256_add_epi32(p2, p3); sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p0, p2)); } acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc); } *s = hsum_float_8(acc); #elif defined __AVX__ const __m128i m3 = _mm_set1_epi8(0x3); const __m128i m4 = _mm_set1_epi8(0xF); const __m128i m2 = _mm_set1_epi8(0x2); __m256 acc = _mm256_setzero_ps(); for (int i = 0; i < nb; ++i) { const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d); const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); const uint8_t * restrict q2 = x[i].qs; const int8_t * restrict q8 = y[i].qs; // load mins and scales from block_q2_K.scales[QK_K/16] const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales); const __m128i scales16 = _mm_and_si128(mins_and_scales, m4); const __m128i mins16 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4); const __m128i mins_0 = _mm_cvtepi8_epi16(mins16); const __m128i mins_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(mins16, mins16)); // summs = y[i].bsums * (x[i].scales >> 4) in 16bits*8*2 to 32bits*4*2 const __m128i summs_0 = _mm_madd_epi16(mins_0, _mm_loadu_si128((const __m128i*)&y[i].bsums[0])); const __m128i summs_1 = _mm_madd_epi16(mins_1, _mm_loadu_si128((const __m128i*)&y[i].bsums[8])); // sumf += -dmin * summs in 32bits*8 acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(MM256_SET_M128I(summs_1, summs_0))), acc); const __m128i scales_0 = _mm_cvtepi8_epi16(scales16); const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales16, scales16)); const __m128i scales[2] = { scales_0, scales_1 }; __m128i sumi_0 = _mm_setzero_si128(); __m128i sumi_1 = _mm_setzero_si128(); for (int j = 0; j < QK_K/128; ++j) { // load Q8 quants int8*16*8 from block_q8_K.qs[QK_K] const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; // load 2bits*16*8 from block_q2_K.qs[QK_K/4] __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16; const __m128i q2_0 = _mm_and_si128(q2bits, m3); const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3); const __m128i q2_4 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3); const __m128i q2_6 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3); q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16; const __m128i q2_1 = _mm_and_si128(q2bits, m3); const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3); const __m128i q2_5 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3); const __m128i q2_7 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3); // isuml = q8[l] * ((q2[l] >> shift) & 3) in 8bits*16*8 to 16bits*8*8 __m128i p0 = _mm_maddubs_epi16(q2_0, q8_0); __m128i p1 = _mm_maddubs_epi16(q2_1, q8_1); __m128i p2 = _mm_maddubs_epi16(q2_2, q8_2); __m128i p3 = _mm_maddubs_epi16(q2_3, q8_3); __m128i p4 = _mm_maddubs_epi16(q2_4, q8_4); __m128i p5 = _mm_maddubs_epi16(q2_5, q8_5); __m128i p6 = _mm_maddubs_epi16(q2_6, q8_6); __m128i p7 = _mm_maddubs_epi16(q2_7, q8_7); // isum += (x[i].scales[is++] & 0xF) * isuml in 16bits*8*8 to 32bits*4*8 __m128i shuffle = _mm_set1_epi16(0x0100); p0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p0); shuffle = _mm_add_epi16(shuffle, m2); p1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p1); shuffle = _mm_add_epi16(shuffle, m2); p2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p2); shuffle = _mm_add_epi16(shuffle, m2); p3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p3); shuffle = _mm_add_epi16(shuffle, m2); p4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p4); shuffle = _mm_add_epi16(shuffle, m2); p5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p5); shuffle = _mm_add_epi16(shuffle, m2); p6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p6); shuffle = _mm_add_epi16(shuffle, m2); p7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p7); p0 = _mm_add_epi32(p0, p1); p2 = _mm_add_epi32(p2, p3); p4 = _mm_add_epi32(p4, p5); p6 = _mm_add_epi32(p6, p7); // isum in 32bits*4*2 sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p0, p2)); sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p4, p6)); } // sumf += dall * isum - dmin * summs in 32bits __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0); acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dall), _mm256_cvtepi32_ps(sumi)), acc); } *s = hsum_float_8(acc); #elif defined __riscv_v_intrinsic float sumf = 0; uint8_t temp_01[32] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; for (int i = 0; i < nb; ++i) { const uint8_t * q2 = x[i].qs; const int8_t * q8 = y[i].qs; const uint8_t * sc = x[i].scales; const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d); const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); size_t vl = 16; vuint8m1_t scales = __riscv_vle8_v_u8m1(sc, vl); vuint8m1_t aux = __riscv_vand_vx_u8m1(scales, 0x0F, vl); vint16m1_t q8sums = __riscv_vle16_v_i16m1(y[i].bsums, vl); vuint8mf2_t scales_2 = __riscv_vle8_v_u8mf2(sc, vl); vuint8mf2_t mins8 = __riscv_vsrl_vx_u8mf2(scales_2, 0x4, vl); vint16m1_t mins = __riscv_vreinterpret_v_u16m1_i16m1(__riscv_vzext_vf2_u16m1(mins8, vl)); vint32m2_t prod = __riscv_vwmul_vv_i32m2(q8sums, mins, vl); vint32m1_t vsums = __riscv_vredsum_vs_i32m2_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl); sumf += dmin * __riscv_vmv_x_s_i32m1_i32(vsums); vl = 32; vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1); vuint8m1_t v_b = __riscv_vle8_v_u8m1(temp_01, vl); uint8_t is=0; int isum=0; for (int j = 0; j < QK_K/128; ++j) { // load Q2 vuint8m1_t q2_x = __riscv_vle8_v_u8m1(q2, vl); vuint8m1_t q2_0 = __riscv_vand_vx_u8m1(q2_x, 0x03, vl); vuint8m1_t q2_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x2, vl), 0x03 , vl); vuint8m1_t q2_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x4, vl), 0x03 , vl); vuint8m1_t q2_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x6, vl), 0x03 , vl); // duplicate scale elements for product vuint8m1_t sc0 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 0+is, vl), vl); vuint8m1_t sc1 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 2+is, vl), vl); vuint8m1_t sc2 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 4+is, vl), vl); vuint8m1_t sc3 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 6+is, vl), vl); vint16m2_t p0 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_0, sc0, vl)); vint16m2_t p1 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_1, sc1, vl)); vint16m2_t p2 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_2, sc2, vl)); vint16m2_t p3 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_3, sc3, vl)); // load Q8 vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl); vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl); vint8m1_t q8_2 = __riscv_vle8_v_i8m1(q8+64, vl); vint8m1_t q8_3 = __riscv_vle8_v_i8m1(q8+96, vl); vint32m4_t s0 = __riscv_vwmul_vv_i32m4(p0, __riscv_vwcvt_x_x_v_i16m2(q8_0, vl), vl); vint32m4_t s1 = __riscv_vwmul_vv_i32m4(p1, __riscv_vwcvt_x_x_v_i16m2(q8_1, vl), vl); vint32m4_t s2 = __riscv_vwmul_vv_i32m4(p2, __riscv_vwcvt_x_x_v_i16m2(q8_2, vl), vl); vint32m4_t s3 = __riscv_vwmul_vv_i32m4(p3, __riscv_vwcvt_x_x_v_i16m2(q8_3, vl), vl); vint32m1_t isum0 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s0, s1, vl), vzero, vl); vint32m1_t isum1 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s2, s3, vl), isum0, vl); isum += __riscv_vmv_x_s_i32m1_i32(isum1); q2+=32; q8+=128; is=8; } sumf += dall * isum; } *s = sumf; #else float sumf = 0; for (int i = 0; i < nb; ++i) { const uint8_t * q2 = x[i].qs; const int8_t * q8 = y[i].qs; const uint8_t * sc = x[i].scales; int summs = 0; for (int j = 0; j < 16; ++j) { summs += y[i].bsums[j] * (sc[j] >> 4); } const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d); const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin); int isum = 0; int is = 0; int d; for (int k = 0; k < QK_K/128; ++k) { int shift = 0; for (int j = 0; j < 4; ++j) { d = sc[is++] & 0xF; int isuml = 0; for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3); isum += d * isuml; d = sc[is++] & 0xF; isuml = 0; for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3); isum += d * isuml; shift += 2; q8 += 32; } q2 += 32; } sumf += dall * isum - dmin * summs; } *s = sumf; #endif } #else void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { assert(nrc == 1); UNUSED(nrc); UNUSED(bx); UNUSED(by); UNUSED(bs); const block_q2_K * restrict x = vx; const block_q8_K * restrict y = vy; const int nb = n / QK_K; #ifdef __ARM_NEON const uint8x16_t m3 = vdupq_n_u8(0x3); const int32x4_t vzero = vdupq_n_s32(0); ggml_int8x16x4_t q2bytes; uint32_t aux32[2]; const uint8_t * scales = (const uint8_t *)aux32; float sum = 0; for (int i = 0; i < nb; ++i) { const float d = y[i].d * (float)x[i].d; const float dmin = -y[i].d * (float)x[i].dmin; const uint8_t * restrict q2 = x[i].qs; const int8_t * restrict q8 = y[i].qs; const uint32_t * restrict sc = (const uint32_t *)x[i].scales; aux32[0] = sc[0] & 0x0f0f0f0f; aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f; sum += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]); int isum1 = 0, isum2 = 0; const uint8x16_t q2bits = vld1q_u8(q2); const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits, m3)); q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 2), m3)); q2bytes.val[2] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 4), m3)); q2bytes.val[3] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 6), m3)); isum1 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * scales[0]; isum2 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * scales[1]; isum1 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[2], q8bytes.val[2])) * scales[2]; isum2 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[3], q8bytes.val[3])) * scales[3]; sum += d * (isum1 + isum2); } *s = sum; #elif defined __AVX2__ const __m256i m3 = _mm256_set1_epi8(3); __m256 acc = _mm256_setzero_ps(); uint32_t ud, um; const uint8_t * restrict db = (const uint8_t *)&ud; const uint8_t * restrict mb = (const uint8_t *)&um; float summs = 0; // TODO: optimize this for (int i = 0; i < nb; ++i) { const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); const uint8_t * restrict q2 = x[i].qs; const int8_t * restrict q8 = y[i].qs; const uint32_t * restrict sc = (const uint32_t *)x[i].scales; ud = (sc[0] >> 0) & 0x0f0f0f0f; um = (sc[0] >> 4) & 0x0f0f0f0f; int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3]; summs += dmin * smin; const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); const __m256i q2_0 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 2), q2bits), m3); const __m256i q2_1 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 6), _mm_srli_epi16(q2bits, 4)), m3); const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0)); const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32)); const __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0); const __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1); const __m256i p_0 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 0)); const __m256i p_1 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 1)); const __m256i p_2 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 0)); const __m256i p_3 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 1)); acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0), acc); acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1), acc); acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2), acc); acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3), acc); } *s = hsum_float_8(acc) + summs; #elif defined __AVX__ const __m128i m3 = _mm_set1_epi8(3); __m256 acc = _mm256_setzero_ps(); uint32_t ud, um; const uint8_t * restrict db = (const uint8_t *)&ud; const uint8_t * restrict mb = (const uint8_t *)&um; float summs = 0; // TODO: optimize this for (int i = 0; i < nb; ++i) { const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); const uint8_t * restrict q2 = x[i].qs; const int8_t * restrict q8 = y[i].qs; const uint32_t * restrict sc = (const uint32_t *)x[i].scales; ud = (sc[0] >> 0) & 0x0f0f0f0f; um = (sc[0] >> 4) & 0x0f0f0f0f; int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3]; summs += dmin * smin; const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); const __m128i q2_0 = _mm_and_si128(q2bits, m3); const __m128i q2_1 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3); const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3); const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3); const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0)); const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32)); const __m128i p0 = _mm_maddubs_epi16(q2_0, _mm256_extractf128_si256(q8_0, 0)); const __m128i p1 = _mm_maddubs_epi16(q2_1, _mm256_extractf128_si256(q8_0, 1)); const __m128i p2 = _mm_maddubs_epi16(q2_2, _mm256_extractf128_si256(q8_1, 0)); const __m128i p3 = _mm_maddubs_epi16(q2_3, _mm256_extractf128_si256(q8_1, 1)); const __m256i p_0 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p0, p0)), _mm_cvtepi16_epi32(p0)); const __m256i p_1 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p1, p1)), _mm_cvtepi16_epi32(p1)); const __m256i p_2 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p2, p2)), _mm_cvtepi16_epi32(p2)); const __m256i p_3 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p3, p3)), _mm_cvtepi16_epi32(p3)); acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0)), acc); acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1)), acc); acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2)), acc); acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3)), acc); } *s = hsum_float_8(acc) + summs; #elif defined __riscv_v_intrinsic uint32_t aux32[2]; const uint8_t * scales = (const uint8_t *)aux32; float sumf = 0; for (int i = 0; i < nb; ++i) { const float d = y[i].d * (float)x[i].d; const float dmin = -y[i].d * (float)x[i].dmin; const uint8_t * restrict q2 = x[i].qs; const int8_t * restrict q8 = y[i].qs; const uint32_t * restrict sc = (const uint32_t *)x[i].scales; aux32[0] = sc[0] & 0x0f0f0f0f; aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f; sumf += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]); int isum1 = 0; int isum2 = 0; size_t vl = 16; vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1); // load Q2 vuint8mf2_t q2_x = __riscv_vle8_v_u8mf2(q2, vl); vint8mf2_t q2_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q2_x, 0x03, vl)); vint8mf2_t q2_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x2, vl), 0x03 , vl)); vint8mf2_t q2_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x4, vl), 0x03 , vl)); vint8mf2_t q2_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x6, vl), 0x03 , vl)); // load Q8, and take product with Q2 vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q2_0, __riscv_vle8_v_i8mf2(q8, vl), vl); vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q2_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl); vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q2_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl); vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q2_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl); vint16m1_t vs_0 = __riscv_vredsum_vs_i16m1_i16m1(p0, vzero, vl); vint16m1_t vs_1 = __riscv_vredsum_vs_i16m1_i16m1(p1, vzero, vl); vint16m1_t vs_2 = __riscv_vredsum_vs_i16m1_i16m1(p2, vzero, vl); vint16m1_t vs_3 = __riscv_vredsum_vs_i16m1_i16m1(p3, vzero, vl); isum1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[0]; isum2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[1]; isum1 += __riscv_vmv_x_s_i16m1_i16(vs_2) * scales[2]; isum2 += __riscv_vmv_x_s_i16m1_i16(vs_3) * scales[3]; sumf += d * (isum1 + isum2); } *s = sumf; #else float sumf = 0; int isum[4]; for (int i = 0; i < nb; ++i) { const uint8_t * q2 = x[i].qs; const int8_t * q8 = y[i].qs; const uint8_t * sc = x[i].scales; int summs = 0; for (int j = 0; j < QK_K/16; ++j) { summs += y[i].bsums[j] * (sc[j] >> 4); } const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d); const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin); isum[0] = isum[1] = isum[2] = isum[3] = 0; for (int l = 0; l < 16; ++l) { isum[0] += q8[l+ 0] * ((q2[l] >> 0) & 3); isum[1] += q8[l+16] * ((q2[l] >> 2) & 3); isum[2] += q8[l+32] * ((q2[l] >> 4) & 3); isum[3] += q8[l+48] * ((q2[l] >> 6) & 3); } for (int l = 0; l < 4; ++l) { isum[l] *= (sc[l] & 0xF); } sumf += dall * (isum[0] + isum[1] + isum[2] + isum[3]) - dmin * summs; } *s = sumf; #endif } #endif #if QK_K == 256 void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { assert(n % QK_K == 0); assert(nrc == 1); UNUSED(nrc); UNUSED(bx); UNUSED(by); UNUSED(bs); const uint32_t kmask1 = 0x03030303; const uint32_t kmask2 = 0x0f0f0f0f; const block_q3_K * restrict x = vx; const block_q8_K * restrict y = vy; const int nb = n / QK_K; #ifdef __ARM_NEON uint32_t aux[3]; uint32_t utmp[4]; const uint8x16_t m3b = vdupq_n_u8(0x3); const int32x4_t vzero = vdupq_n_s32(0); const uint8x16_t m0 = vdupq_n_u8(1); const uint8x16_t m1 = vshlq_n_u8(m0, 1); const uint8x16_t m2 = vshlq_n_u8(m0, 2); const uint8x16_t m3 = vshlq_n_u8(m0, 3); const int8_t m32 = 32; ggml_int8x16x4_t q3bytes; float sum = 0; for (int i = 0; i < nb; ++i) { const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); const uint8_t * restrict q3 = x[i].qs; const uint8_t * restrict qh = x[i].hmask; const int8_t * restrict q8 = y[i].qs; ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh); ggml_uint8x16x4_t q3h; int32_t isum = 0; // Set up scales memcpy(aux, x[i].scales, 12); utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4); utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4); utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4); utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4); int8_t * scale = (int8_t *)utmp; for (int j = 0; j < 16; ++j) scale[j] -= m32; for (int j = 0; j < QK_K/128; ++j) { const ggml_uint8x16x2_t q3bits = ggml_vld1q_u8_x2(q3); q3 += 32; const ggml_int8x16x4_t q8bytes_1 = ggml_vld1q_s8_x4(q8); q8 += 64; const ggml_int8x16x4_t q8bytes_2 = ggml_vld1q_s8_x4(q8); q8 += 64; q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2); q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2); q3h.val[2] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[0]), 1); q3h.val[3] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[1]), 1); q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[0], m3b)), vreinterpretq_s8_u8(q3h.val[0])); q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[1], m3b)), vreinterpretq_s8_u8(q3h.val[1])); q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2])); q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3])); isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0]; isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1]; isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2]; isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3]; scale += 4; q3h.val[0] = vbicq_u8(m2, qhbits.val[0]); q3h.val[1] = vbicq_u8(m2, qhbits.val[1]); q3h.val[2] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[0]), 1); q3h.val[3] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[1]), 1); q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 4), m3b)), vreinterpretq_s8_u8(q3h.val[0])); q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 4), m3b)), vreinterpretq_s8_u8(q3h.val[1])); q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2])); q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3])); isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0]; isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1]; isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2]; isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3]; scale += 4; if (j == 0) { qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 4); qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 4); } } sum += d * isum; } *s = sum; #elif defined __AVX2__ const __m256i m3 = _mm256_set1_epi8(3); const __m256i mone = _mm256_set1_epi8(1); const __m128i m32 = _mm_set1_epi8(32); __m256 acc = _mm256_setzero_ps(); uint32_t aux[3]; for (int i = 0; i < nb; ++i) { const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); const uint8_t * restrict q3 = x[i].qs; const int8_t * restrict q8 = y[i].qs; // Set up scales memcpy(aux, x[i].scales, 12); __m128i scales128 = _mm_set_epi32( ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4), ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4), (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4), (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4)); scales128 = _mm_sub_epi8(scales128, m32); const __m256i all_scales = _mm256_cvtepi8_epi16(scales128); const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0); const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1); const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)}; // high bit const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].hmask); // integer accumulator __m256i sumi = _mm256_setzero_si256(); int bit = 0; int is = 0; for (int j = 0; j < QK_K/128; ++j) { // load low 2 bits const __m256i q3bits = _mm256_loadu_si256((const __m256i*)q3); q3 += 32; // prepare low and high bits const __m256i q3l_0 = _mm256_and_si256(q3bits, m3); const __m256i q3h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2); ++bit; const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 2), m3); const __m256i q3h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2); ++bit; const __m256i q3l_2 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 4), m3); const __m256i q3h_2 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2); ++bit; const __m256i q3l_3 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 6), m3); const __m256i q3h_3 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2); ++bit; // load Q8 quants const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16, // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set, // and 2 if the high bit was set) __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0); __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1); __m256i q8s_2 = _mm256_maddubs_epi16(q3h_2, q8_2); __m256i q8s_3 = _mm256_maddubs_epi16(q3h_3, q8_3); __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0); __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1); __m256i p16_2 = _mm256_maddubs_epi16(q3l_2, q8_2); __m256i p16_3 = _mm256_maddubs_epi16(q3l_3, q8_3); p16_0 = _mm256_sub_epi16(p16_0, q8s_0); p16_1 = _mm256_sub_epi16(p16_1, q8s_1); p16_2 = _mm256_sub_epi16(p16_2, q8s_2); p16_3 = _mm256_sub_epi16(p16_3, q8s_3); // multiply with scales p16_0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0); p16_1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1); p16_2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2); p16_3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3); // accumulate p16_0 = _mm256_add_epi32(p16_0, p16_1); p16_2 = _mm256_add_epi32(p16_2, p16_3); sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_2)); } // multiply with block scale and accumulate acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc); } *s = hsum_float_8(acc); #elif defined __AVX__ const __m128i m3 = _mm_set1_epi8(3); const __m128i mone = _mm_set1_epi8(1); const __m128i m32 = _mm_set1_epi8(32); const __m128i m2 = _mm_set1_epi8(2); __m256 acc = _mm256_setzero_ps(); const uint32_t *aux; for (int i = 0; i < nb; ++i) { const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); const uint8_t * restrict q3 = x[i].qs; const int8_t * restrict q8 = y[i].qs; // Set up scales aux = (const uint32_t *)x[i].scales; __m128i scales128 = _mm_set_epi32( ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4), ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4), (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4), (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4)); scales128 = _mm_sub_epi8(scales128, m32); const __m128i scales_0 = _mm_cvtepi8_epi16(scales128); const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales128, scales128)); const __m128i scales[2] = { scales_0, scales_1 }; // high bit *128*2 from block_q3_K.hmask[QK_K/8] const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].hmask[0]); const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].hmask[16]); // integer accumulator __m128i sumi_0 = _mm_setzero_si128(); __m128i sumi_1 = _mm_setzero_si128(); for (int j = 0; j < QK_K/128; ++j) { // load low 2 bits *64*2 from block_q3_K.qs[QK_K/4] const __m128i q3bits_0 = _mm_loadu_si128((const __m128i*)q3); q3 += 16; const __m128i q3bits_1 = _mm_loadu_si128((const __m128i*)q3); q3 += 16; // prepare low and high bits const int bit = j << 2; const __m128i q3l_0 = _mm_and_si128(q3bits_0, m3); const __m128i q3l_1 = _mm_and_si128(q3bits_1, m3); const __m128i q3h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit)), bit), 2); const __m128i q3h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit)), bit), 2); const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 2), m3); const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 2), m3); const __m128i q3h_2 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+1)), bit+1), 2); const __m128i q3h_3 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+1)), bit+1), 2); const __m128i q3l_4 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 4), m3); const __m128i q3l_5 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 4), m3); const __m128i q3h_4 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+2)), bit+2), 2); const __m128i q3h_5 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+2)), bit+2), 2); const __m128i q3l_6 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 6), m3); const __m128i q3l_7 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 6), m3); const __m128i q3h_6 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+3)), bit+3), 2); const __m128i q3h_7 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+3)), bit+3), 2); // load Q8 quants from block_q8_K.qs[QK_K] const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16, // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set, // and 2 if the high bit was set) __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, q8_0); __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, q8_1); __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, q8_2); __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, q8_3); __m128i q8s_4 = _mm_maddubs_epi16(q3h_4, q8_4); __m128i q8s_5 = _mm_maddubs_epi16(q3h_5, q8_5); __m128i q8s_6 = _mm_maddubs_epi16(q3h_6, q8_6); __m128i q8s_7 = _mm_maddubs_epi16(q3h_7, q8_7); __m128i p16_0 = _mm_maddubs_epi16(q3l_0, q8_0); __m128i p16_1 = _mm_maddubs_epi16(q3l_1, q8_1); __m128i p16_2 = _mm_maddubs_epi16(q3l_2, q8_2); __m128i p16_3 = _mm_maddubs_epi16(q3l_3, q8_3); __m128i p16_4 = _mm_maddubs_epi16(q3l_4, q8_4); __m128i p16_5 = _mm_maddubs_epi16(q3l_5, q8_5); __m128i p16_6 = _mm_maddubs_epi16(q3l_6, q8_6); __m128i p16_7 = _mm_maddubs_epi16(q3l_7, q8_7); p16_0 = _mm_sub_epi16(p16_0, q8s_0); p16_1 = _mm_sub_epi16(p16_1, q8s_1); p16_2 = _mm_sub_epi16(p16_2, q8s_2); p16_3 = _mm_sub_epi16(p16_3, q8s_3); p16_4 = _mm_sub_epi16(p16_4, q8s_4); p16_5 = _mm_sub_epi16(p16_5, q8s_5); p16_6 = _mm_sub_epi16(p16_6, q8s_6); p16_7 = _mm_sub_epi16(p16_7, q8s_7); // multiply with scales __m128i shuffle = _mm_set1_epi16(0x0100); p16_0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_0); shuffle = _mm_add_epi16(shuffle, m2); p16_1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_1); shuffle = _mm_add_epi16(shuffle, m2); p16_2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_2); shuffle = _mm_add_epi16(shuffle, m2); p16_3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_3); shuffle = _mm_add_epi16(shuffle, m2); p16_4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_4); shuffle = _mm_add_epi16(shuffle, m2); p16_5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_5); shuffle = _mm_add_epi16(shuffle, m2); p16_6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_6); shuffle = _mm_add_epi16(shuffle, m2); p16_7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_7); // accumulate p16_0 = _mm_add_epi32(p16_0, p16_1); p16_2 = _mm_add_epi32(p16_2, p16_3); p16_4 = _mm_add_epi32(p16_4, p16_5); p16_6 = _mm_add_epi32(p16_6, p16_7); sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2)); sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_4, p16_6)); } // multiply with block scale and accumulate __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0); acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc); } *s = hsum_float_8(acc); #elif defined __riscv_v_intrinsic uint32_t aux[3]; uint32_t utmp[4]; float sumf = 0; for (int i = 0; i < nb; ++i) { const uint8_t * restrict q3 = x[i].qs; const uint8_t * restrict qh = x[i].hmask; const int8_t * restrict q8 = y[i].qs; memcpy(aux, x[i].scales, 12); utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4); utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4); utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4); utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4); int8_t * scale = (int8_t *)utmp; for (int j = 0; j < 16; ++j) scale[j] -= 32; size_t vl = 32; uint8_t m = 1; vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1); vuint8m1_t vqh = __riscv_vle8_v_u8m1(qh, vl); int sum_t = 0; for (int j = 0; j < QK_K; j += 128) { vl = 32; // load Q3 vuint8m1_t q3_x = __riscv_vle8_v_u8m1(q3, vl); vint8m1_t q3_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q3_x, 0x03, vl)); vint8m1_t q3_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x2, vl), 0x03 , vl)); vint8m1_t q3_2 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x4, vl), 0x03 , vl)); vint8m1_t q3_3 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x6, vl), 0x03 , vl)); // compute mask for subtraction vuint8m1_t qh_m0 = __riscv_vand_vx_u8m1(vqh, m, vl); vbool8_t vmask_0 = __riscv_vmseq_vx_u8m1_b8(qh_m0, 0, vl); vint8m1_t q3_m0 = __riscv_vsub_vx_i8m1_m(vmask_0, q3_0, 0x4, vl); m <<= 1; vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl); vbool8_t vmask_1 = __riscv_vmseq_vx_u8m1_b8(qh_m1, 0, vl); vint8m1_t q3_m1 = __riscv_vsub_vx_i8m1_m(vmask_1, q3_1, 0x4, vl); m <<= 1; vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl); vbool8_t vmask_2 = __riscv_vmseq_vx_u8m1_b8(qh_m2, 0, vl); vint8m1_t q3_m2 = __riscv_vsub_vx_i8m1_m(vmask_2, q3_2, 0x4, vl); m <<= 1; vuint8m1_t qh_m3 = __riscv_vand_vx_u8m1(vqh, m, vl); vbool8_t vmask_3 = __riscv_vmseq_vx_u8m1_b8(qh_m3, 0, vl); vint8m1_t q3_m3 = __riscv_vsub_vx_i8m1_m(vmask_3, q3_3, 0x4, vl); m <<= 1; // load Q8 and take product with Q3 vint16m2_t a0 = __riscv_vwmul_vv_i16m2(q3_m0, __riscv_vle8_v_i8m1(q8, vl), vl); vint16m2_t a1 = __riscv_vwmul_vv_i16m2(q3_m1, __riscv_vle8_v_i8m1(q8+32, vl), vl); vint16m2_t a2 = __riscv_vwmul_vv_i16m2(q3_m2, __riscv_vle8_v_i8m1(q8+64, vl), vl); vint16m2_t a3 = __riscv_vwmul_vv_i16m2(q3_m3, __riscv_vle8_v_i8m1(q8+96, vl), vl); vl = 16; // retrieve lane to multiply with scale vint32m2_t aux0_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 0), (scale[0]), vl); vint32m2_t aux0_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 1), (scale[1]), vl); vint32m2_t aux1_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 0), (scale[2]), vl); vint32m2_t aux1_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 1), (scale[3]), vl); vint32m2_t aux2_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 0), (scale[4]), vl); vint32m2_t aux2_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 1), (scale[5]), vl); vint32m2_t aux3_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 0), (scale[6]), vl); vint32m2_t aux3_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 1), (scale[7]), vl); vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux0_0, aux0_1, vl), vzero, vl); vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux1_0, aux1_1, vl), isum0, vl); vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux2_0, aux2_1, vl), isum1, vl); vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux3_0, aux3_1, vl), isum2, vl); sum_t += __riscv_vmv_x_s_i32m1_i32(isum3); q3 += 32; q8 += 128; scale += 8; } const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; sumf += d*sum_t; } *s = sumf; #else // scalar version // This function is written like this so the compiler can manage to vectorize most of it // Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the // manually vectorized version above. Every other version I tried would run at least 4 times slower. // The ideal situation would be if we could just write the code once, and the compiler would // automatically produce the best possible set of machine instructions, instead of us having to manually // write vectorized versions for AVX, ARM_NEON, etc. int8_t aux8[QK_K]; int16_t aux16[8]; float sums [8]; int32_t aux32[8]; memset(sums, 0, 8*sizeof(float)); uint32_t auxs[4]; const int8_t * scales = (const int8_t*)auxs; float sumf = 0; for (int i = 0; i < nb; ++i) { const uint8_t * restrict q3 = x[i].qs; const uint8_t * restrict hm = x[i].hmask; const int8_t * restrict q8 = y[i].qs; memset(aux32, 0, 8*sizeof(int32_t)); int8_t * restrict a = aux8; uint8_t m = 1; for (int j = 0; j < QK_K; j += 128) { for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3; for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4); a += 32; m <<= 1; for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3; for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4); a += 32; m <<= 1; for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3; for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4); a += 32; m <<= 1; for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3; for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4); a += 32; m <<= 1; q3 += 32; } a = aux8; memcpy(auxs, x[i].scales, 12); uint32_t tmp = auxs[2]; auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4); auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4); auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4); auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4); for (int j = 0; j < QK_K/16; ++j) { for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l]; q8 += 8; a += 8; for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l]; q8 += 8; a += 8; } const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l]; } for (int l = 0; l < 8; ++l) sumf += sums[l]; *s = sumf; #endif } #else void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { assert(n % QK_K == 0); assert(nrc == 1); UNUSED(nrc); UNUSED(bx); UNUSED(by); UNUSED(bs); const block_q3_K * restrict x = vx; const block_q8_K * restrict y = vy; const int nb = n / QK_K; #ifdef __ARM_NEON const int32x4_t vzero = vdupq_n_s32(0); const uint8x16_t m3b = vdupq_n_u8(0x3); const uint8x16_t mh = vdupq_n_u8(4); ggml_int8x16x4_t q3bytes; uint16_t aux16[2]; int8_t * scales = (int8_t *)aux16; float sum = 0; for (int i = 0; i < nb; ++i) { ggml_uint8x16x4_t q3h; const uint8x8_t hbits = vld1_u8(x[i].hmask); const uint8x16_t q3bits = vld1q_u8(x[i].qs); const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(y[i].qs); const uint16_t a = *(const uint16_t *)x[i].scales; aux16[0] = a & 0x0f0f; aux16[1] = (a >> 4) & 0x0f0f; for (int j = 0; j < 4; ++j) scales[j] -= 8; int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]); const float d = y[i].d * (float)x[i].d; const uint8x16_t htmp = vcombine_u8(hbits, vshr_n_u8(hbits, 1)); q3h.val[0] = vandq_u8(mh, vshlq_n_u8(htmp, 2)); q3h.val[1] = vandq_u8(mh, htmp); q3h.val[2] = vandq_u8(mh, vshrq_n_u8(htmp, 2)); q3h.val[3] = vandq_u8(mh, vshrq_n_u8(htmp, 4)); q3bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q3bits, m3b), q3h.val[0])); q3bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 2), m3b), q3h.val[1])); q3bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 4), m3b), q3h.val[2])); q3bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q3bits, 6), q3h.val[3])); isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes.val[0])) * scales[0]; isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes.val[1])) * scales[2]; isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes.val[2])) * scales[1]; isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes.val[3])) * scales[3]; sum += d * isum; } *s = sum; #elif defined __AVX2__ const __m256i m3 = _mm256_set1_epi8(3); const __m256i m1 = _mm256_set1_epi8(1); __m256 acc = _mm256_setzero_ps(); uint64_t aux64; uint16_t aux16[2]; const int8_t * aux8 = (const int8_t *)aux16; for (int i = 0; i < nb; ++i) { const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); const uint8_t * restrict q3 = x[i].qs; const int8_t * restrict q8 = y[i].qs; const uint16_t a = *(const uint16_t *)x[i].scales; aux16[0] = a & 0x0f0f; aux16[1] = (a >> 4) & 0x0f0f; const __m256i scale_0 = MM256_SET_M128I(_mm_set1_epi16(aux8[2] - 8), _mm_set1_epi16(aux8[0] - 8)); const __m256i scale_1 = MM256_SET_M128I(_mm_set1_epi16(aux8[3] - 8), _mm_set1_epi16(aux8[1] - 8)); memcpy(&aux64, x[i].hmask, 8); const __m128i haux = _mm_set_epi64x(aux64 >> 1, aux64 >> 0); __m256i q3h_0 = MM256_SET_M128I(_mm_srli_epi16(haux, 2), haux); __m256i q3h_1 = _mm256_srli_epi16(q3h_0, 4); q3h_0 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_0, m1), 2); q3h_1 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_1, m1), 2); // load low 2 bits const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3); // prepare low and high bits const __m256i q3aux = MM256_SET_M128I(_mm_srli_epi16(q3bits, 2), q3bits); const __m256i q3l_0 = _mm256_and_si256(q3aux, m3); const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3aux, 4), m3); // load Q8 quants const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0)); const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32)); // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16, // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set, // and 2 if the high bit was set) const __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0); const __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1); __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0); __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1); p16_0 = _mm256_sub_epi16(p16_0, q8s_0); p16_1 = _mm256_sub_epi16(p16_1, q8s_1); // multiply with scales p16_0 = _mm256_madd_epi16(scale_0, p16_0); p16_1 = _mm256_madd_epi16(scale_1, p16_1); p16_0 = _mm256_add_epi32(p16_0, p16_1); // multiply with block scale and accumulate acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16_0), acc); } *s = hsum_float_8(acc); #elif defined __AVX__ const __m128i m3 = _mm_set1_epi8(3); const __m128i m1 = _mm_set1_epi8(1); __m256 acc = _mm256_setzero_ps(); uint64_t aux64; uint16_t aux16[2]; const int8_t * aux8 = (const int8_t *)aux16; for (int i = 0; i < nb; ++i) { const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); const uint8_t * restrict q3 = x[i].qs; const int8_t * restrict q8 = y[i].qs; const uint16_t a = *(const uint16_t *)x[i].scales; aux16[0] = a & 0x0f0f; aux16[1] = (a >> 4) & 0x0f0f; const __m128i scale_0 = _mm_set1_epi16(aux8[0] - 8); const __m128i scale_1 = _mm_set1_epi16(aux8[2] - 8); const __m128i scale_2 = _mm_set1_epi16(aux8[1] - 8); const __m128i scale_3 = _mm_set1_epi16(aux8[3] - 8); memcpy(&aux64, x[i].hmask, 8); __m128i q3h_0 = _mm_set_epi64x(aux64 >> 1, aux64 >> 0); __m128i q3h_1 = _mm_srli_epi16(q3h_0, 2); __m128i q3h_2 = _mm_srli_epi16(q3h_0, 4); __m128i q3h_3 = _mm_srli_epi16(q3h_0, 6); q3h_0 = _mm_slli_epi16(_mm_andnot_si128(q3h_0, m1), 2); q3h_1 = _mm_slli_epi16(_mm_andnot_si128(q3h_1, m1), 2); q3h_2 = _mm_slli_epi16(_mm_andnot_si128(q3h_2, m1), 2); q3h_3 = _mm_slli_epi16(_mm_andnot_si128(q3h_3, m1), 2); // load low 2 bits const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3); // prepare low and high bits const __m128i q3l_0 = _mm_and_si128(q3bits, m3); const __m128i q3l_1 = _mm_and_si128(_mm_srli_epi16(q3bits, 2), m3); const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits, 4), m3); const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits, 6), m3); // load Q8 quants const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0)); const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32)); // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm_maddubs_epi16, // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set, // and 2 if the high bit was set) const __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, _mm256_extractf128_si256(q8_0, 0)); const __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, _mm256_extractf128_si256(q8_0, 1)); const __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, _mm256_extractf128_si256(q8_1, 0)); const __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, _mm256_extractf128_si256(q8_1, 1)); __m128i p16_0 = _mm_maddubs_epi16(q3l_0, _mm256_extractf128_si256(q8_0, 0)); __m128i p16_1 = _mm_maddubs_epi16(q3l_1, _mm256_extractf128_si256(q8_0, 1)); __m128i p16_2 = _mm_maddubs_epi16(q3l_2, _mm256_extractf128_si256(q8_1, 0)); __m128i p16_3 = _mm_maddubs_epi16(q3l_3, _mm256_extractf128_si256(q8_1, 1)); p16_0 = _mm_sub_epi16(p16_0, q8s_0); p16_1 = _mm_sub_epi16(p16_1, q8s_1); p16_2 = _mm_sub_epi16(p16_2, q8s_2); p16_3 = _mm_sub_epi16(p16_3, q8s_3); // multiply with scales p16_0 = _mm_madd_epi16(scale_0, p16_0); p16_1 = _mm_madd_epi16(scale_1, p16_1); p16_2 = _mm_madd_epi16(scale_2, p16_2); p16_3 = _mm_madd_epi16(scale_3, p16_3); p16_0 = _mm_add_epi32(p16_0, p16_2); p16_1 = _mm_add_epi32(p16_1, p16_3); __m256i p16 = MM256_SET_M128I(p16_1, p16_0); // multiply with block scale and accumulate acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16)), acc); } *s = hsum_float_8(acc); #elif defined __riscv_v_intrinsic uint16_t aux16[2]; int8_t * scales = (int8_t *)aux16; float sumf = 0; for (int i = 0; i < nb; ++i) { const uint8_t * restrict q3 = x[i].qs; const int8_t * restrict q8 = y[i].qs; const uint16_t a = *(const uint16_t *)x[i].scales; aux16[0] = a & 0x0f0f; aux16[1] = (a >> 4) & 0x0f0f; for (int j = 0; j < 4; ++j) scales[j] -= 8; int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]); const float d = y[i].d * (float)x[i].d; vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1); // load qh vuint8mf4_t qh_x1 = __riscv_vle8_v_u8mf4(x[i].hmask, 8); vuint8mf2_t qh_x2 = __riscv_vlmul_ext_v_u8mf4_u8mf2(__riscv_vsrl_vx_u8mf4(qh_x1, 1, 8)); size_t vl = 16; // extend and combine both qh_x1 and qh_x2 vuint8mf2_t qh_x = __riscv_vslideup_vx_u8mf2(__riscv_vlmul_ext_v_u8mf4_u8mf2(qh_x1), qh_x2, vl/2, vl); vuint8mf2_t qh_0 = __riscv_vand_vx_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x2, vl), 0x4, vl); vuint8mf2_t qh_1 = __riscv_vand_vx_u8mf2(qh_x, 0x4, vl); vuint8mf2_t qh_2 = __riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl), 0x4, vl); vuint8mf2_t qh_3 = __riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x4, vl), 0x4, vl); // load Q3 vuint8mf2_t q3_x = __riscv_vle8_v_u8mf2(q3, vl); vuint8mf2_t q3h_0 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q3_x, 0x3, vl), qh_0, vl); vuint8mf2_t q3h_1 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 2, vl), 0x3, vl), qh_1, vl); vuint8mf2_t q3h_2 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 4, vl), 0x3, vl), qh_2, vl); vuint8mf2_t q3h_3 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 0x6, vl), qh_3, vl); vint8mf2_t q3_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_0); vint8mf2_t q3_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_1); vint8mf2_t q3_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_2); vint8mf2_t q3_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_3); // load Q8 and take product with Q3 vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q3_0, __riscv_vle8_v_i8mf2(q8, vl), vl); vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q3_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl); vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q3_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl); vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q3_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl); vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl); vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl); vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl); vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl); isum += __riscv_vmv_x_s_i32m1_i32(vs_0) * scales[0]; isum += __riscv_vmv_x_s_i32m1_i32(vs_1) * scales[2]; isum += __riscv_vmv_x_s_i32m1_i32(vs_2) * scales[1]; isum += __riscv_vmv_x_s_i32m1_i32(vs_3) * scales[3]; sumf += d * isum; } *s = sumf; #else int8_t aux8[QK_K]; int16_t aux16[8]; float sums [8]; int32_t aux32[8]; int32_t scales[4]; memset(sums, 0, 8*sizeof(float)); float sumf = 0; for (int i = 0; i < nb; ++i) { const uint8_t * restrict q3 = x[i].qs; const uint8_t * restrict hm = x[i].hmask; const int8_t * restrict q8 = y[i].qs; int8_t * restrict a = aux8; for (int l = 0; l < 8; ++l) { a[l+ 0] = (int8_t)((q3[l+0] >> 0) & 3) - (hm[l] & 0x01 ? 0 : 4); a[l+ 8] = (int8_t)((q3[l+8] >> 0) & 3) - (hm[l] & 0x02 ? 0 : 4); a[l+16] = (int8_t)((q3[l+0] >> 2) & 3) - (hm[l] & 0x04 ? 0 : 4); a[l+24] = (int8_t)((q3[l+8] >> 2) & 3) - (hm[l] & 0x08 ? 0 : 4); a[l+32] = (int8_t)((q3[l+0] >> 4) & 3) - (hm[l] & 0x10 ? 0 : 4); a[l+40] = (int8_t)((q3[l+8] >> 4) & 3) - (hm[l] & 0x20 ? 0 : 4); a[l+48] = (int8_t)((q3[l+0] >> 6) & 3) - (hm[l] & 0x40 ? 0 : 4); a[l+56] = (int8_t)((q3[l+8] >> 6) & 3) - (hm[l] & 0x80 ? 0 : 4); } scales[0] = (x[i].scales[0] & 0xF) - 8; scales[1] = (x[i].scales[0] >> 4) - 8; scales[2] = (x[i].scales[1] & 0xF) - 8; scales[3] = (x[i].scales[1] >> 4) - 8; memset(aux32, 0, 8*sizeof(int32_t)); for (int j = 0; j < QK_K/16; ++j) { for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; q8 += 8; a += 8; for (int l = 0; l < 8; ++l) aux16[l] += q8[l] * a[l]; q8 += 8; a += 8; for (int l = 0; l < 8; ++l) aux32[l] += scales[j] * aux16[l]; } const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l]; } for (int l = 0; l < 8; ++l) sumf += sums[l]; *s = sumf; #endif } #endif #if QK_K == 256 void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { assert(n % QK_K == 0); assert(nrc == 1); UNUSED(nrc); UNUSED(bx); UNUSED(by); UNUSED(bs); const block_q4_K * restrict x = vx; const block_q8_K * restrict y = vy; const int nb = n / QK_K; static const uint32_t kmask1 = 0x3f3f3f3f; static const uint32_t kmask2 = 0x0f0f0f0f; static const uint32_t kmask3 = 0x03030303; uint32_t utmp[4]; #ifdef __ARM_NEON const uint8x16_t m4b = vdupq_n_u8(0xf); const int32x4_t mzero = vdupq_n_s32(0); ggml_int8x16x2_t q4bytes; ggml_int8x16x2_t q8bytes; float sumf = 0; for (int i = 0; i < nb; ++i) { const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin); const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8)); memcpy(utmp, x[i].scales, 12); uint32x2_t mins8 = { 0 }; mins8 = vset_lane_u32(utmp[1] & kmask1, mins8, 0); mins8 = vset_lane_u32(((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4), mins8, 1); utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); utmp[0] &= kmask1; const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins8))); const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)), vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins))); sumf -= dmin * vaddvq_s32(prod); const uint8_t * scales = (const uint8_t *)utmp; const uint8_t * restrict q4 = x[i].qs; const int8_t * restrict q8 = y[i].qs; int32_t sumi1 = 0; int32_t sumi2 = 0; for (int j = 0; j < QK_K/64; ++j) { const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4); q4 += 32; q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32; q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b)); q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b)); const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]); sumi1 += vaddvq_s32(p1) * scales[2*j+0]; q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32; q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4)); q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4)); const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]); sumi2 += vaddvq_s32(p2) * scales[2*j+1]; } sumf += d * (sumi1 + sumi2); } *s = sumf; #elif defined __AVX2__ const __m256i m4 = _mm256_set1_epi8(0xF); __m256 acc = _mm256_setzero_ps(); __m128 acc_m = _mm_setzero_ps(); for (int i = 0; i < nb; ++i) { const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); memcpy(utmp, x[i].scales, 12); utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); const uint32_t uaux = utmp[1] & kmask1; utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); utmp[2] = uaux; utmp[0] &= kmask1; const uint8_t * restrict q4 = x[i].qs; const int8_t * restrict q8 = y[i].qs; const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0])); const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums); const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1)); const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s); acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m); const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0); const __m256i scales = MM256_SET_M128I(sc128, sc128); __m256i sumi = _mm256_setzero_si256(); for (int j = 0; j < QK_K/64; ++j) { const __m256i scale_l = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0)); const __m256i scale_h = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1)); const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); q4 += 32; const __m256i q4l = _mm256_and_si256(q4bits, m4); const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4); const __m256i q8l = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; __m256i p16l = _mm256_maddubs_epi16(q4l, q8l); p16l = _mm256_madd_epi16(scale_l, p16l); const __m256i q8h = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; __m256i p16h = _mm256_maddubs_epi16(q4h, q8h); p16h = _mm256_madd_epi16(scale_h, p16h); const __m256i sumj = _mm256_add_epi32(p16l, p16h); sumi = _mm256_add_epi32(sumi, sumj); } __m256 vd = _mm256_set1_ps(d); acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc); } acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m)); acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m)); *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m); #elif defined __AVX__ const __m128i m4 = _mm_set1_epi8(0xF); const __m128i m2 = _mm_set1_epi8(0x2); __m256 acc = _mm256_setzero_ps(); __m128 acc_m = _mm_setzero_ps(); for (int i = 0; i < nb; ++i) { const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); const uint8_t * restrict q4 = x[i].qs; const int8_t * restrict q8 = y[i].qs; memcpy(utmp, x[i].scales, 12); utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); const uint32_t uaux = utmp[1] & kmask1; utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); utmp[2] = uaux; utmp[0] &= kmask1; const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]); const __m128i scales = _mm_cvtepu8_epi16(utmps); const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps)); const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]); const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]); const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1); const __m128i prod = _mm_madd_epi16(mins, q8s); acc_m = _mm_add_ps(_mm_mul_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod)), acc_m); __m128i sumi_0 = _mm_setzero_si128(); __m128i sumi_1 = _mm_setzero_si128(); __m128i shuffle = _mm_set1_epi16(0x0100); for (int j = 0; j < QK_K/64; ++j) { const __m128i scale_l = _mm_shuffle_epi8(scales, shuffle); shuffle = _mm_add_epi16(shuffle, m2); const __m128i scale_h = _mm_shuffle_epi8(scales, shuffle); shuffle = _mm_add_epi16(shuffle, m2); __m128i q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16; const __m128i q4l_0 = _mm_and_si128(q4bits, m4); const __m128i q4h_0 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4); q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16; const __m128i q4l_1 = _mm_and_si128(q4bits, m4); const __m128i q4h_1 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4); const __m128i q8l_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; __m128i p16l = _mm_maddubs_epi16(q4l_0, q8l_0); p16l = _mm_madd_epi16(scale_l, p16l); sumi_0 = _mm_add_epi32(sumi_0, p16l); const __m128i q8l_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; p16l = _mm_maddubs_epi16(q4l_1, q8l_1); p16l = _mm_madd_epi16(scale_l, p16l); sumi_1 = _mm_add_epi32(sumi_1, p16l); const __m128i q8h_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; __m128i p16h = _mm_maddubs_epi16(q4h_0, q8h_0); p16h = _mm_madd_epi16(scale_h, p16h); sumi_0 = _mm_add_epi32(sumi_0, p16h); const __m128i q8h_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; p16h = _mm_maddubs_epi16(q4h_1, q8h_1); p16h = _mm_madd_epi16(scale_h, p16h); sumi_1 = _mm_add_epi32(sumi_1, p16h); } __m256 vd = _mm256_set1_ps(d); __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0); acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc); } acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m)); acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m)); *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m); #elif defined __riscv_v_intrinsic const uint8_t * scales = (const uint8_t*)&utmp[0]; const uint8_t * mins = (const uint8_t*)&utmp[2]; float sumf = 0; for (int i = 0; i < nb; ++i) { size_t vl = 8; const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin); vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl); vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl); vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl); memcpy(utmp, x[i].scales, 12); utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); const uint32_t uaux = utmp[1] & kmask1; utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); utmp[2] = uaux; utmp[0] &= kmask1; vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl); vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl)); vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl); vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl); sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi); const uint8_t * restrict q4 = x[i].qs; const int8_t * restrict q8 = y[i].qs; vl = 32; int32_t sum_1 = 0; int32_t sum_2 = 0; vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1); for (int j = 0; j < QK_K/64; ++j) { // load Q4 vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl); // load Q8 and multiply it with lower Q4 nibble vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl); vint8m1_t q4_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl)); vint16m2_t qv_0 = __riscv_vwmul_vv_i16m2(q4_0, q8_0, vl); vint16m1_t vs_0 = __riscv_vredsum_vs_i16m2_i16m1(qv_0, vzero, vl); sum_1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[2*j+0]; // load Q8 and multiply it with upper Q4 nibble vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl); vint8m1_t q4_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl)); vint16m2_t qv_1 = __riscv_vwmul_vv_i16m2(q4_1, q8_1, vl); vint16m1_t vs_1 = __riscv_vredsum_vs_i16m2_i16m1(qv_1, vzero, vl); sum_2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[2*j+1]; q4 += 32; q8 += 64; } sumf += d*(sum_1 + sum_2); } *s = sumf; #else const uint8_t * scales = (const uint8_t*)&utmp[0]; const uint8_t * mins = (const uint8_t*)&utmp[2]; int8_t aux8[QK_K]; int16_t aux16[8]; float sums [8]; int32_t aux32[8]; memset(sums, 0, 8*sizeof(float)); float sumf = 0; for (int i = 0; i < nb; ++i) { const uint8_t * restrict q4 = x[i].qs; const int8_t * restrict q8 = y[i].qs; memset(aux32, 0, 8*sizeof(int32_t)); int8_t * restrict a = aux8; for (int j = 0; j < QK_K/64; ++j) { for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF); a += 32; for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4); a += 32; q4 += 32; } memcpy(utmp, x[i].scales, 12); utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); const uint32_t uaux = utmp[1] & kmask1; utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); utmp[2] = uaux; utmp[0] &= kmask1; int sumi = 0; for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2]; a = aux8; int is = 0; for (int j = 0; j < QK_K/32; ++j) { int32_t scale = scales[is++]; for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; q8 += 8; a += 8; for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; q8 += 8; a += 8; for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; q8 += 8; a += 8; for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; q8 += 8; a += 8; } const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l]; const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d; sumf -= dmin * sumi; } for (int l = 0; l < 8; ++l) sumf += sums[l]; *s = sumf; #endif } #else void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { assert(n % QK_K == 0); assert(nrc == 1); UNUSED(nrc); UNUSED(bx); UNUSED(by); UNUSED(bs); const block_q4_K * restrict x = vx; const block_q8_K * restrict y = vy; const int nb = n / QK_K; #ifdef __ARM_NEON const uint8x16_t m4b = vdupq_n_u8(0xf); const int32x4_t mzero = vdupq_n_s32(0); float sumf = 0; ggml_int8x16x2_t q4bytes; ggml_int8x16x4_t q8bytes; float sum_mins = 0.f; uint16_t aux16[2]; const uint8_t * restrict scales = (const uint8_t *)aux16; for (int i = 0; i < nb; ++i) { const uint8_t * restrict q4 = x[i].qs; const int8_t * restrict q8 = y[i].qs; const uint16_t * restrict a = (const uint16_t *)x[i].scales; aux16[0] = a[0] & 0x0f0f; aux16[1] = (a[0] >> 4) & 0x0f0f; const int32_t summi = scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]); sum_mins += y[i].d * (float)x[i].d[1] * summi; const float d = y[i].d * (float)x[i].d[0]; const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4); q8bytes = ggml_vld1q_s8_x4(q8); q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b)); q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b)); const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]); const int32_t sumi1 = vaddvq_s32(p1) * scales[0]; q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4)); q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4)); const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[2]), q4bytes.val[1], q8bytes.val[3]); const int32_t sumi2 = vaddvq_s32(p2) * scales[1]; sumf += d * (sumi1 + sumi2); } *s = sumf - sum_mins; #elif defined __AVX2__ const __m256i m4 = _mm256_set1_epi8(0xF); __m256 acc = _mm256_setzero_ps(); float summs = 0; uint16_t aux16[2]; const uint8_t * scales = (const uint8_t *)aux16; for (int i = 0; i < nb; ++i) { const float d = GGML_FP16_TO_FP32(x[i].d[0]) * y[i].d; const float m = GGML_FP16_TO_FP32(x[i].d[1]) * y[i].d; const __m256 vd = _mm256_set1_ps(d); const uint16_t * a = (const uint16_t *)x[i].scales; aux16[0] = a[0] & 0x0f0f; aux16[1] = (a[0] >> 4) & 0x0f0f; summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3])); const uint8_t * restrict q4 = x[i].qs; const int8_t * restrict q8 = y[i].qs; const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); const __m256i q4l = _mm256_and_si256(q4bits, m4); const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4); const __m256i q8l = _mm256_loadu_si256((const __m256i*)(q8+ 0)); const __m256i q8h = _mm256_loadu_si256((const __m256i*)(q8+32)); const __m256i p16l = _mm256_maddubs_epi16(q4l, q8l); const __m256i p16h = _mm256_maddubs_epi16(q4h, q8h); const __m256i p32l = _mm256_madd_epi16(_mm256_set1_epi16(scales[0]), p16l); acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32l), acc); const __m256i p32h = _mm256_madd_epi16(_mm256_set1_epi16(scales[1]), p16h); acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32h), acc); } *s = hsum_float_8(acc) - summs; #elif defined __AVX__ const __m128i m4 = _mm_set1_epi8(0xF); __m256 acc = _mm256_setzero_ps(); float summs = 0; uint16_t aux16[2]; const uint8_t * scales = (const uint8_t *)aux16; for (int i = 0; i < nb; ++i) { const float d = GGML_FP16_TO_FP32(x[i].d[0]) * y[i].d; const float m = GGML_FP16_TO_FP32(x[i].d[1]) * y[i].d; const __m256 vd = _mm256_set1_ps(d); const uint16_t * a = (const uint16_t *)x[i].scales; aux16[0] = a[0] & 0x0f0f; aux16[1] = (a[0] >> 4) & 0x0f0f; summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3])); const uint8_t * restrict q4 = x[i].qs; const int8_t * restrict q8 = y[i].qs; const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); const __m128i q4bits_0 = _mm256_extractf128_si256(q4bits, 0); const __m128i q4bits_1 = _mm256_extractf128_si256(q4bits, 1); const __m128i q4_0 = _mm_and_si128(q4bits_0, m4); const __m128i q4_1 = _mm_and_si128(q4bits_1, m4); const __m128i q4_2 = _mm_and_si128(_mm_srli_epi16(q4bits_0, 4), m4); const __m128i q4_3 = _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4); const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0)); const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32)); const __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0)); const __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1)); const __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0)); const __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1)); const __m128i p32_0 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_0); const __m128i p32_1 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_1); acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_1, p32_0))), acc); const __m128i p32_2 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_2); const __m128i p32_3 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_3); acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_3, p32_2))), acc); } *s = hsum_float_8(acc) - summs; #elif defined __riscv_v_intrinsic uint16_t s16[2]; const uint8_t * restrict scales = (const uint8_t *)s16; float sumf = 0; for (int i = 0; i < nb; ++i) { const uint8_t * restrict q4 = x[i].qs; const int8_t * restrict q8 = y[i].qs; const uint16_t * restrict b = (const uint16_t *)x[i].scales; s16[0] = b[0] & 0x0f0f; s16[1] = (b[0] >> 4) & 0x0f0f; sumf -= y[i].d * GGML_FP16_TO_FP32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3])); const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d[0]); size_t vl = 32; vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1); // load Q4 vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl); // load Q8 and multiply it with lower Q4 nibble vint8m1_t q4_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl)); vint16m2_t va_0 = __riscv_vwmul_vv_i16m2(q4_a, __riscv_vle8_v_i8m1(q8, vl), vl); vint16m1_t aux1 = __riscv_vredsum_vs_i16m2_i16m1(va_0, vzero, vl); sumf += d*scales[0]*__riscv_vmv_x_s_i16m1_i16(aux1); // load Q8 and multiply it with upper Q4 nibble vint8m1_t q4_s = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl)); vint16m2_t va_1 = __riscv_vwmul_vv_i16m2(q4_s, __riscv_vle8_v_i8m1(q8+32, vl), vl); vint16m1_t aux2 = __riscv_vredsum_vs_i16m2_i16m1(va_1, vzero, vl); sumf += d*scales[1]*__riscv_vmv_x_s_i16m1_i16(aux2); } *s = sumf; #else uint8_t aux8[QK_K]; int16_t aux16[16]; float sums [8]; memset(sums, 0, 8*sizeof(float)); uint16_t s16[2]; const uint8_t * restrict scales = (const uint8_t *)s16; float sumf = 0; for (int i = 0; i < nb; ++i) { const uint8_t * restrict q4 = x[i].qs; const int8_t * restrict q8 = y[i].qs; uint8_t * restrict a = aux8; for (int l = 0; l < 32; ++l) a[l+ 0] = q4[l] & 0xF; for (int l = 0; l < 32; ++l) a[l+32] = q4[l] >> 4; const uint16_t * restrict b = (const uint16_t *)x[i].scales; s16[0] = b[0] & 0x0f0f; s16[1] = (b[0] >> 4) & 0x0f0f; sumf -= y[i].d * GGML_FP16_TO_FP32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3])); const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d[0]); for (int j = 0; j < QK_K/32; ++j) { for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l]; q8 += 16; a += 16; for (int l = 0; l < 16; ++l) aux16[l] += q8[l] * a[l]; q8 += 16; a += 16; const float dl = d * scales[j]; for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[l+8]); } } for (int l = 0; l < 8; ++l) sumf += sums[l]; *s = sumf; #endif } #endif #if QK_K == 256 void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { assert(n % QK_K == 0); assert(nrc == 1); UNUSED(nrc); UNUSED(bx); UNUSED(by); UNUSED(bs); const block_q5_K * restrict x = vx; const block_q8_K * restrict y = vy; const int nb = n / QK_K; static const uint32_t kmask1 = 0x3f3f3f3f; static const uint32_t kmask2 = 0x0f0f0f0f; static const uint32_t kmask3 = 0x03030303; uint32_t utmp[4]; #ifdef __ARM_NEON const uint8x16_t m4b = vdupq_n_u8(0xf); const uint8x16_t mone = vdupq_n_u8(1); const uint8x16_t mtwo = vdupq_n_u8(2); const int32x4_t mzero = vdupq_n_s32(0); ggml_int8x16x4_t q5bytes; float sumf = 0; for (int i = 0; i < nb; ++i) { const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin); const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8)); memcpy(utmp, x[i].scales, 12); utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); const uint32_t uaux = utmp[1] & kmask1; utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); utmp[2] = uaux; utmp[0] &= kmask1; const uint8x8_t mins8 = vld1_u8((const uint8_t*)utmp + 8); const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(mins8)); const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)), vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins))); int32_t sumi_mins = vaddvq_s32(prod); const uint8_t * scales = (const uint8_t *)utmp; const uint8_t * restrict q5 = x[i].qs; const uint8_t * restrict qh = x[i].qh; const int8_t * restrict q8 = y[i].qs; ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh); ggml_uint8x16x4_t q5h; int32_t sumi = 0; for (int j = 0; j < QK_K/64; ++j) { const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5); q5 += 32; const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64; q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4); q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4); q5h.val[2] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[0]), 3); q5h.val[3] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[1]), 3); qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 2); qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 2); q5bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[0], m4b), q5h.val[0])); q5bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[1], m4b), q5h.val[1])); q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2])); q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3])); sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++; sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++; } sumf += d * sumi - dmin * sumi_mins; } *s = sumf; #elif defined __AVX2__ const __m256i m4 = _mm256_set1_epi8(0xF); const __m128i mzero = _mm_setzero_si128(); const __m256i mone = _mm256_set1_epi8(1); __m256 acc = _mm256_setzero_ps(); float summs = 0.f; for (int i = 0; i < nb; ++i) { const uint8_t * restrict q5 = x[i].qs; const int8_t * restrict q8 = y[i].qs; #if QK_K == 256 const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); memcpy(utmp, x[i].scales, 12); utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); const uint32_t uaux = utmp[1] & kmask1; utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); utmp[2] = uaux; utmp[0] &= kmask1; #else // TODO const float d = 0, dmin = 0; #endif const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0])); const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums); const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1)); const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s); const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero); summs += dmin * _mm_extract_epi32(hsum, 0); const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0); const __m256i scales = MM256_SET_M128I(sc128, sc128); const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].qh); __m256i hmask = mone; __m256i sumi = _mm256_setzero_si256(); int bit = 0; for (int j = 0; j < QK_K/64; ++j) { const __m256i scale_0 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0)); const __m256i scale_1 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1)); const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); q5 += 32; const __m256i q5l_0 = _mm256_and_si256(q5bits, m4); const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4); const __m256i q5_0 = _mm256_add_epi8(q5l_0, q5h_0); hmask = _mm256_slli_epi16(hmask, 1); const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4); const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4); const __m256i q5_1 = _mm256_add_epi8(q5l_1, q5h_1); hmask = _mm256_slli_epi16(hmask, 1); const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; __m256i p16_0 = _mm256_maddubs_epi16(q5_0, q8_0); __m256i p16_1 = _mm256_maddubs_epi16(q5_1, q8_1); p16_0 = _mm256_madd_epi16(scale_0, p16_0); p16_1 = _mm256_madd_epi16(scale_1, p16_1); sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1)); } __m256 vd = _mm256_set1_ps(d); acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc); } *s = hsum_float_8(acc) + summs; #elif defined __AVX__ const __m128i m4 = _mm_set1_epi8(0xF); const __m128i mzero = _mm_setzero_si128(); const __m128i mone = _mm_set1_epi8(1); const __m128i m2 = _mm_set1_epi8(2); __m256 acc = _mm256_setzero_ps(); float summs = 0.f; for (int i = 0; i < nb; ++i) { const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); const uint8_t * restrict q5 = x[i].qs; const int8_t * restrict q8 = y[i].qs; memcpy(utmp, x[i].scales, 12); utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); const uint32_t uaux = utmp[1] & kmask1; utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); utmp[2] = uaux; utmp[0] &= kmask1; const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]); const __m128i scales = _mm_cvtepu8_epi16(utmps); const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps)); const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]); const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]); const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1); const __m128i prod = _mm_madd_epi16(mins, q8s); const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero); summs += dmin * _mm_extract_epi32(hsum, 0); const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].qh[0]); const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].qh[16]); __m128i hmask = mone; __m128i sumi_0 = _mm_setzero_si128(); __m128i sumi_1 = _mm_setzero_si128(); int bit = 0; __m128i shuffle = _mm_set1_epi16(0x0100); for (int j = 0; j < QK_K/64; ++j) { const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle); shuffle = _mm_add_epi16(shuffle, m2); const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle); shuffle = _mm_add_epi16(shuffle, m2); const __m128i q5bits_0 = _mm_loadu_si128((const __m128i*)q5); q5 += 16; const __m128i q5bits_1 = _mm_loadu_si128((const __m128i*)q5); q5 += 16; __m128i q5l_0 = _mm_and_si128(q5bits_0, m4); __m128i q5l_1 = _mm_and_si128(q5bits_1, m4); __m128i q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4); __m128i q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4); __m128i q5_0 = _mm_add_epi8(q5l_0, q5h_0); __m128i q5_1 = _mm_add_epi8(q5l_1, q5h_1); hmask = _mm_slli_epi16(hmask, 1); __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; __m128i p16_0 = _mm_maddubs_epi16(q5_0, q8_0); __m128i p16_1 = _mm_maddubs_epi16(q5_1, q8_1); p16_0 = _mm_madd_epi16(scale_0, p16_0); p16_1 = _mm_madd_epi16(scale_0, p16_1); q5l_0 = _mm_and_si128(_mm_srli_epi16(q5bits_0, 4), m4); q5l_1 = _mm_and_si128(_mm_srli_epi16(q5bits_1, 4), m4); q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4); q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4); q5_0 = _mm_add_epi8(q5l_0, q5h_0); q5_1 = _mm_add_epi8(q5l_1, q5h_1); hmask = _mm_slli_epi16(hmask, 1); q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; __m128i p16_2 = _mm_maddubs_epi16(q5_0, q8_0); __m128i p16_3 = _mm_maddubs_epi16(q5_1, q8_1); p16_2 = _mm_madd_epi16(scale_1, p16_2); p16_3 = _mm_madd_epi16(scale_1, p16_3); sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2)); sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3)); } __m256 vd = _mm256_set1_ps(d); __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0); acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc); } *s = hsum_float_8(acc) + summs; #elif defined __riscv_v_intrinsic const uint8_t * scales = (const uint8_t*)&utmp[0]; const uint8_t * mins = (const uint8_t*)&utmp[2]; float sumf = 0; float sums = 0.0; size_t vl; for (int i = 0; i < nb; ++i) { vl = 8; const uint8_t * restrict q5 = x[i].qs; const uint8_t * restrict hm = x[i].qh; const int8_t * restrict q8 = y[i].qs; const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d; vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl); vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl); vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl); memcpy(utmp, x[i].scales, 12); utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); const uint32_t uaux = utmp[1] & kmask1; utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); utmp[2] = uaux; utmp[0] &= kmask1; vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl); vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl)); vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl); vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl); sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi); vl = 32; int32_t aux32 = 0; int is = 0; uint8_t m = 1; vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1); vuint8m1_t vqh = __riscv_vle8_v_u8m1(hm, vl); for (int j = 0; j < QK_K/64; ++j) { // load Q5 and Q8 vuint8m1_t q5_x = __riscv_vle8_v_u8m1(q5, vl); vint8m1_t q8_y1 = __riscv_vle8_v_i8m1(q8, vl); vint8m1_t q8_y2 = __riscv_vle8_v_i8m1(q8+32, vl); // compute mask for addition vint8m1_t q5_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q5_x, 0x0F, vl)); vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl); vbool8_t vmask_1 = __riscv_vmsne_vx_u8m1_b8(qh_m1, 0, vl); vint8m1_t q5_m1 = __riscv_vadd_vx_i8m1_m(vmask_1, q5_a, 16, vl); m <<= 1; vint8m1_t q5_l = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q5_x, 0x04, vl)); vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl); vbool8_t vmask_2 = __riscv_vmsne_vx_u8m1_b8(qh_m2, 0, vl); vint8m1_t q5_m2 = __riscv_vadd_vx_i8m1_m(vmask_2, q5_l, 16, vl); m <<= 1; vint16m2_t v0 = __riscv_vwmul_vv_i16m2(q5_m1, q8_y1, vl); vint16m2_t v1 = __riscv_vwmul_vv_i16m2(q5_m2, q8_y2, vl); vint32m4_t vs1 = __riscv_vwmul_vx_i32m4(v0, scales[is++], vl); vint32m4_t vs2 = __riscv_vwmul_vx_i32m4(v1, scales[is++], vl); vint32m1_t vacc1 = __riscv_vredsum_vs_i32m4_i32m1(vs1, vzero, vl); vint32m1_t vacc2 = __riscv_vredsum_vs_i32m4_i32m1(vs2, vzero, vl); aux32 += __riscv_vmv_x_s_i32m1_i32(vacc1) + __riscv_vmv_x_s_i32m1_i32(vacc2); q5 += 32; q8 += 64; } vfloat32m1_t vaux = __riscv_vfmul_vf_f32m1(__riscv_vfmv_v_f_f32m1(aux32, 1), d, 1); sums += __riscv_vfmv_f_s_f32m1_f32(vaux); } *s = sumf+sums; #else const uint8_t * scales = (const uint8_t*)&utmp[0]; const uint8_t * mins = (const uint8_t*)&utmp[2]; int8_t aux8[QK_K]; int16_t aux16[8]; float sums [8]; int32_t aux32[8]; memset(sums, 0, 8*sizeof(float)); float sumf = 0; for (int i = 0; i < nb; ++i) { const uint8_t * restrict q4 = x[i].qs; const uint8_t * restrict hm = x[i].qh; const int8_t * restrict q8 = y[i].qs; memset(aux32, 0, 8*sizeof(int32_t)); int8_t * restrict a = aux8; uint8_t m = 1; for (int j = 0; j < QK_K/64; ++j) { for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF); for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0); a += 32; m <<= 1; for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4); for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0); a += 32; m <<= 1; q4 += 32; } memcpy(utmp, x[i].scales, 12); utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); const uint32_t uaux = utmp[1] & kmask1; utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); utmp[2] = uaux; utmp[0] &= kmask1; int sumi = 0; for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2]; a = aux8; int is = 0; for (int j = 0; j < QK_K/32; ++j) { int32_t scale = scales[is++]; for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; q8 += 8; a += 8; for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; q8 += 8; a += 8; for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; q8 += 8; a += 8; for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; q8 += 8; a += 8; } const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l]; const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d; sumf -= dmin * sumi; } for (int l = 0; l < 8; ++l) sumf += sums[l]; *s = sumf; #endif } #else void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { assert(n % QK_K == 0); assert(nrc == 1); UNUSED(nrc); UNUSED(bx); UNUSED(by); UNUSED(bs); const block_q5_K * restrict x = vx; const block_q8_K * restrict y = vy; const int nb = n / QK_K; #ifdef __ARM_NEON const uint8x16_t m4b = vdupq_n_u8(0xf); const uint8x16_t mh = vdupq_n_u8(16); const int32x4_t mzero = vdupq_n_s32(0); ggml_int8x16x4_t q5bytes; ggml_uint8x16x4_t q5h; float sumf = 0; for (int i = 0; i < nb; ++i) { const float d = y[i].d * (float)x[i].d; const int8_t * sc = x[i].scales; const uint8_t * restrict q5 = x[i].qs; const uint8_t * restrict qh = x[i].qh; const int8_t * restrict q8 = y[i].qs; const uint8x8_t qhbits = vld1_u8(qh); const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5); const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); const uint8x16_t htmp = vcombine_u8(qhbits, vshr_n_u8(qhbits, 1)); q5h.val[0] = vbicq_u8(mh, vshlq_n_u8(htmp, 4)); q5h.val[1] = vbicq_u8(mh, vshlq_n_u8(htmp, 2)); q5h.val[2] = vbicq_u8(mh, htmp); q5h.val[3] = vbicq_u8(mh, vshrq_n_u8(htmp, 2)); q5bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[0], m4b)), vreinterpretq_s8_u8(q5h.val[0])); q5bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[1], m4b)), vreinterpretq_s8_u8(q5h.val[1])); q5bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[0], 4)), vreinterpretq_s8_u8(q5h.val[2])); q5bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[1], 4)), vreinterpretq_s8_u8(q5h.val[3])); int32_t sumi1 = sc[0] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0])); int32_t sumi2 = sc[1] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[1], q8bytes.val[1])); int32_t sumi3 = sc[2] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2])); int32_t sumi4 = sc[3] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[3], q8bytes.val[3])); sumf += d * (sumi1 + sumi2 + sumi3 + sumi4); } *s = sumf; #elif defined __AVX2__ const __m256i m4 = _mm256_set1_epi8(0xF); const __m256i mone = _mm256_set1_epi8(1); __m256 acc = _mm256_setzero_ps(); for (int i = 0; i < nb; ++i) { const uint8_t * restrict q5 = x[i].qs; const int8_t * restrict q8 = y[i].qs; const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); const __m256i scale_l = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[1]), _mm_set1_epi16(x[i].scales[0])); const __m256i scale_h = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[3]), _mm_set1_epi16(x[i].scales[2])); int64_t aux64; memcpy(&aux64, x[i].qh, 8); const __m128i haux128 = _mm_set_epi64x(aux64 >> 1, aux64); const __m256i haux256 = MM256_SET_M128I(_mm_srli_epi16(haux128, 2), haux128); const __m256i q5h_0 = _mm256_slli_epi16(_mm256_andnot_si256(haux256, mone), 4); const __m256i q5h_1 = _mm256_slli_epi16(_mm256_andnot_si256(_mm256_srli_epi16(haux256, 4), mone), 4); const __m256i q5l_0 = _mm256_and_si256(q5bits, m4); const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4); const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0)); const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32)); const __m256i p16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5l_0, q8_0)); const __m256i p16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5l_1, q8_1)); const __m256i s16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5h_0, q8_0)); const __m256i s16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5h_1, q8_1)); const __m256i dot = _mm256_sub_epi32(_mm256_add_epi32(p16_0, p16_1), _mm256_add_epi32(s16_0, s16_1)); acc = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(dot), acc); } *s = hsum_float_8(acc); #elif defined __AVX__ const __m128i m4 = _mm_set1_epi8(0xF); const __m128i mone = _mm_set1_epi8(1); __m256 acc = _mm256_setzero_ps(); for (int i = 0; i < nb; ++i) { const uint8_t * restrict q5 = x[i].qs; const int8_t * restrict q8 = y[i].qs; const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); const __m128i scale_0 = _mm_set1_epi16(x[i].scales[0]); const __m128i scale_1 = _mm_set1_epi16(x[i].scales[1]); const __m128i scale_2 = _mm_set1_epi16(x[i].scales[2]); const __m128i scale_3 = _mm_set1_epi16(x[i].scales[3]); int64_t aux64; memcpy(&aux64, x[i].qh, 8); const __m128i haux128_0 = _mm_set_epi64x(aux64 >> 1, aux64); const __m128i haux128_1 = _mm_srli_epi16(haux128_0, 2); const __m128i q5h_0 = _mm_slli_epi16(_mm_andnot_si128(haux128_0, mone), 4); const __m128i q5h_1 = _mm_slli_epi16(_mm_andnot_si128(haux128_1, mone), 4); const __m128i q5h_2 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_0, 4), mone), 4); const __m128i q5h_3 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_1, 4), mone), 4); const __m128i q5l_0 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 0), m4); const __m128i q5l_1 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 1), m4); const __m128i q5l_2 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 0), 4), m4); const __m128i q5l_3 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 1), 4), m4); const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0)); const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32)); const __m128i p16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5l_0, _mm256_extractf128_si256(q8_0, 0))); const __m128i p16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5l_1, _mm256_extractf128_si256(q8_0, 1))); const __m128i p16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5l_2, _mm256_extractf128_si256(q8_1, 0))); const __m128i p16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5l_3, _mm256_extractf128_si256(q8_1, 1))); const __m128i s16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5h_0, _mm256_extractf128_si256(q8_0, 0))); const __m128i s16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5h_1, _mm256_extractf128_si256(q8_0, 1))); const __m128i s16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5h_2, _mm256_extractf128_si256(q8_1, 0))); const __m128i s16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5h_3, _mm256_extractf128_si256(q8_1, 1))); const __m128i dot_0 = _mm_sub_epi32(_mm_add_epi32(p16_0, p16_2), _mm_add_epi32(s16_0, s16_2)); const __m128i dot_1 = _mm_sub_epi32(_mm_add_epi32(p16_1, p16_3), _mm_add_epi32(s16_1, s16_3)); acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(dot_1, dot_0))), acc); } *s = hsum_float_8(acc); #elif defined __riscv_v_intrinsic float sumf = 0; for (int i = 0; i < nb; ++i) { const float d = y[i].d * (float)x[i].d; const int8_t * sc = x[i].scales; const uint8_t * restrict q5 = x[i].qs; const uint8_t * restrict qh = x[i].qh; const int8_t * restrict q8 = y[i].qs; vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1); // load qh vuint8mf4_t qh_x1 = __riscv_vle8_v_u8mf4(qh, 8); vuint8mf2_t qh_x2 = __riscv_vlmul_ext_v_u8mf4_u8mf2(__riscv_vsrl_vx_u8mf4(qh_x1, 1, 8)); size_t vl = 16; // combine both qh_1 and qh_2 vuint8mf2_t qh_x = __riscv_vslideup_vx_u8mf2(__riscv_vlmul_ext_v_u8mf4_u8mf2(qh_x1), qh_x2, vl/2, vl); vuint8mf2_t qh_h0 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x4, vl), vl), 16, vl); vuint8mf2_t qh_h1 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x2, vl), vl), 16, vl); vuint8mf2_t qh_h2 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(qh_x, vl), 16, vl); vuint8mf2_t qh_h3 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x4, vl), vl), 16, vl); vint8mf2_t qh_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h0); vint8mf2_t qh_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h1); vint8mf2_t qh_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h2); vint8mf2_t qh_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h3); // load q5 vuint8mf2_t q5_x1 = __riscv_vle8_v_u8mf2(q5, vl); vuint8mf2_t q5_x2 = __riscv_vle8_v_u8mf2(q5+16, vl); vint8mf2_t q5s_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q5_x1, 0xF, vl)); vint8mf2_t q5s_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q5_x2, 0xF, vl)); vint8mf2_t q5s_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vsrl_vx_u8mf2(q5_x1, 0x4, vl)); vint8mf2_t q5s_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vsrl_vx_u8mf2(q5_x2, 0x4, vl)); vint8mf2_t q5_0 = __riscv_vsub_vv_i8mf2(q5s_0, qh_0, vl); vint8mf2_t q5_1 = __riscv_vsub_vv_i8mf2(q5s_1, qh_1, vl); vint8mf2_t q5_2 = __riscv_vsub_vv_i8mf2(q5s_2, qh_2, vl); vint8mf2_t q5_3 = __riscv_vsub_vv_i8mf2(q5s_3, qh_3, vl); // load Q8 and multiply it with Q5 vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q5_0, __riscv_vle8_v_i8mf2(q8, vl), vl); vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q5_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl); vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q5_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl); vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q5_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl); vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl); vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl); vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl); vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl); int32_t sumi1 = sc[0] * __riscv_vmv_x_s_i32m1_i32(vs_0); int32_t sumi2 = sc[1] * __riscv_vmv_x_s_i32m1_i32(vs_1); int32_t sumi3 = sc[2] * __riscv_vmv_x_s_i32m1_i32(vs_2); int32_t sumi4 = sc[3] * __riscv_vmv_x_s_i32m1_i32(vs_3); sumf += d * (sumi1 + sumi2 + sumi3 + sumi4); } *s = sumf; #else int8_t aux8[QK_K]; int16_t aux16[16]; float sums [8]; memset(sums, 0, 8*sizeof(float)); float sumf = 0; for (int i = 0; i < nb; ++i) { const uint8_t * restrict q4 = x[i].qs; const uint8_t * restrict hm = x[i].qh; const int8_t * restrict q8 = y[i].qs; int8_t * restrict a = aux8; for (int l = 0; l < 32; ++l) { a[l+ 0] = q4[l] & 0xF; a[l+32] = q4[l] >> 4; } for (int is = 0; is < 8; ++is) { uint8_t m = 1 << is; for (int l = 0; l < 8; ++l) a[8*is + l] -= (hm[l] & m ? 0 : 16); } const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); const int8_t * restrict sc = x[i].scales; for (int j = 0; j < QK_K/16; ++j) { const float dl = d * sc[j]; for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l]; for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[8+l]); q8 += 16; a += 16; } } for (int l = 0; l < 8; ++l) sumf += sums[l]; *s = sumf; #endif } #endif #if QK_K == 256 void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { assert(n % QK_K == 0); assert(nrc == 1); UNUSED(nrc); UNUSED(bx); UNUSED(by); UNUSED(bs); const block_q6_K * restrict x = vx; const block_q8_K * restrict y = vy; const int nb = n / QK_K; #ifdef __ARM_NEON float sum = 0; const uint8x16_t m4b = vdupq_n_u8(0xF); const int32x4_t vzero = vdupq_n_s32(0); //const int8x16_t m32s = vdupq_n_s8(32); const uint8x16_t mone = vdupq_n_u8(3); ggml_int8x16x4_t q6bytes; ggml_uint8x16x4_t q6h; for (int i = 0; i < nb; ++i) { const float d_all = GGML_FP16_TO_FP32(x[i].d); const uint8_t * restrict q6 = x[i].ql; const uint8_t * restrict qh = x[i].qh; const int8_t * restrict q8 = y[i].qs; const int8_t * restrict scale = x[i].scales; const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums); const int8x16_t scales = vld1q_s8(scale); const ggml_int16x8x2_t q6scales = {{vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))}}; const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])), vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))), vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[1]), vget_low_s16 (q6scales.val[1])), vmull_s16(vget_high_s16(q8sums.val[1]), vget_high_s16(q6scales.val[1])))); int32_t isum_mins = vaddvq_s32(prod); int32_t isum = 0; for (int j = 0; j < QK_K/128; ++j) { ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh); qh += 32; ggml_uint8x16x4_t q6bits = ggml_vld1q_u8_x4(q6); q6 += 64; ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64; q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4); q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4); uint8x16_t shifted = vshrq_n_u8(qhbits.val[0], 2); q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4); shifted = vshrq_n_u8(qhbits.val[1], 2); q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4); //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s); //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s); //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])), m32s); //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])), m32s); q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])); q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])); q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])); q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])); isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] + vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] + vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] + vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3]; scale += 4; q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64; shifted = vshrq_n_u8(qhbits.val[0], 4); q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4); shifted = vshrq_n_u8(qhbits.val[1], 4); q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4); shifted = vshrq_n_u8(qhbits.val[0], 6); q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4); shifted = vshrq_n_u8(qhbits.val[1], 6); q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4); //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0])), m32s); //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1])), m32s); //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])), m32s); //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])), m32s); q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0])); q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1])); q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])); q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])); isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] + vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] + vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] + vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3]; scale += 4; } //sum += isum * d_all * y[i].d; sum += d_all * y[i].d * (isum - 32 * isum_mins); } *s = sum; #elif defined __AVX2__ const __m256i m4 = _mm256_set1_epi8(0xF); const __m256i m2 = _mm256_set1_epi8(3); const __m256i m32s = _mm256_set1_epi8(32); __m256 acc = _mm256_setzero_ps(); for (int i = 0; i < nb; ++i) { const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); const uint8_t * restrict q4 = x[i].ql; const uint8_t * restrict qh = x[i].qh; const int8_t * restrict q8 = y[i].qs; const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales); __m256i sumi = _mm256_setzero_si256(); int is = 0; for (int j = 0; j < QK_K/128; ++j) { const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0)); const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1)); const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2)); const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3)); is += 4; const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32; const __m256i q4bits2 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32; const __m256i q4bitsH = _mm256_loadu_si256((const __m256i*)qh); qh += 32; const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(q4bitsH, m2), 4); const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 2), m2), 4); const __m256i q4h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 4), m2), 4); const __m256i q4h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 6), m2), 4); const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0); const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(q4bits2, m4), q4h_1); const __m256i q4_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_2); const __m256i q4_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits2, 4), m4), q4h_3); const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0); __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1); __m256i q8s_2 = _mm256_maddubs_epi16(m32s, q8_2); __m256i q8s_3 = _mm256_maddubs_epi16(m32s, q8_3); __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0); __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1); __m256i p16_2 = _mm256_maddubs_epi16(q4_2, q8_2); __m256i p16_3 = _mm256_maddubs_epi16(q4_3, q8_3); p16_0 = _mm256_sub_epi16(p16_0, q8s_0); p16_1 = _mm256_sub_epi16(p16_1, q8s_1); p16_2 = _mm256_sub_epi16(p16_2, q8s_2); p16_3 = _mm256_sub_epi16(p16_3, q8s_3); p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0); p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1); p16_2 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_2), p16_2); p16_3 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_3), p16_3); sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1)); sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_2, p16_3)); } acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc); } *s = hsum_float_8(acc); #elif defined __AVX__ const __m128i m4 = _mm_set1_epi8(0xF); const __m128i m3 = _mm_set1_epi8(3); const __m128i m32s = _mm_set1_epi8(32); const __m128i m2 = _mm_set1_epi8(2); __m256 acc = _mm256_setzero_ps(); for (int i = 0; i < nb; ++i) { const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); const uint8_t * restrict q4 = x[i].ql; const uint8_t * restrict qh = x[i].qh; const int8_t * restrict q8 = y[i].qs; const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales); __m128i sumi_0 = _mm_setzero_si128(); __m128i sumi_1 = _mm_setzero_si128(); __m128i shuffle = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000); for (int j = 0; j < QK_K/128; ++j) { const __m128i q4bitsH_0 = _mm_loadu_si128((const __m128i*)qh); qh += 16; const __m128i q4bitsH_1 = _mm_loadu_si128((const __m128i*)qh); qh += 16; const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH_0, m3), 4); const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(q4bitsH_1, m3), 4); const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 2), m3), 4); const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 2), m3), 4); const __m128i q4h_4 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 4), m3), 4); const __m128i q4h_5 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 4), m3), 4); const __m128i q4h_6 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 6), m3), 4); const __m128i q4h_7 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 6), m3), 4); const __m128i q4bits1_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16; const __m128i q4bits1_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16; const __m128i q4bits2_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16; const __m128i q4bits2_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16; const __m128i q4_0 = _mm_or_si128(_mm_and_si128(q4bits1_0, m4), q4h_0); const __m128i q4_1 = _mm_or_si128(_mm_and_si128(q4bits1_1, m4), q4h_1); const __m128i q4_2 = _mm_or_si128(_mm_and_si128(q4bits2_0, m4), q4h_2); const __m128i q4_3 = _mm_or_si128(_mm_and_si128(q4bits2_1, m4), q4h_3); const __m128i q4_4 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_0, 4), m4), q4h_4); const __m128i q4_5 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_1, 4), m4), q4h_5); const __m128i q4_6 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_0, 4), m4), q4h_6); const __m128i q4_7 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_1, 4), m4), q4h_7); const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; __m128i q8s_0 = _mm_maddubs_epi16(m32s, q8_0); __m128i q8s_1 = _mm_maddubs_epi16(m32s, q8_1); __m128i q8s_2 = _mm_maddubs_epi16(m32s, q8_2); __m128i q8s_3 = _mm_maddubs_epi16(m32s, q8_3); __m128i q8s_4 = _mm_maddubs_epi16(m32s, q8_4); __m128i q8s_5 = _mm_maddubs_epi16(m32s, q8_5); __m128i q8s_6 = _mm_maddubs_epi16(m32s, q8_6); __m128i q8s_7 = _mm_maddubs_epi16(m32s, q8_7); __m128i p16_0 = _mm_maddubs_epi16(q4_0, q8_0); __m128i p16_1 = _mm_maddubs_epi16(q4_1, q8_1); __m128i p16_2 = _mm_maddubs_epi16(q4_2, q8_2); __m128i p16_3 = _mm_maddubs_epi16(q4_3, q8_3); __m128i p16_4 = _mm_maddubs_epi16(q4_4, q8_4); __m128i p16_5 = _mm_maddubs_epi16(q4_5, q8_5); __m128i p16_6 = _mm_maddubs_epi16(q4_6, q8_6); __m128i p16_7 = _mm_maddubs_epi16(q4_7, q8_7); p16_0 = _mm_sub_epi16(p16_0, q8s_0); p16_1 = _mm_sub_epi16(p16_1, q8s_1); p16_2 = _mm_sub_epi16(p16_2, q8s_2); p16_3 = _mm_sub_epi16(p16_3, q8s_3); p16_4 = _mm_sub_epi16(p16_4, q8s_4); p16_5 = _mm_sub_epi16(p16_5, q8s_5); p16_6 = _mm_sub_epi16(p16_6, q8s_6); p16_7 = _mm_sub_epi16(p16_7, q8s_7); const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle); shuffle = _mm_add_epi8(shuffle, m2); const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle); shuffle = _mm_add_epi8(shuffle, m2); const __m128i scale_2 = _mm_shuffle_epi8(scales, shuffle); shuffle = _mm_add_epi8(shuffle, m2); const __m128i scale_3 = _mm_shuffle_epi8(scales, shuffle); shuffle = _mm_add_epi8(shuffle, m2); p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0); p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1); p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2); p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3); p16_4 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_2), p16_4); p16_5 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_2, scale_2)), p16_5); p16_6 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_3), p16_6); p16_7 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_3, scale_3)), p16_7); sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2)); sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3)); sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_4, p16_6)); sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_5, p16_7)); } __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0); acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc); } *s = hsum_float_8(acc); #elif defined __riscv_v_intrinsic float sumf = 0; for (int i = 0; i < nb; ++i) { const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; const uint8_t * restrict q6 = x[i].ql; const uint8_t * restrict qh = x[i].qh; const int8_t * restrict q8 = y[i].qs; const int8_t * restrict scale = x[i].scales; size_t vl; vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1); int sum_t = 0; int is = 0; for (int j = 0; j < QK_K/128; ++j) { vl = 32; // load qh vuint8m1_t qh_x = __riscv_vle8_v_u8m1(qh, vl); // load Q6 vuint8m1_t q6_0 = __riscv_vle8_v_u8m1(q6, vl); vuint8m1_t q6_1 = __riscv_vle8_v_u8m1(q6+32, vl); vuint8m1_t q6a_0 = __riscv_vand_vx_u8m1(q6_0, 0x0F, vl); vuint8m1_t q6a_1 = __riscv_vand_vx_u8m1(q6_1, 0x0F, vl); vuint8m1_t q6s_0 = __riscv_vsrl_vx_u8m1(q6_0, 0x04, vl); vuint8m1_t q6s_1 = __riscv_vsrl_vx_u8m1(q6_1, 0x04, vl); vuint8m1_t qh_0 = __riscv_vand_vx_u8m1(qh_x, 0x03, vl); vuint8m1_t qh_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x2, vl), 0x03 , vl); vuint8m1_t qh_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x4, vl), 0x03 , vl); vuint8m1_t qh_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x6, vl), 0x03 , vl); vuint8m1_t qhi_0 = __riscv_vor_vv_u8m1(q6a_0, __riscv_vsll_vx_u8m1(qh_0, 0x04, vl), vl); vuint8m1_t qhi_1 = __riscv_vor_vv_u8m1(q6a_1, __riscv_vsll_vx_u8m1(qh_1, 0x04, vl), vl); vuint8m1_t qhi_2 = __riscv_vor_vv_u8m1(q6s_0, __riscv_vsll_vx_u8m1(qh_2, 0x04, vl), vl); vuint8m1_t qhi_3 = __riscv_vor_vv_u8m1(q6s_1, __riscv_vsll_vx_u8m1(qh_3, 0x04, vl), vl); vint8m1_t a_0 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_0), 32, vl); vint8m1_t a_1 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_1), 32, vl); vint8m1_t a_2 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_2), 32, vl); vint8m1_t a_3 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_3), 32, vl); // load Q8 and take product vint16m2_t va_q_0 = __riscv_vwmul_vv_i16m2(a_0, __riscv_vle8_v_i8m1(q8, vl), vl); vint16m2_t va_q_1 = __riscv_vwmul_vv_i16m2(a_1, __riscv_vle8_v_i8m1(q8+32, vl), vl); vint16m2_t va_q_2 = __riscv_vwmul_vv_i16m2(a_2, __riscv_vle8_v_i8m1(q8+64, vl), vl); vint16m2_t va_q_3 = __riscv_vwmul_vv_i16m2(a_3, __riscv_vle8_v_i8m1(q8+96, vl), vl); vl = 16; vint32m2_t vaux_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 0), scale[is+0], vl); vint32m2_t vaux_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 1), scale[is+1], vl); vint32m2_t vaux_2 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 0), scale[is+2], vl); vint32m2_t vaux_3 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 1), scale[is+3], vl); vint32m2_t vaux_4 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 0), scale[is+4], vl); vint32m2_t vaux_5 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 1), scale[is+5], vl); vint32m2_t vaux_6 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 0), scale[is+6], vl); vint32m2_t vaux_7 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 1), scale[is+7], vl); vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_0, vaux_1, vl), vzero, vl); vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_2, vaux_3, vl), isum0, vl); vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_4, vaux_5, vl), isum1, vl); vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_6, vaux_7, vl), isum2, vl); sum_t += __riscv_vmv_x_s_i32m1_i32(isum3); q6 += 64; qh += 32; q8 += 128; is=8; } sumf += d * sum_t; } *s = sumf; #else int8_t aux8[QK_K]; int16_t aux16[8]; float sums [8]; int32_t aux32[8]; memset(sums, 0, 8*sizeof(float)); float sumf = 0; for (int i = 0; i < nb; ++i) { const uint8_t * restrict q4 = x[i].ql; const uint8_t * restrict qh = x[i].qh; const int8_t * restrict q8 = y[i].qs; memset(aux32, 0, 8*sizeof(int32_t)); int8_t * restrict a = aux8; for (int j = 0; j < QK_K; j += 128) { for (int l = 0; l < 32; ++l) { a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32; a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32; a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32; a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32; } a += 128; q4 += 64; qh += 32; } a = aux8; int is = 0; for (int j = 0; j < QK_K/16; ++j) { int scale = x[i].scales[is++]; for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; q8 += 8; a += 8; for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; q8 += 8; a += 8; } const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l]; } for (int l = 0; l < 8; ++l) sumf += sums[l]; *s = sumf; #endif } #else void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { assert(n % QK_K == 0); assert(nrc == 1); UNUSED(nrc); UNUSED(bx); UNUSED(by); UNUSED(bs); const block_q6_K * restrict x = vx; const block_q8_K * restrict y = vy; const int nb = n / QK_K; #ifdef __ARM_NEON float sum = 0; const uint8x16_t m4b = vdupq_n_u8(0xF); const int8x16_t m32s = vdupq_n_s8(32); const int32x4_t vzero = vdupq_n_s32(0); const uint8x16_t mone = vdupq_n_u8(3); ggml_int8x16x4_t q6bytes; ggml_uint8x16x4_t q6h; for (int i = 0; i < nb; ++i) { const float d_all = (float)x[i].d; const uint8_t * restrict q6 = x[i].ql; const uint8_t * restrict qh = x[i].qh; const int8_t * restrict q8 = y[i].qs; const int8_t * restrict scale = x[i].scales; int32_t isum = 0; uint8x16_t qhbits = vld1q_u8(qh); ggml_uint8x16x2_t q6bits = ggml_vld1q_u8_x2(q6); ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits), 4); uint8x16_t shifted = vshrq_n_u8(qhbits, 2); q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4); shifted = vshrq_n_u8(qhbits, 4); q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4); shifted = vshrq_n_u8(qhbits, 6); q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4); q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s); q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s); q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[2])), m32s); q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[3])), m32s); isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] + vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] + vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] + vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3]; sum += isum * d_all * y[i].d; } *s = sum; #elif defined __AVX2__ const __m256i m4 = _mm256_set1_epi8(0xF); const __m256i m2 = _mm256_set1_epi8(3); const __m256i m32s = _mm256_set1_epi8(32); __m256 acc = _mm256_setzero_ps(); for (int i = 0; i < nb; ++i) { const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); const uint8_t * restrict q4 = x[i].ql; const uint8_t * restrict qh = x[i].qh; const int8_t * restrict q8 = y[i].qs; const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]); const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]); const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]); const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]); __m256i sumi = _mm256_setzero_si256(); const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1); const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3); const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh); const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 2), q4bitsH), m2), 4); const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 6), _mm_srli_epi16(q4bitsH, 4)), m2), 4); const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0); const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_1); const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0)); const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32)); __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0); __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1); __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0); __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1); p16_0 = _mm256_sub_epi16(p16_0, q8s_0); p16_1 = _mm256_sub_epi16(p16_1, q8s_1); p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0); p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1); sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1)); acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc); } *s = hsum_float_8(acc); #elif defined __AVX__ const __m128i m4 = _mm_set1_epi8(0xF); const __m128i m2 = _mm_set1_epi8(3); const __m128i m32s = _mm_set1_epi8(32); __m256 acc = _mm256_setzero_ps(); for (int i = 0; i < nb; ++i) { const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); const uint8_t * restrict q4 = x[i].ql; const uint8_t * restrict qh = x[i].qh; const int8_t * restrict q8 = y[i].qs; const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]); const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]); const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]); const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]); __m128i sumi_0 = _mm_setzero_si128(); __m128i sumi_1 = _mm_setzero_si128(); const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1); const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3); const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh); const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH, m2), 4); const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 2), m2), 4); const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 4), m2), 4); const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 6), m2), 4); const __m128i q4_0 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 0), m4), q4h_0); const __m128i q4_1 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 1), m4), q4h_1); const __m128i q4_2 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 0), 4), m4), q4h_2); const __m128i q4_3 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 1), 4), m4), q4h_3); const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0)); const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32)); __m128i q8s_0 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 0)); __m128i q8s_1 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 1)); __m128i q8s_2 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 0)); __m128i q8s_3 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 1)); __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0)); __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1)); __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0)); __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1)); p16_0 = _mm_sub_epi16(p16_0, q8s_0); p16_1 = _mm_sub_epi16(p16_1, q8s_1); p16_2 = _mm_sub_epi16(p16_2, q8s_2); p16_3 = _mm_sub_epi16(p16_3, q8s_3); p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0); p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1); p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2); p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3); sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2)); sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3)); acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(MM256_SET_M128I(sumi_1, sumi_0))), acc); } *s = hsum_float_8(acc); #elif defined __riscv_v_intrinsic float sumf = 0; for (int i = 0; i < nb; ++i) { const float d_all = (float)x[i].d; const uint8_t * restrict q6 = x[i].ql; const uint8_t * restrict qh = x[i].qh; const int8_t * restrict q8 = y[i].qs; const int8_t * restrict scale = x[i].scales; int32_t isum = 0; size_t vl = 16; vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1); // load Q6 vuint8mf2_t q6_0 = __riscv_vle8_v_u8mf2(q6, vl); vuint8mf2_t q6_1 = __riscv_vle8_v_u8mf2(q6+16, vl); // load qh vuint8mf2_t qh_x = __riscv_vle8_v_u8mf2(qh, vl); vuint8mf2_t qh0 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl); qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl); vuint8mf2_t qh1 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl); qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl); vuint8mf2_t qh2 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl); qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl); vuint8mf2_t qh3 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl); vuint8mf2_t q6h_0 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q6_0, 0xF, vl), qh0, vl); vuint8mf2_t q6h_1 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q6_1, 0xF, vl), qh1, vl); vuint8mf2_t q6h_2 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q6_0, 0x4, vl), qh2, vl); vuint8mf2_t q6h_3 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q6_1, 0x4, vl), qh3, vl); vint8mf2_t q6v_0 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_0), 32, vl); vint8mf2_t q6v_1 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_1), 32, vl); vint8mf2_t q6v_2 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_2), 32, vl); vint8mf2_t q6v_3 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_3), 32, vl); // load Q8 and take product vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q6v_0, __riscv_vle8_v_i8mf2(q8, vl), vl); vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q6v_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl); vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q6v_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl); vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q6v_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl); vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl); vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl); vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl); vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl); isum += __riscv_vmv_x_s_i32m1_i32(vs_0) * scale[0]; isum += __riscv_vmv_x_s_i32m1_i32(vs_1) * scale[1]; isum += __riscv_vmv_x_s_i32m1_i32(vs_2) * scale[2]; isum += __riscv_vmv_x_s_i32m1_i32(vs_3) * scale[3]; sumf += isum * d_all * y[i].d; } *s = sumf; #else int8_t aux8[QK_K]; int16_t aux16[8]; float sums [8]; int32_t aux32[8]; memset(sums, 0, 8*sizeof(float)); float sumf = 0; for (int i = 0; i < nb; ++i) { const uint8_t * restrict q4 = x[i].ql; const uint8_t * restrict qh = x[i].qh; const int8_t * restrict q8 = y[i].qs; memset(aux32, 0, 8*sizeof(int32_t)); int8_t * restrict a = aux8; for (int l = 0; l < 16; ++l) { a[l+ 0] = (int8_t)((q4[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32; a[l+16] = (int8_t)((q4[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32; a[l+32] = (int8_t)((q4[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32; a[l+48] = (int8_t)((q4[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32; } int is = 0; for (int j = 0; j < QK_K/16; ++j) { int scale = x[i].scales[is++]; for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; q8 += 8; a += 8; for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; q8 += 8; a += 8; } const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l]; } for (int l = 0; l < 8; ++l) sumf += sums[l]; *s = sumf; #endif } #endif static const int8_t keven_signs_q2xs[1024] = { 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, }; void ggml_vec_dot_iq2_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { assert(n % QK_K == 0); assert(nrc == 1); UNUSED(nrc); UNUSED(bx); UNUSED(by); UNUSED(bs); const block_iq2_xxs * restrict x = vx; const block_q8_K * restrict y = vy; const int nb = n / QK_K; #if defined(__ARM_NEON) const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs; uint32_t aux32[4]; const uint8_t * aux8 = (const uint8_t *)aux32; ggml_int8x16x4_t q2u; ggml_int8x16x4_t q2s; ggml_int8x16x4_t q8b; float sumf = 0; for (int i = 0; i < nb; ++i) { const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; const uint16_t * restrict q2 = x[i].qs; const int8_t * restrict q8 = y[i].qs; float sumf1 = 0, sumf2 = 0; for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) { q8b = ggml_vld1q_s8_x4(q8); q8 += 64; memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8; q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 0])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 1]))); q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 2])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 3]))); q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 8])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 9]))); q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[10])), vld1_s8((const void *)(iq2xxs_grid + aux8[11]))); q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 7) & 127)))); q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127)))); q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >> 7) & 127)))); q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >> 21) & 127)))); q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]); q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]); q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]); q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]); const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]), q2u.val[1], q8b.val[1]); const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]), q2u.val[3], q8b.val[3]); sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[1] >> 28)); sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[3] >> 28)); } sumf += d*(sumf1 + sumf2); } *s = 0.25f * sumf; #elif defined(__AVX2__) const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs; uint32_t aux32[4]; const uint8_t * aux8 = (const uint8_t *)aux32; __m256 accumf = _mm256_setzero_ps(); for (int i = 0; i < nb; ++i) { const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; const uint16_t * restrict q2 = x[i].qs; const int8_t * restrict q8 = y[i].qs; __m256i sumi1 = _mm256_setzero_si256(); __m256i sumi2 = _mm256_setzero_si256(); for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) { const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32; const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32; memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8; const __m256i q2_1 = _mm256_set_epi64x(iq2xxs_grid[aux8[ 3]], iq2xxs_grid[aux8[ 2]], iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]); const __m256i q2_2 = _mm256_set_epi64x(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]], iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]); const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127], signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]); const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127], signs64[(aux32[3] >> 7) & 127], signs64[(aux32[3] >> 0) & 127]); const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1); const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2); const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1); const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2); const uint16_t ls1 = aux32[1] >> 28; const uint16_t ls2 = aux32[3] >> 28; const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1)); const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1)); sumi1 = _mm256_add_epi32(sumi1, p1); sumi2 = _mm256_add_epi32(sumi2, p2); } accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf); } *s = 0.125f * hsum_float_8(accumf); #else uint32_t aux32[2]; const uint8_t * aux8 = (const uint8_t *)aux32; float sumf = 0.f; for (int i = 0; i < nb; ++i) { const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; const uint16_t * restrict q2 = x[i].qs; const int8_t * restrict q8 = y[i].qs; int32_t bsum = 0; for (int ib32 = 0; ib32 < QK_K/32; ++ib32) { memcpy(aux32, q2, 2*sizeof(uint32_t)); q2 += 4; const uint32_t ls = 2*(aux32[1] >> 28) + 1; int32_t sumi = 0; for (int l = 0; l < 4; ++l) { const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]); const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127]; for (int j = 0; j < 8; ++j) { sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1); } q8 += 8; } bsum += sumi * ls; } sumf += d * bsum; } *s = 0.125f * sumf; #endif } void ggml_vec_dot_iq2_xs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { assert(n % QK_K == 0); assert(nrc == 1); UNUSED(nrc); UNUSED(bx); UNUSED(by); UNUSED(bs); const block_iq2_xs * restrict x = vx; const block_q8_K * restrict y = vy; const int nb = n / QK_K; #if defined(__ARM_NEON) const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs; ggml_int8x16x4_t q2u; ggml_int8x16x4_t q2s; ggml_int8x16x4_t q8b; int32x4x4_t scales32; float sumf = 0; for (int i = 0; i < nb; ++i) { const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; const uint16_t * restrict q2 = x[i].qs; const int8_t * restrict q8 = y[i].qs; const uint8x8_t scales8 = vld1_u8(x[i].scales); const uint8x8_t scales_l = vand_u8(scales8, vdup_n_u8(0xf)); const uint8x8_t scales_h = vshr_n_u8(scales8, 4); uint8x16_t scales = vcombine_u8(vzip1_u8(scales_l, scales_h), vzip2_u8(scales_l, scales_h)); scales = vaddq_u8(vshlq_n_u8(scales, 1), vdupq_n_u8(1)); const uint16x8_t scales1 = vmovl_u8(vget_low_u8(scales)); const uint16x8_t scales2 = vmovl_u8(vget_high_u8(scales)); scales32.val[0] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales1))); scales32.val[1] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales1))); scales32.val[2] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales2))); scales32.val[3] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales2))); int32x4_t sumi = vdupq_n_s32(0); for (int ib64 = 0; ib64 < QK_K/64; ++ib64) { q8b = ggml_vld1q_s8_x4(q8); q8 += 64; q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[0] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[1] & 511)))); q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[2] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[3] & 511)))); q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[4] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[5] & 511)))); q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[6] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[7] & 511)))); q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[0] >> 9))), vld1_s8((const void *)(signs64 + (q2[1] >> 9)))); q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[2] >> 9))), vld1_s8((const void *)(signs64 + (q2[3] >> 9)))); q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[4] >> 9))), vld1_s8((const void *)(signs64 + (q2[5] >> 9)))); q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[6] >> 9))), vld1_s8((const void *)(signs64 + (q2[7] >> 9)))); q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]); q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]); q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]); q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]); const int32x4_t p1 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]); const int32x4_t p2 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[1], q8b.val[1]); const int32x4_t p3 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]); const int32x4_t p4 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[3], q8b.val[3]); const int32x4_t p = vpaddq_s32(vpaddq_s32(p1, p2), vpaddq_s32(p3, p4)); sumi = vmlaq_s32(sumi, p, scales32.val[ib64]); q2 += 8; } sumf += d*vaddvq_s32(sumi); } *s = 0.125f * sumf; #elif defined(__AVX2__) const __m128i m4 = _mm_set1_epi8(0xf); const __m128i m1 = _mm_set1_epi8(1); const __m256i m511 = _mm256_set1_epi16(511); const __m256i mone = _mm256_set1_epi8(1); static const uint8_t k_bit_helper[32] = { 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00, }; static const char block_sign_shuffle_mask_1[32] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, }; static const char block_sign_shuffle_mask_2[32] = { 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, }; static const uint8_t bit_selector_mask_bytes[32] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, }; const __m256i bit_helper = _mm256_loadu_si256((const __m256i*)k_bit_helper); const __m256i bit_selector_mask = _mm256_loadu_si256((const __m256i*)bit_selector_mask_bytes); const __m256i block_sign_shuffle_1 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_1); const __m256i block_sign_shuffle_2 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_2); uint64_t aux64; // somewhat hacky, but gives a significant boost in performance __m256i aux_gindex; const uint16_t * gindex = (const uint16_t *)&aux_gindex; __m256 accumf = _mm256_setzero_ps(); for (int i = 0; i < nb; ++i) { const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; const uint16_t * restrict q2 = x[i].qs; const int8_t * restrict q8 = y[i].qs; memcpy(&aux64, x[i].scales, 8); __m128i stmp = _mm_set1_epi64x(aux64); stmp = _mm_unpacklo_epi8(_mm_and_si128(stmp, m4), _mm_and_si128(_mm_srli_epi16(stmp, 4), m4)); const __m128i scales = _mm_add_epi8(_mm_slli_epi16(stmp, 1), m1); __m256i sumi1 = _mm256_setzero_si256(); __m256i sumi2 = _mm256_setzero_si256(); for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) { const __m256i q2_data = _mm256_loadu_si256((const __m256i*)q2); q2 += 16; aux_gindex = _mm256_and_si256(q2_data, m511); const __m256i partial_sign_bits = _mm256_srli_epi16(q2_data, 9); const __m256i partial_sign_bits_upper = _mm256_srli_epi16(q2_data, 13); const __m256i partial_sign_bits_for_counting = _mm256_xor_si256(partial_sign_bits, partial_sign_bits_upper); const __m256i odd_bits = _mm256_shuffle_epi8(bit_helper, partial_sign_bits_for_counting); const __m256i full_sign_bits = _mm256_or_si256(partial_sign_bits, odd_bits); const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32; const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32; const __m256i q8_3 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32; const __m256i q8_4 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32; const __m256i q2_1 = _mm256_set_epi64x(iq2xs_grid[gindex[ 3]], iq2xs_grid[gindex[ 2]], iq2xs_grid[gindex[ 1]], iq2xs_grid[gindex[ 0]]); const __m256i q2_2 = _mm256_set_epi64x(iq2xs_grid[gindex[ 7]], iq2xs_grid[gindex[ 6]], iq2xs_grid[gindex[ 5]], iq2xs_grid[gindex[ 4]]); const __m256i q2_3 = _mm256_set_epi64x(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]], iq2xs_grid[gindex[ 9]], iq2xs_grid[gindex[ 8]]); const __m256i q2_4 = _mm256_set_epi64x(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]], iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]); const __m128i full_signs_l = _mm256_castsi256_si128(full_sign_bits); const __m128i full_signs_h = _mm256_extractf128_si256(full_sign_bits, 1); const __m256i full_signs_1 = _mm256_set_m128i(full_signs_l, full_signs_l); const __m256i full_signs_2 = _mm256_set_m128i(full_signs_h, full_signs_h); __m256i signs; signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_1); signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask); const __m256i q8s_1 = _mm256_sign_epi8(q8_1, _mm256_or_si256(signs, mone)); signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_2); signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask); const __m256i q8s_2 = _mm256_sign_epi8(q8_2, _mm256_or_si256(signs, mone)); signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_1); signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask); const __m256i q8s_3 = _mm256_sign_epi8(q8_3, _mm256_or_si256(signs, mone)); signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_2); signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask); const __m256i q8s_4 = _mm256_sign_epi8(q8_4, _mm256_or_si256(signs, mone)); const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1); const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2); const __m256i dot3 = _mm256_maddubs_epi16(q2_3, q8s_3); const __m256i dot4 = _mm256_maddubs_epi16(q2_4, q8s_4); const __m256i sc1 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+0))); const __m256i sc2 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+1))); const __m256i sc3 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+2))); const __m256i sc4 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+3))); sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot1, sc1)); sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot2, sc2)); sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot3, sc3)); sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot4, sc4)); } accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf); } *s = 0.125f * hsum_float_8(accumf); #else float sumf = 0.f; for (int i = 0; i < nb; ++i) { const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; const uint16_t * restrict q2 = x[i].qs; const uint8_t * restrict sc = x[i].scales; const int8_t * restrict q8 = y[i].qs; int32_t bsum = 0; for (int ib32 = 0; ib32 < QK_K/32; ++ib32) { const uint16_t ls1 = 2*(sc[ib32] & 0xf) + 1; const uint16_t ls2 = 2*(sc[ib32] >> 4) + 1; int32_t sumi = 0; for (int l = 0; l < 2; ++l) { const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511)); const uint8_t signs = ksigns_iq2xs[q2[l] >> 9]; for (int j = 0; j < 8; ++j) { sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1); } q8 += 8; } bsum += sumi * ls1; sumi = 0; for (int l = 2; l < 4; ++l) { const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511)); const uint8_t signs = ksigns_iq2xs[q2[l] >> 9]; for (int j = 0; j < 8; ++j) { sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1); } q8 += 8; } bsum += sumi * ls2; q2 += 4; } sumf += d * bsum; } *s = 0.125f * sumf; #endif } // TODO void ggml_vec_dot_iq3_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { assert(n % QK_K == 0); assert(nrc == 1); UNUSED(nrc); UNUSED(bx); UNUSED(by); UNUSED(bs); const block_iq3_xxs * restrict x = vx; const block_q8_K * restrict y = vy; const int nb = n / QK_K; #if defined(__ARM_NEON) const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs; uint32_t aux32[2]; ggml_int8x16x4_t q3s; ggml_int8x16x4_t q8b; float sumf = 0; for (int i = 0; i < nb; ++i) { const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; const uint8_t * restrict q3 = x[i].qs; const uint8_t * restrict gas = x[i].qs + QK_K/4; const int8_t * restrict q8 = y[i].qs; float sumf1 = 0, sumf2 = 0; for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) { q8b = ggml_vld1q_s8_x4(q8); q8 += 64; memcpy(aux32, gas, 2*sizeof(uint32_t)); gas += 2*sizeof(uint32_t); const uint32x4_t aux32x4_0 = ggml_vld1q_u32(iq3xxs_grid[q3[ 0]], iq3xxs_grid[q3[ 1]], iq3xxs_grid[q3[ 2]], iq3xxs_grid[q3[ 3]]); const uint32x4_t aux32x4_1 = ggml_vld1q_u32(iq3xxs_grid[q3[ 4]], iq3xxs_grid[q3[ 5]], iq3xxs_grid[q3[ 6]], iq3xxs_grid[q3[ 7]]); const uint32x4_t aux32x4_2 = ggml_vld1q_u32(iq3xxs_grid[q3[ 8]], iq3xxs_grid[q3[ 9]], iq3xxs_grid[q3[10]], iq3xxs_grid[q3[11]]); const uint32x4_t aux32x4_3 = ggml_vld1q_u32(iq3xxs_grid[q3[12]], iq3xxs_grid[q3[13]], iq3xxs_grid[q3[14]], iq3xxs_grid[q3[15]]); q3 += 16; q3s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 7) & 127)))); q3s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 21) & 127)))); q3s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 7) & 127)))); q3s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127)))); q3s.val[0] = vmulq_s8(q3s.val[0], vreinterpretq_s8_u32(aux32x4_0)); q3s.val[1] = vmulq_s8(q3s.val[1], vreinterpretq_s8_u32(aux32x4_1)); q3s.val[2] = vmulq_s8(q3s.val[2], vreinterpretq_s8_u32(aux32x4_2)); q3s.val[3] = vmulq_s8(q3s.val[3], vreinterpretq_s8_u32(aux32x4_3)); const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]); const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]); sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[0] >> 28)); sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[1] >> 28)); } sumf += d*(sumf1 + sumf2); } *s = 0.5f * sumf; #elif defined(__AVX2__) const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs; uint32_t aux32[2]; __m256 accumf = _mm256_setzero_ps(); for (int i = 0; i < nb; ++i) { const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; const uint8_t * restrict q3 = x[i].qs; const uint8_t * restrict gas = x[i].qs + QK_K/4; const int8_t * restrict q8 = y[i].qs; __m256i sumi1 = _mm256_setzero_si256(); __m256i sumi2 = _mm256_setzero_si256(); for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) { const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32; const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32; const __m256i q2_1 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]], iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]); q3 += 8; const __m256i q2_2 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]], iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]); q3 += 8; memcpy(aux32, gas, 8); gas += 8; const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127], signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]); const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127], signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]); const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1); const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2); const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1); const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2); const uint16_t ls1 = aux32[0] >> 28; const uint16_t ls2 = aux32[1] >> 28; const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1)); const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1)); sumi1 = _mm256_add_epi32(sumi1, p1); sumi2 = _mm256_add_epi32(sumi2, p2); } accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf); } *s = 0.25f * hsum_float_8(accumf); #else uint32_t aux32; float sumf = 0.f; for (int i = 0; i < nb; ++i) { const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; const uint8_t * restrict q3 = x[i].qs; const uint8_t * restrict gas = x[i].qs + QK_K/4; const int8_t * restrict q8 = y[i].qs; int32_t bsum = 0; for (int ib32 = 0; ib32 < QK_K/32; ++ib32) { memcpy(&aux32, gas, sizeof(uint32_t)); gas += sizeof(uint32_t); const uint32_t ls = 2*(aux32 >> 28) + 1; int32_t sumi = 0; for (int l = 0; l < 4; ++l) { const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*l+0]); const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*l+1]); const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127]; for (int j = 0; j < 4; ++j) { sumi += grid1[j] * q8[j+0] * (signs & kmask_iq2xs[j+0] ? -1 : 1); sumi += grid2[j] * q8[j+4] * (signs & kmask_iq2xs[j+4] ? -1 : 1); } q8 += 8; } q3 += 8; bsum += sumi * ls; } sumf += d * bsum; } *s = 0.25f * sumf; #endif } #ifdef __AVX2__ static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) { const __m256i ax = _mm256_sign_epi8(x, x); const __m256i sy = _mm256_sign_epi8(y, x); return _mm256_maddubs_epi16(ax, sy); } #endif void ggml_vec_dot_iq1_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) { assert(n % QK_K == 0); assert(nrc == 1); UNUSED(nrc); UNUSED(bx); UNUSED(by); UNUSED(bs); const block_iq1_s * restrict x = vx; const block_q8_K * restrict y = vy; const int nb = n / QK_K; #if defined __ARM_NEON const uint8x16_t m8 = vdupq_n_u8(0x08); const uint8x16_t m7 = vdupq_n_u8(0x07); const uint8x16_t m1 = vdupq_n_u8(0x01); const int32x4_t vzero = vdupq_n_s32(0); uint16_t gindex[8]; uint16x8x2_t vindex; int8x16x4_t q1b; int8x16x4_t q8b; uint16x8x4_t scales; int32x4x2_t sumi; int32x4x2_t dotq; float sumf = 0; for (int i = 0; i < nb; ++i) { const int8_t * q8 = y[i].qs; const uint8_t * qs = x[i].qs; const uint8_t * sc = x[i].scales; sumi.val[0] = sumi.val[1] = vzero; for (int i128 = 0; i128 < QK_K/128; ++i128) { const uint8x16_t ql = vld1q_u8(qs); qs += 16; const uint8x8_t tm1 = vld1_u8 (sc); sc += 8; const uint8x8_t tm2 = vshr_n_u8(tm1, 4); const uint8x16_t qh = vcombine_u8(vzip1_u8(tm1, tm2), vzip2_u8(tm1, tm2)); const uint8x16_t hbit = vandq_u8(qh, m8); vindex.val[0] = vorrq_u16(vmovl_u8(vget_low_u8 (ql)), vshlq_n_u16(vmovl_u8(vget_low_u8 (hbit)), 5)); vindex.val[1] = vorrq_u16(vmovl_u8(vget_high_u8(ql)), vshlq_n_u16(vmovl_u8(vget_high_u8(hbit)), 5)); const uint8x16_t scales8 = vorrq_u8(vshlq_n_u8(vandq_u8(qh, m7), 1), m1); scales.val[0] = vmovl_u8(vget_low_u8 (scales8)); scales.val[1] = vmovl_u8(vget_high_u8 (scales8)); for (int l = 0; l < 2; ++l) { vst1q_u16(gindex+0, vindex.val[l]); q1b.val[0] = vcombine_s8(vld1_s8((const void *)(iq1s_grid+gindex[0])), vld1_s8((const void *)(iq1s_grid+gindex[1]))); q1b.val[1] = vcombine_s8(vld1_s8((const void *)(iq1s_grid+gindex[2])), vld1_s8((const void *)(iq1s_grid+gindex[3]))); q1b.val[2] = vcombine_s8(vld1_s8((const void *)(iq1s_grid+gindex[4])), vld1_s8((const void *)(iq1s_grid+gindex[5]))); q1b.val[3] = vcombine_s8(vld1_s8((const void *)(iq1s_grid+gindex[6])), vld1_s8((const void *)(iq1s_grid+gindex[7]))); q8b = ggml_vld1q_s8_x4(q8); q8 += 64; dotq.val[0] = vpaddq_s32(ggml_vdotq_s32(vzero, q1b.val[0], q8b.val[0]), ggml_vdotq_s32(vzero, q1b.val[1], q8b.val[1])); dotq.val[1] = vpaddq_s32(ggml_vdotq_s32(vzero, q1b.val[2], q8b.val[2]), ggml_vdotq_s32(vzero, q1b.val[3], q8b.val[3])); sumi.val[0] = vmlaq_s32(sumi.val[0], dotq.val[0], vreinterpretq_s32_u32(vmovl_u16(vget_low_u16 (scales.val[l])))); sumi.val[1] = vmlaq_s32(sumi.val[1], dotq.val[1], vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales.val[l])))); } } sumf += y[i].d * GGML_FP16_TO_FP32(x[i].d) * vaddvq_s32(vaddq_s32(sumi.val[0], sumi.val[1])); } *s = sumf; #elif defined __AVX2__ const __m128i m8 = _mm_set1_epi8(0x08); const __m128i m7 = _mm_set1_epi8(0x07); const __m128i m1 = _mm_set1_epi8(0x01); const __m128i shuffle_h = _mm_set_epi8(15, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0); const __m128i shuffle_s[4] = { _mm_set_epi32(0x03030303, 0x02020202, 0x01010101, 0x00000000), _mm_set_epi32(0x07070707, 0x06060606, 0x05050505, 0x04040404), _mm_set_epi32(0x0b0b0b0b, 0x0a0a0a0a, 0x09090909, 0x08080808), _mm_set_epi32(0x0f0f0f0f, 0x0e0e0e0e, 0x0d0d0d0d, 0x0c0c0c0c) }; uint64_t aux64; __m256i v_gindex; const uint16_t * gindex = (const uint16_t *)&v_gindex; __m256 accum = _mm256_setzero_ps(); for (int i = 0; i < nb; ++i) { const int8_t * q8 = y[i].qs; const uint8_t * qs = x[i].qs; const uint8_t * sc = x[i].scales; __m256i sumi = _mm256_setzero_si256(); for (int i128 = 0; i128 < QK_K/128; ++i128) { const __m128i ql = _mm_loadu_si128((const __m128i*)qs); qs += 16; memcpy(&aux64, sc, 8); sc += 8; const __m128i qh = _mm_shuffle_epi8(_mm_set_epi64x(aux64 >> 4, aux64), shuffle_h); const __m256i hbit = _mm256_cvtepu8_epi16(_mm_and_si128(qh, m8)); v_gindex = _mm256_or_si256(_mm256_cvtepu8_epi16(ql), _mm256_slli_epi16(hbit, 5)); const __m128i scales = _mm_or_si128(_mm_slli_epi16(_mm_and_si128(qh, m7), 1), m1); for (int i32 = 0; i32 < 4; ++i32) { const __m256i q8b = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; const __m256i q1b = _mm256_set_epi64x(iq1s_grid[gindex[4*i32+3]], iq1s_grid[gindex[4*i32+2]], iq1s_grid[gindex[4*i32+1]], iq1s_grid[gindex[4*i32+0]]); const __m256i dot = mul_add_epi8(q1b, q8b); const __m256i s16 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, shuffle_s[i32])); const __m256i p = _mm256_madd_epi16(s16, dot); sumi = _mm256_add_epi32(sumi, p); } } accum = _mm256_fmadd_ps(_mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(x[i].d)), _mm256_cvtepi32_ps(sumi), accum); } *s = hsum_float_8(accum); #else int db[4]; uint16_t idx[4]; float sumf = 0; for (int i = 0; i < nb; ++i) { const int8_t * q8 = y[i].qs; const uint8_t * qs = x[i].qs; const uint8_t * sc = x[i].scales; int sumi = 0; for (int i32 = 0; i32 < QK_K/32; ++i32) { idx[0] = qs[0] | ((sc[0] & 0x08) << 5); idx[1] = qs[1] | ((sc[0] & 0x80) << 1); idx[2] = qs[2] | ((sc[1] & 0x08) << 5); idx[3] = qs[3] | ((sc[1] & 0x80) << 1); db[0] = (2*(sc[0] & 7) + 1); db[1] = (2*((sc[0] >> 4) & 7) + 1); db[2] = (2*(sc[1] & 7) + 1); db[3] = (2*((sc[1] >> 4) & 7) + 1); for (int l = 0; l < 4; ++l) { const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]); int suml = 0; for (int j = 0; j < 8; ++j) suml += q8[j] * grid[j]; sumi += db[l] * suml; q8 += 8; } qs += 4; sc += 2; } sumf += GGML_FP16_TO_FP32(x[i].d) * y[i].d * sumi; } *s = sumf; #endif } // ================================ IQ2 quantization ============================================= typedef struct { uint64_t * grid; int * map; uint16_t * neighbours; } iq2_entry_t; static iq2_entry_t iq2_data[3] = { {NULL, NULL, NULL}, {NULL, NULL, NULL}, {NULL, NULL, NULL}, }; static inline int iq2_data_index(enum ggml_type type) { GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S); return type == GGML_TYPE_IQ2_XXS ? 0 : type == GGML_TYPE_IQ2_XS ? 1 : 2; } static inline int iq2_grid_size(enum ggml_type type) { GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S); return type == GGML_TYPE_IQ2_XXS ? 256 : type == GGML_TYPE_IQ2_XS ? 512 : 512; } static int iq2_compare_func(const void * left, const void * right) { const int * l = (const int *)left; const int * r = (const int *)right; return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0; } void iq2xs_init_impl(enum ggml_type type) { const int gindex = iq2_data_index(type); const int grid_size = iq2_grid_size(type); if (iq2_data[gindex].grid) { return; } static const uint16_t kgrid_2bit_256[256] = { 0, 2, 5, 8, 10, 17, 20, 32, 34, 40, 42, 65, 68, 80, 88, 97, 100, 128, 130, 138, 162, 257, 260, 272, 277, 320, 388, 408, 512, 514, 546, 642, 1025, 1028, 1040, 1057, 1060, 1088, 1090, 1096, 1120, 1153, 1156, 1168, 1188, 1280, 1282, 1288, 1312, 1350, 1385, 1408, 1425, 1545, 1552, 1600, 1668, 1700, 2048, 2053, 2056, 2068, 2088, 2113, 2116, 2128, 2130, 2184, 2308, 2368, 2562, 2580, 4097, 4100, 4112, 4129, 4160, 4192, 4228, 4240, 4245, 4352, 4360, 4384, 4432, 4442, 4480, 4644, 4677, 5120, 5128, 5152, 5157, 5193, 5248, 5400, 5474, 5632, 5654, 6145, 6148, 6160, 6208, 6273, 6400, 6405, 6560, 6737, 8192, 8194, 8202, 8260, 8289, 8320, 8322, 8489, 8520, 8704, 8706, 9217, 9220, 9232, 9280, 9302, 9472, 9537, 9572, 9872, 10248, 10272, 10388, 10820, 16385, 16388, 16400, 16408, 16417, 16420, 16448, 16456, 16470, 16480, 16513, 16516, 16528, 16640, 16672, 16737, 16768, 16773, 16897, 16912, 16968, 16982, 17000, 17408, 17416, 17440, 17536, 17561, 17682, 17700, 17920, 18433, 18436, 18448, 18496, 18501, 18688, 18776, 18785, 18818, 19013, 19088, 20480, 20488, 20497, 20505, 20512, 20608, 20616, 20740, 20802, 20900, 21137, 21648, 21650, 21770, 22017, 22100, 22528, 22545, 22553, 22628, 22848, 23048, 24580, 24592, 24640, 24680, 24832, 24917, 25112, 25184, 25600, 25605, 25872, 25874, 25988, 26690, 32768, 32770, 32778, 32833, 32898, 33028, 33048, 33088, 33297, 33793, 33796, 33808, 33813, 33856, 33888, 34048, 34118, 34196, 34313, 34368, 34400, 34818, 35076, 35345, 36868, 36880, 36900, 36928, 37025, 37142, 37248, 37445, 37888, 37922, 37956, 38225, 39041, 39200, 40962, 41040, 41093, 41225, 41472, 42008, 43088, 43268, }; static const uint16_t kgrid_2bit_512[512] = { 0, 2, 5, 8, 10, 17, 20, 22, 25, 32, 34, 37, 40, 65, 68, 70, 73, 80, 82, 85, 88, 97, 100, 128, 130, 133, 136, 145, 148, 153, 160, 257, 260, 262, 265, 272, 274, 277, 280, 282, 289, 292, 320, 322, 325, 328, 337, 340, 352, 360, 385, 388, 400, 512, 514, 517, 520, 529, 532, 544, 577, 580, 592, 597, 640, 650, 1025, 1028, 1030, 1033, 1040, 1042, 1045, 1048, 1057, 1060, 1088, 1090, 1093, 1096, 1105, 1108, 1110, 1120, 1153, 1156, 1168, 1280, 1282, 1285, 1288, 1297, 1300, 1312, 1345, 1348, 1360, 1377, 1408, 1537, 1540, 1552, 1574, 1600, 1602, 1668, 2048, 2050, 2053, 2056, 2058, 2065, 2068, 2080, 2085, 2113, 2116, 2128, 2136, 2176, 2208, 2218, 2305, 2308, 2320, 2368, 2433, 2441, 2560, 2592, 2600, 2710, 2720, 4097, 4100, 4102, 4105, 4112, 4114, 4117, 4120, 4129, 4132, 4160, 4162, 4165, 4168, 4177, 4180, 4192, 4202, 4225, 4228, 4240, 4352, 4354, 4357, 4360, 4369, 4372, 4384, 4417, 4420, 4432, 4480, 4500, 4502, 4609, 4612, 4614, 4624, 4672, 4704, 5120, 5122, 5125, 5128, 5137, 5140, 5152, 5185, 5188, 5193, 5200, 5220, 5248, 5377, 5380, 5392, 5440, 5632, 5652, 5705, 6145, 6148, 6160, 6162, 6208, 6228, 6278, 6400, 6405, 6502, 6737, 6825, 8192, 8194, 8197, 8200, 8202, 8209, 8212, 8224, 8257, 8260, 8272, 8320, 8352, 8449, 8452, 8464, 8512, 8520, 8549, 8704, 8738, 8832, 8872, 9217, 9220, 9232, 9257, 9280, 9472, 9537, 9554, 9625, 9729, 9754, 9894, 10240, 10248, 10250, 10272, 10325, 10376, 10402, 10600, 10640, 10760, 10784, 10882, 10888, 10890, 16385, 16388, 16390, 16393, 16400, 16402, 16405, 16408, 16417, 16420, 16448, 16450, 16453, 16456, 16458, 16465, 16468, 16480, 16485, 16513, 16516, 16528, 16640, 16642, 16645, 16648, 16657, 16660, 16672, 16705, 16708, 16720, 16768, 16773, 16802, 16897, 16900, 16912, 16914, 16937, 16960, 17408, 17410, 17413, 17416, 17425, 17428, 17433, 17440, 17473, 17476, 17488, 17536, 17556, 17665, 17668, 17680, 17700, 17728, 17818, 17920, 17930, 17988, 18000, 18433, 18436, 18448, 18496, 18501, 18516, 18530, 18688, 18705, 18756, 18768, 18793, 18948, 20480, 20482, 20485, 20488, 20497, 20500, 20512, 20520, 20545, 20548, 20560, 20608, 20737, 20740, 20752, 20757, 20800, 20802, 20992, 21060, 21162, 21505, 21508, 21520, 21537, 21568, 21600, 21633, 21665, 21760, 21768, 21888, 21896, 22049, 22120, 22177, 22528, 22548, 22593, 22608, 22681, 22810, 22848, 22850, 23173, 24577, 24580, 24592, 24640, 24660, 24674, 24710, 24745, 24832, 25124, 25162, 25234, 25600, 25622, 25872, 25920, 25925, 26020, 26625, 26730, 26917, 27142, 27220, 27234, 32768, 32770, 32773, 32776, 32785, 32788, 32800, 32810, 32833, 32836, 32848, 32896, 32898, 32936, 32938, 33025, 33028, 33030, 33040, 33088, 33105, 33113, 33280, 33312, 33408, 33410, 33440, 33448, 33793, 33796, 33808, 33810, 33813, 33856, 33888, 33929, 34048, 34116, 34213, 34328, 34410, 34816, 34824, 34853, 34906, 34944, 34946, 34984, 35078, 35362, 35456, 35464, 35478, 35496, 36865, 36868, 36880, 36928, 36950, 36996, 37120, 37154, 37220, 37462, 37513, 37888, 37893, 37956, 37968, 37976, 38185, 38288, 38290, 38465, 38993, 39078, 39241, 39445, 39520, 40960, 40962, 40968, 40970, 40992, 41002, 41120, 41297, 41305, 41382, 41472, 41474, 41480, 41514, 41600, 41632, 42048, 42133, 42597, 42648, 43018, 43040, 43042, 43048, 43168, 43176, 43268, 43396, 43398, 43560, 43562, 43665, 43690, }; static const uint16_t kgrid_1bit_512[512] = { 10, 33, 41, 85, 132, 134, 160, 162, 277, 337, 340, 345, 357, 405, 516, 545, 553, 598, 641, 650, 681, 1042, 1044, 1097, 1169, 1176, 1320, 1345, 1365, 1378, 1434, 1444, 1545, 1617, 1642, 1685, 2053, 2080, 2089, 2133, 2176, 2182, 2208, 2214, 2306, 2384, 2393, 2440, 2453, 2581, 2664, 2690, 2721, 4117, 4161, 4182, 4184, 4261, 4357, 4369, 4372, 4377, 4390, 4422, 4432, 4437, 4449, 4457, 4485, 4497, 4505, 4629, 4677, 4696, 4774, 5205, 5217, 5225, 5386, 5397, 5409, 5445, 5457, 5460, 5461, 5462, 5465, 5472, 5477, 5525, 5545, 5650, 5668, 5717, 5729, 5769, 5777, 6212, 6234, 6244, 6293, 6424, 6482, 6485, 6502, 6505, 6529, 6538, 6565, 6656, 6682, 6788, 6806, 6820, 8218, 8224, 8226, 8232, 8277, 8326, 8354, 8469, 8521, 8530, 8549, 8596, 8737, 8794, 9221, 9253, 9348, 9369, 9380, 9474, 9557, 9633, 9732, 9753, 9793, 9830, 9862, 9880, 10240, 10272, 10282, 10321, 10406, 10517, 10530, 10566, 10585, 10645, 10896, 16466, 16468, 16473, 16485, 16646, 16660, 16665, 16725, 16793, 16806, 16914, 16969, 16977, 16996, 17028, 17057, 17408, 17416, 17434, 17493, 17512, 17578, 17685, 17696, 17733, 17745, 17748, 17749, 17750, 17753, 17765, 17794, 17813, 17946, 17984, 18005, 18072, 18453, 18529, 18569, 18722, 18756, 18762, 18773, 18794, 18833, 18853, 18945, 19026, 19033, 19077, 20489, 20497, 20500, 20517, 20565, 20586, 20610, 20633, 20757, 20769, 20776, 20805, 20817, 20820, 20821, 20822, 20825, 20837, 20864, 20872, 20885, 20896, 21002, 21029, 21077, 21146, 21510, 21525, 21573, 21585, 21588, 21589, 21590, 21593, 21605, 21653, 21665, 21765, 21777, 21780, 21781, 21782, 21785, 21797, 21825, 21828, 21829, 21830, 21833, 21840, 21841, 21842, 21844, 21846, 21848, 21849, 21850, 21857, 21860, 21861, 21862, 21865, 21893, 21905, 21908, 21909, 21910, 21913, 21925, 22024, 22037, 22085, 22097, 22100, 22101, 22102, 22105, 22117, 22165, 22545, 22566, 22568, 22594, 22608, 22613, 22676, 22697, 22793, 22805, 22853, 22865, 22868, 22869, 22870, 22873, 22885, 22933, 22946, 23046, 23072, 23125, 23209, 24597, 24640, 24665, 24673, 24725, 24833, 24840, 24869, 24917, 24934, 24965, 25001, 25108, 25110, 25152, 25184, 25192, 25234, 25616, 25618, 25625, 25685, 25704, 25738, 25744, 25770, 25877, 25897, 25925, 25937, 25940, 25941, 25942, 25945, 25957, 25986, 26005, 26186, 26197, 26276, 26632, 26634, 26725, 26757, 26770, 26885, 26965, 26976, 26986, 27032, 27153, 27174, 27200, 27208, 27240, 27269, 27282, 27290, 32778, 32800, 32802, 32808, 32810, 32853, 32904, 32922, 32930, 32932, 33105, 33110, 33112, 33125, 33157, 33280, 33288, 33301, 33312, 33320, 33424, 33797, 33829, 33858, 34068, 34133, 34146, 34176, 34217, 34306, 34342, 34441, 34454, 34468, 34832, 34918, 34965, 34984, 35094, 35137, 35161, 35208, 35232, 35332, 35338, 35368, 35429, 36932, 36934, 36953, 37009, 37125, 37136, 37138, 37145, 37157, 37205, 37220, 37258, 37290, 37444, 37446, 37465, 37478, 37525, 37905, 37968, 37973, 38040, 38054, 38145, 38154, 38165, 38180, 38186, 38213, 38225, 38228, 38229, 38230, 38233, 38245, 38293, 38485, 38504, 38530, 38938, 38985, 38993, 39012, 39040, 39173, 39192, 39253, 39265, 39301, 39316, 39322, 39442, 39497, 39504, 39590, 40970, 40984, 40992, 41002, 41045, 41120, 41128, 41237, 41289, 41297, 41317, 41364, 41366, 41514, 41557, 41633, 41989, 42021, 42056, 42068, 42074, 42113, 42242, 42265, 42274, 42325, 42340, 42402, 42501, 42512, 42533, 42624, 42632, 42666, 43040, 43093, 43106, 43168, 43176, 43264, 43286, 43345, 43429, 43590, 43618, 43680, }; const int kmap_size = 43692; const int nwant = type == GGML_TYPE_IQ1_S ? 3 : 2; const uint16_t * kgrid = type == GGML_TYPE_IQ2_XXS ? kgrid_2bit_256 : type == GGML_TYPE_IQ2_XS ? kgrid_2bit_512 : kgrid_1bit_512; uint64_t * kgrid_q2xs; int * kmap_q2xs; uint16_t * kneighbors_q2xs; printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size); uint64_t * the_grid = (uint64_t *)malloc(grid_size*sizeof(uint64_t)); for (int k = 0; k < grid_size; ++k) { int8_t * pos = (int8_t *)(the_grid + k); for (int i = 0; i < 8; ++i) { int l = (kgrid[k] >> 2*i) & 0x3; pos[i] = 2*l + 1; } } kgrid_q2xs = the_grid; iq2_data[gindex].grid = the_grid; kmap_q2xs = (int *)malloc(kmap_size*sizeof(int)); iq2_data[gindex].map = kmap_q2xs; for (int i = 0; i < kmap_size; ++i) kmap_q2xs[i] = -1; uint64_t aux64; uint8_t * aux8 = (uint8_t *)&aux64; for (int i = 0; i < grid_size; ++i) { aux64 = kgrid_q2xs[i]; uint16_t index = 0; for (int k=0; k<8; ++k) { uint16_t q = (aux8[k] - 1)/2; index |= (q << 2*k); } kmap_q2xs[index] = i; } int8_t pos[8]; int * dist2 = (int *)malloc(2*grid_size*sizeof(int)); int num_neighbors = 0, num_not_in_map = 0; for (int i = 0; i < kmap_size; ++i) { if (kmap_q2xs[i] >= 0) continue; ++num_not_in_map; for (int k = 0; k < 8; ++k) { int l = (i >> 2*k) & 0x3; pos[k] = 2*l + 1; } for (int j = 0; j < grid_size; ++j) { const int8_t * pg = (const int8_t *)(kgrid_q2xs + j); int d2 = 0; for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]); dist2[2*j+0] = d2; dist2[2*j+1] = j; } qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func); int n = 0; int d2 = dist2[0]; int nhave = 1; for (int j = 0; j < grid_size; ++j) { if (dist2[2*j] > d2) { if (nhave == nwant) break; d2 = dist2[2*j]; ++nhave; } ++n; } num_neighbors += n; } printf("%s: %d neighbours in total\n", __func__, num_neighbors); kneighbors_q2xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t)); iq2_data[gindex].neighbours = kneighbors_q2xs; int counter = 0; for (int i = 0; i < kmap_size; ++i) { if (kmap_q2xs[i] >= 0) continue; for (int k = 0; k < 8; ++k) { int l = (i >> 2*k) & 0x3; pos[k] = 2*l + 1; } for (int j = 0; j < grid_size; ++j) { const int8_t * pg = (const int8_t *)(kgrid_q2xs + j); int d2 = 0; for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]); dist2[2*j+0] = d2; dist2[2*j+1] = j; } qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func); kmap_q2xs[i] = -(counter + 1); int d2 = dist2[0]; uint16_t * start = &kneighbors_q2xs[counter++]; int n = 0, nhave = 1; for (int j = 0; j < grid_size; ++j) { if (dist2[2*j] > d2) { if (nhave == nwant) break; d2 = dist2[2*j]; ++nhave; } kneighbors_q2xs[counter++] = dist2[2*j+1]; ++n; } *start = n; } free(dist2); } void iq2xs_free_impl(enum ggml_type type) { GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S); const int gindex = iq2_data_index(type); if (iq2_data[gindex].grid) { free(iq2_data[gindex].grid); iq2_data[gindex].grid = NULL; free(iq2_data[gindex].map); iq2_data[gindex].map = NULL; free(iq2_data[gindex].neighbours); iq2_data[gindex].neighbours = NULL; } } static int iq2_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid, const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) { int num_neighbors = neighbours[0]; GGML_ASSERT(num_neighbors > 0); float best_d2 = FLT_MAX; int grid_index = -1; for (int j = 1; j <= num_neighbors; ++j) { const int8_t * pg = (const int8_t *)(grid + neighbours[j]); float d2 = 0; for (int i = 0; i < 8; ++i) { float q = pg[i]; float diff = scale*q - xval[i]; d2 += weight[i]*diff*diff; } if (d2 < best_d2) { best_d2 = d2; grid_index = neighbours[j]; } } GGML_ASSERT(grid_index >= 0); const int8_t * pg = (const int8_t *)(grid + grid_index); for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2; return grid_index; } static void quantize_row_iq2_xxs_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) { const int gindex = iq2_data_index(GGML_TYPE_IQ2_XXS); const uint64_t * kgrid_q2xs = iq2_data[gindex].grid; const int * kmap_q2xs = iq2_data[gindex].map; const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours; GGML_ASSERT(quant_weights && "missing quantization weights"); GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?"); GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?"); GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?"); GGML_ASSERT(n%QK_K == 0); const int kMaxQ = 3; const int nbl = n/256; block_iq2_xxs * y = vy; float scales[QK_K/32]; float weight[32]; float xval[32]; int8_t L[32]; int8_t Laux[32]; float waux[32]; uint8_t block_signs[4]; uint32_t q2[2*(QK_K/32)]; for (int ibl = 0; ibl < nbl; ++ibl) { y[ibl].d = GGML_FP32_TO_FP16(0.f); memset(q2, 0, QK_K/4); float max_scale = 0; const float * xbl = x + QK_K*ibl; float sumx2 = 0; for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i]; float sigma2 = sumx2/QK_K; for (int ib = 0; ib < QK_K/32; ++ib) { const float * xb = xbl + 32*ib; const float * qw = quant_weights + QK_K*ibl + 32*ib; for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]); for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]); for (int k = 0; k < 4; ++k) { int nflip = 0; uint8_t s = 0; for (int i = 0; i < 8; ++i) { if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i]; else { xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i); } } if (nflip%2) { int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin]; for (int i = 1; i < 8; ++i) { float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i]; if (ax < min) { min = ax; imin = i; } } xval[8*k+imin] = -xval[8*k+imin]; s ^= (1 << imin); } block_signs[k] = s & 127; } float max = xval[0]; for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]); if (!max) { scales[ib] = 0; memset(L, 0, 32); continue; } float scale = make_qp_quants(32, kMaxQ+1, xval, (uint8_t*)L, weight); float eff_max = scale*kMaxQ; float best = 0; for (int is = -6; is <= 6; ++is) { float id = (2*kMaxQ-1+is*0.1f)/eff_max; float this_scale = 1/id; for (int k = 0; k < 4; ++k) { for (int i = 0; i < 8; ++i) { int l = nearest_int(0.5f*(id*xval[8*k+i]-1)); Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l)); } uint16_t u = 0; for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i); int grid_index = kmap_q2xs[u]; if (grid_index < 0) { const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1; grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k); } } float sumqx = 0, sumq2 = 0; for (int i = 0; i < 32; ++i) { float w = weight[i]; float q = 2*Laux[i] + 1; sumqx += w*xval[i]*q; sumq2 += w*q*q; } if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { scale = sumqx/sumq2; best = scale*sumqx; memcpy(L, Laux, 32); } } if (scale > 0) { float id = 1/scale; for (int k = 0; k < 4; ++k) { uint16_t u = 0; for (int i = 0; i < 8; ++i) { int l = nearest_int(0.5f*(id*xval[8*k+i]-1)); l = MAX(0, MIN(kMaxQ-1, l)); u |= (l << 2*i); } int grid_index = kmap_q2xs[u]; if (grid_index < 0) { const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1; grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k); } const int8_t * pg = (const int8_t *)(kgrid_q2xs + grid_index); for (int i = 0; i < 8; ++i) L[8*k+i] = (pg[i] - 1)/2; } float sumqx = 0, sumq2 = 0; for (int i = 0; i < 32; ++i) { float w = weight[i]; float q = 2*L[i] + 1; sumqx += w*xval[i]*q; sumq2 += w*q*q; } if (sumq2 > 0) scale = sumqx/sumq2; } if (scale < 0) { // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale) // and correspondingly flip quant signs. scale = -scale; for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127; } for (int k = 0; k < 4; ++k) { uint16_t u = 0; for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i); int grid_index = kmap_q2xs[u]; if (grid_index < 0) { printf("Oops: found point %u not on grid:", u); for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]); printf("\n"); GGML_ASSERT(false); } q2[2*ib+0] |= (grid_index << 8*k); q2[2*ib+1] |= (block_signs[k] << 7*k); } GGML_ASSERT(scale >= 0); scales[ib] = scale; max_scale = MAX(max_scale, scale); } if (!max_scale) { memset(y[ibl].qs, 0, QK_K/4); continue; } float d = max_scale/31; y[ibl].d = GGML_FP32_TO_FP16(d); float id = 1/d; for (int ib = 0; ib < QK_K/32; ++ib) { int l = nearest_int(0.5f*(id*scales[ib]-1)); l = MAX(0, MIN(15, l)); q2[2*ib+1] |= ((uint32_t)l << 28); } memcpy(y[ibl].qs, q2, QK_K/4); } } static void quantize_row_iq2_xs_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) { const int gindex = iq2_data_index(GGML_TYPE_IQ2_XS); const uint64_t * kgrid_q2xs = iq2_data[gindex].grid; const int * kmap_q2xs = iq2_data[gindex].map; const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours; GGML_ASSERT(quant_weights && "missing quantization weights"); GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?"); GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?"); GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?"); GGML_ASSERT(n%QK_K == 0); const int kMaxQ = 3; const int nbl = n/256; block_iq2_xs * y = vy; float scales[QK_K/16]; float weight[16]; float xval[16]; int8_t L[16]; int8_t Laux[16]; float waux[16]; bool is_on_grid[2]; bool is_on_grid_aux[2]; uint8_t block_signs[2]; uint16_t q2[2*(QK_K/16)]; for (int ibl = 0; ibl < nbl; ++ibl) { y[ibl].d = GGML_FP32_TO_FP16(0.f); memset(q2, 0, QK_K/4); memset(y[ibl].scales, 0, QK_K/32); float max_scale = 0; const float * xbl = x + QK_K*ibl; float sumx2 = 0; for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i]; float sigma2 = sumx2/QK_K; for (int ib = 0; ib < QK_K/16; ++ib) { const float * xb = xbl + 16*ib; const float * qw = quant_weights + QK_K*ibl + 16*ib; for (int i = 0; i < 16; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]); for (int i = 0; i < 16; ++i) waux[i] = sqrtf(weight[i]); for (int k = 0; k < 2; ++k) { int nflip = 0; uint8_t s = 0; for (int i = 0; i < 8; ++i) { if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i]; else { xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i); } } if (nflip%2) { int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin]; for (int i = 1; i < 8; ++i) { float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i]; if (ax < min) { min = ax; imin = i; } } xval[8*k+imin] = -xval[8*k+imin]; s ^= (1 << imin); } block_signs[k] = s & 127; } float max = xval[0]; for (int i = 1; i < 16; ++i) max = MAX(max, xval[i]); if (!max) { scales[ib] = 0; memset(L, 0, 16); continue; } float best = 0; float scale = max/(2*kMaxQ-1); is_on_grid[0] = is_on_grid[1] = true; for (int is = -9; is <= 9; ++is) { float id = (2*kMaxQ-1+is*0.1f)/max; float this_scale = 1/id; for (int k = 0; k < 2; ++k) { for (int i = 0; i < 8; ++i) { int l = nearest_int(0.5f*(id*xval[8*k+i]-1)); Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l)); } uint16_t u = 0; for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i); int grid_index = kmap_q2xs[u]; is_on_grid_aux[k] = true; if (grid_index < 0) { is_on_grid_aux[k] = false; const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1; grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k); } } float sumqx = 0, sumq2 = 0; for (int i = 0; i < 16; ++i) { float w = weight[i]; float q = 2*Laux[i] + 1; sumqx += w*xval[i]*q; sumq2 += w*q*q; } if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { scale = sumqx/sumq2; best = scale*sumqx; for (int i = 0; i < 16; ++i) L[i] = Laux[i]; for (int k = 0; k < 2; ++k) is_on_grid[k] = is_on_grid_aux[k]; } } int n_not_ongrid = 0; for (int k = 0; k < 2; ++k) if (!is_on_grid[k]) ++n_not_ongrid; if (n_not_ongrid > 0 && scale > 0) { float id = 1/scale; for (int k = 0; k < 2; ++k) { if (is_on_grid[k]) continue; uint16_t u = 0; for (int i = 0; i < 8; ++i) { int l = nearest_int(0.5f*(id*xval[8*k+i]-1)); l = MAX(0, MIN(kMaxQ-1, l)); u |= (l << 2*i); L[8*k + i] = l; } int grid_index = kmap_q2xs[u]; if (grid_index < 0) { const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1; grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k); } } float sumqx = 0, sumq2 = 0; for (int i = 0; i < 16; ++i) { float w = weight[i]; float q = 2*L[i] + 1; sumqx += w*xval[i]*q; sumq2 += w*q*q; } if (sumq2 > 0) scale = sumqx/sumq2; } if (scale < 0) { scale = -scale; for (int k = 0; k < 2; ++k) block_signs[k] = (~block_signs[k]) & 127; } for (int k = 0; k < 2; ++k) { uint16_t u = 0; for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i); int grid_index = kmap_q2xs[u]; if (grid_index < 0) { printf("Oops: found point %u not on grid:", u); for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]); printf("\n"); GGML_ASSERT(false); } q2[2*ib+k] = grid_index | (block_signs[k] << 9); } GGML_ASSERT(scale >= 0); scales[ib] = scale; max_scale = MAX(max_scale, scale); } if (!max_scale) { memset(y[ibl].qs, 0, QK_K/4); continue; } float d = max_scale/31; y[ibl].d = GGML_FP32_TO_FP16(d); float id = 1/d; for (int ib = 0; ib < QK_K/16; ++ib) { int l = nearest_int(0.5f*(id*scales[ib]-1)); l = MAX(0, MIN(15, l)); if (ib%2 == 0) y[ibl].scales[ib/2] = l; else y[ibl].scales[ib/2] |= (l << 4); } memcpy(y[ibl].qs, q2, QK_K/4); } } size_t quantize_iq2_xxs(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { (void)hist; GGML_ASSERT(n_per_row%QK_K == 0); int nblock = n_per_row/QK_K; char * qrow = (char *)dst; for (int row = 0; row < nrow; ++row) { quantize_row_iq2_xxs_impl(src, qrow, n_per_row, quant_weights); src += n_per_row; qrow += nblock*sizeof(block_iq2_xxs); } return nrow * nblock * sizeof(block_iq2_xxs); } size_t quantize_iq2_xs(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { (void)hist; GGML_ASSERT(n_per_row%QK_K == 0); int nblock = n_per_row/QK_K; char * qrow = (char *)dst; for (int row = 0; row < nrow; ++row) { quantize_row_iq2_xs_impl(src, qrow, n_per_row, quant_weights); src += n_per_row; qrow += nblock*sizeof(block_iq2_xs); } return nrow * nblock * sizeof(block_iq2_xs); } // // ============================================= 3-bit using D4 lattice // typedef struct { uint32_t * grid; int * map; uint16_t * neighbours; } iq3_entry_t; static iq3_entry_t iq3_data[1] = { {NULL, NULL, NULL}, }; static inline int iq3_data_index(int grid_size) { (void)grid_size; GGML_ASSERT(grid_size == 256); return 0; } static int iq3_compare_func(const void * left, const void * right) { const int * l = (const int *)left; const int * r = (const int *)right; return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0; } void iq3xs_init_impl(int grid_size) { const int gindex = iq3_data_index(grid_size); if (iq3_data[gindex].grid) { return; } static const uint16_t kgrid_256[256] = { 0, 2, 4, 9, 11, 15, 16, 18, 25, 34, 59, 61, 65, 67, 72, 74, 81, 85, 88, 90, 97, 108, 120, 128, 130, 132, 137, 144, 146, 153, 155, 159, 169, 175, 189, 193, 199, 200, 202, 213, 248, 267, 287, 292, 303, 315, 317, 321, 327, 346, 362, 413, 436, 456, 460, 462, 483, 497, 513, 515, 520, 522, 529, 531, 536, 538, 540, 551, 552, 576, 578, 585, 592, 594, 641, 643, 648, 650, 657, 664, 698, 704, 706, 720, 729, 742, 758, 769, 773, 808, 848, 852, 870, 889, 901, 978, 992, 1024, 1026, 1033, 1035, 1040, 1042, 1046, 1049, 1058, 1089, 1091, 1093, 1096, 1098, 1105, 1112, 1139, 1143, 1144, 1152, 1154, 1161, 1167, 1168, 1170, 1183, 1184, 1197, 1217, 1224, 1228, 1272, 1276, 1309, 1323, 1347, 1367, 1377, 1404, 1473, 1475, 1486, 1509, 1537, 1544, 1546, 1553, 1555, 1576, 1589, 1594, 1600, 1602, 1616, 1625, 1636, 1638, 1665, 1667, 1672, 1685, 1706, 1722, 1737, 1755, 1816, 1831, 1850, 1856, 1862, 1874, 1901, 1932, 1950, 1971, 2011, 2032, 2052, 2063, 2077, 2079, 2091, 2095, 2172, 2192, 2207, 2208, 2224, 2230, 2247, 2277, 2308, 2345, 2356, 2389, 2403, 2424, 2501, 2504, 2506, 2520, 2570, 2593, 2616, 2624, 2630, 2646, 2669, 2700, 2714, 2746, 2754, 2795, 2824, 2835, 2839, 2874, 2882, 2905, 2984, 3028, 3042, 3092, 3108, 3110, 3124, 3153, 3185, 3215, 3252, 3288, 3294, 3364, 3397, 3434, 3483, 3523, 3537, 3587, 3589, 3591, 3592, 3610, 3626, 3670, 3680, 3722, 3749, 3754, 3776, 3789, 3803, 3824, 3857, 3873, 3904, 3906, 3924, 3992, }; const int kmap_size = 4096; const int nwant = 2; const uint16_t * kgrid = kgrid_256; uint32_t * kgrid_q3xs; int * kmap_q3xs; uint16_t * kneighbors_q3xs; printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size); uint32_t * the_grid = (uint32_t *)malloc(grid_size*sizeof(uint32_t)); for (int k = 0; k < grid_size; ++k) { int8_t * pos = (int8_t *)(the_grid + k); for (int i = 0; i < 4; ++i) { int l = (kgrid[k] >> 3*i) & 0x7; pos[i] = 2*l + 1; } } kgrid_q3xs = the_grid; iq3_data[gindex].grid = the_grid; kmap_q3xs = (int *)malloc(kmap_size*sizeof(int)); iq3_data[gindex].map = kmap_q3xs; for (int i = 0; i < kmap_size; ++i) kmap_q3xs[i] = -1; uint32_t aux32; uint8_t * aux8 = (uint8_t *)&aux32; for (int i = 0; i < grid_size; ++i) { aux32 = kgrid_q3xs[i]; uint16_t index = 0; for (int k=0; k<4; ++k) { uint16_t q = (aux8[k] - 1)/2; index |= (q << 3*k); } kmap_q3xs[index] = i; } int8_t pos[4]; int * dist2 = (int *)malloc(2*grid_size*sizeof(int)); int num_neighbors = 0, num_not_in_map = 0; for (int i = 0; i < kmap_size; ++i) { if (kmap_q3xs[i] >= 0) continue; ++num_not_in_map; for (int k = 0; k < 4; ++k) { int l = (i >> 3*k) & 0x7; pos[k] = 2*l + 1; } for (int j = 0; j < grid_size; ++j) { const int8_t * pg = (const int8_t *)(kgrid_q3xs + j); int d2 = 0; for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]); dist2[2*j+0] = d2; dist2[2*j+1] = j; } qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func); int n = 0; int d2 = dist2[0]; int nhave = 1; for (int j = 0; j < grid_size; ++j) { if (dist2[2*j] > d2) { if (nhave == nwant) break; d2 = dist2[2*j]; ++nhave; } ++n; } num_neighbors += n; } printf("%s: %d neighbours in total\n", __func__, num_neighbors); kneighbors_q3xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t)); iq3_data[gindex].neighbours = kneighbors_q3xs; int counter = 0; for (int i = 0; i < kmap_size; ++i) { if (kmap_q3xs[i] >= 0) continue; for (int k = 0; k < 4; ++k) { int l = (i >> 3*k) & 0x7; pos[k] = 2*l + 1; } for (int j = 0; j < grid_size; ++j) { const int8_t * pg = (const int8_t *)(kgrid_q3xs + j); int d2 = 0; for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]); dist2[2*j+0] = d2; dist2[2*j+1] = j; } qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func); kmap_q3xs[i] = -(counter + 1); int d2 = dist2[0]; uint16_t * start = &kneighbors_q3xs[counter++]; int n = 0, nhave = 1; for (int j = 0; j < grid_size; ++j) { if (dist2[2*j] > d2) { if (nhave == nwant) break; d2 = dist2[2*j]; ++nhave; } kneighbors_q3xs[counter++] = dist2[2*j+1]; ++n; } *start = n; } free(dist2); } void iq3xs_free_impl(int grid_size) { GGML_ASSERT(grid_size == 256); const int gindex = iq3_data_index(grid_size); if (iq3_data[gindex].grid) { free(iq3_data[gindex].grid); iq3_data[gindex].grid = NULL; free(iq3_data[gindex].map); iq3_data[gindex].map = NULL; free(iq3_data[gindex].neighbours); iq3_data[gindex].neighbours = NULL; } } static int iq3_find_best_neighbour(const uint16_t * restrict neighbours, const uint32_t * restrict grid, const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) { int num_neighbors = neighbours[0]; GGML_ASSERT(num_neighbors > 0); float best_d2 = FLT_MAX; int grid_index = -1; for (int j = 1; j <= num_neighbors; ++j) { const int8_t * pg = (const int8_t *)(grid + neighbours[j]); float d2 = 0; for (int i = 0; i < 4; ++i) { float q = pg[i]; float diff = scale*q - xval[i]; d2 += weight[i]*diff*diff; } if (d2 < best_d2) { best_d2 = d2; grid_index = neighbours[j]; } } GGML_ASSERT(grid_index >= 0); const int8_t * pg = (const int8_t *)(grid + grid_index); for (int i = 0; i < 4; ++i) L[i] = (pg[i] - 1)/2; return grid_index; } static void quantize_row_iq3_xxs_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) { const int gindex = iq3_data_index(256); const uint32_t * kgrid_q3xs = iq3_data[gindex].grid; const int * kmap_q3xs = iq3_data[gindex].map; const uint16_t * kneighbors_q3xs = iq3_data[gindex].neighbours; //GGML_ASSERT(quant_weights && "missing quantization weights"); GGML_ASSERT(kgrid_q3xs && "forgot to call ggml_quantize_init()?"); GGML_ASSERT(kmap_q3xs && "forgot to call ggml_quantize_init()?"); GGML_ASSERT(kneighbors_q3xs && "forgot to call ggml_quantize_init()?"); GGML_ASSERT(n%QK_K == 0); const int kMaxQ = 8; const int nbl = n/256; block_iq3_xxs * y = vy; float scales[QK_K/32]; float weight[32]; float xval[32]; int8_t L[32]; int8_t Laux[32]; float waux[32]; bool is_on_grid[8]; bool is_on_grid_aux[8]; uint8_t block_signs[8]; uint8_t q3[3*(QK_K/8)]; uint32_t * scales_and_signs = (uint32_t *)(q3 + QK_K/4); for (int ibl = 0; ibl < nbl; ++ibl) { y[ibl].d = GGML_FP32_TO_FP16(0.f); memset(q3, 0, 3*QK_K/8); float max_scale = 0; const float * xbl = x + QK_K*ibl; float sumx2 = 0; for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i]; float sigma2 = sumx2/QK_K; for (int ib = 0; ib < QK_K/32; ++ib) { const float * xb = xbl + 32*ib; if (quant_weights) { const float * qw = quant_weights + QK_K*ibl + 32*ib; for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]); } else { for (int i = 0; i < 32; ++i) weight[i] = xb[i]*xb[i]; } for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]); for (int k = 0; k < 4; ++k) { int nflip = 0; uint8_t s = 0; for (int i = 0; i < 8; ++i) { if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i]; else { xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i); } } if (nflip%2) { int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin]; for (int i = 1; i < 8; ++i) { float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i]; if (ax < min) { min = ax; imin = i; } } xval[8*k+imin] = -xval[8*k+imin]; s ^= (1 << imin); } block_signs[k] = s & 127; } float max = xval[0]; for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]); if (!max) { scales[ib] = 0; memset(L, 0, 32); continue; } float best = 0; float scale = max/(2*kMaxQ-1); for (int is = -15; is <= 15; ++is) { float id = (2*kMaxQ-1+is*0.2f)/max; float this_scale = 1/id; for (int k = 0; k < 8; ++k) { for (int i = 0; i < 4; ++i) { int l = nearest_int(0.5f*(id*xval[4*k+i]-1)); Laux[4*k+i] = MAX(0, MIN(kMaxQ-1, l)); } uint16_t u = 0; for (int i = 0; i < 4; ++i) u |= (Laux[4*k+i] << 3*i); int grid_index = kmap_q3xs[u]; is_on_grid_aux[k] = true; if (grid_index < 0) { is_on_grid_aux[k] = false; const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1; grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, this_scale, Laux + 4*k); } } float sumqx = 0, sumq2 = 0; for (int i = 0; i < 32; ++i) { float w = weight[i]; float q = 2*Laux[i] + 1; sumqx += w*xval[i]*q; sumq2 += w*q*q; } if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { scale = sumqx/sumq2; best = scale*sumqx; for (int i = 0; i < 32; ++i) L[i] = Laux[i]; for (int k = 0; k < 8; ++k) is_on_grid[k] = is_on_grid_aux[k]; } } int n_not_ongrid = 0; for (int k = 0; k < 8; ++k) if (!is_on_grid[k]) ++n_not_ongrid; if (n_not_ongrid > 0 && scale > 0) { float id = 1/scale; for (int k = 0; k < 8; ++k) { if (is_on_grid[k]) continue; uint16_t u = 0; for (int i = 0; i < 4; ++i) { int l = nearest_int(0.5f*(id*xval[4*k+i]-1)); l = MAX(0, MIN(kMaxQ-1, l)); u |= (l << 3*i); } int grid_index = kmap_q3xs[u]; if (grid_index < 0) { const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1; grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, scale, L + 4*k); } const int8_t * pg = (const int8_t *)(kgrid_q3xs + grid_index); for (int i = 0; i < 4; ++i) L[4*k+i] = (pg[i] - 1)/2; } float sumqx = 0, sumq2 = 0; for (int i = 0; i < 32; ++i) { float w = weight[i]; float q = 2*L[i] + 1; sumqx += w*xval[i]*q; sumq2 += w*q*q; } if (sumq2 > 0) scale = sumqx/sumq2; } if (scale < 0) { // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale) // and correspondingly flip quant signs. scale = -scale; for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127; } for (int k = 0; k < 8; ++k) { uint16_t u = 0; for (int i = 0; i < 4; ++i) u |= (L[4*k+i] << 3*i); int grid_index = kmap_q3xs[u]; if (grid_index < 0) { printf("Oops: found point %u not on grid:", u); for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]); printf("\n"); GGML_ASSERT(false); } q3[8*ib+k] = grid_index; } scales_and_signs[ib] = block_signs[0] | (block_signs[1] << 7) | (block_signs[2] << 14) | (block_signs[3] << 21); GGML_ASSERT(scale >= 0); scales[ib] = scale; max_scale = MAX(max_scale, scale); } if (!max_scale) { memset(y[ibl].qs, 0, 3*QK_K/8); continue; } float d = max_scale/31; y[ibl].d = GGML_FP32_TO_FP16(d); float id = 1/d; float sumqx = 0, sumq2 = 0; for (int ib = 0; ib < QK_K/32; ++ib) { int l = nearest_int(0.5f*(id*scales[ib]-1)); l = MAX(0, MIN(15, l)); scales_and_signs[ib] |= ((uint32_t)l << 28); if (false) { const float * xb = xbl + 32*ib; if (quant_weights) { const float * qw = quant_weights + QK_K*ibl + 32*ib; for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]); } else { for (int i = 0; i < 32; ++i) weight[i] = xb[i]*xb[i]; } const float db = 0.25f * d * (1 + 2*l); for (int k = 0; k < 8; ++k) { const int8_t * signs = keven_signs_q2xs + 8*((scales_and_signs[ib] >> 7*(k/2)) & 127) + 4*(k%2); const float * xk = xb + 4*k; const float * wk = weight + 4*k; //const uint8_t * grid = (const uint8_t *)(kgrid_q3xs + q3[8*ib+k]); const uint8_t * grid = (const uint8_t *)(iq3xxs_grid + q3[8*ib+k]); float best_mse = 0; int best_index = q3[8*ib+k]; for (int j = 0; j < 4; ++j) { float diff = db * grid[j] * signs[j] - xk[j]; best_mse += wk[j] * diff * diff; } for (int idx = 0; idx < 256; ++idx) { //grid = (const uint8_t *)(kgrid_q3xs + idx); grid = (const uint8_t *)(iq3xxs_grid + idx); float mse = 0; for (int j = 0; j < 4; ++j) { float diff = db * grid[j] * signs[j] - xk[j]; mse += wk[j] * diff * diff; } if (mse < best_mse) { best_mse = mse; best_index = idx; } } q3[8*ib+k] = best_index; //grid = (const uint8_t *)(kgrid_q3xs + best_index); grid = (const uint8_t *)(iq3xxs_grid + best_index); for (int j = 0; j < 4; ++j) { float q = db * grid[j] * signs[j]; sumqx += wk[j] * q * xk[j]; sumq2 += wk[j] * q * q; } } if (sumq2 > 0) y[ibl].d = GGML_FP32_TO_FP16(d*sumqx/sumq2); } } memcpy(y[ibl].qs, q3, 3*QK_K/8); } } size_t quantize_iq3_xxs(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { (void)hist; GGML_ASSERT(n_per_row%QK_K == 0); int nblock = n_per_row/QK_K; char * qrow = (char *)dst; for (int row = 0; row < nrow; ++row) { quantize_row_iq3_xxs_impl(src, qrow, n_per_row, quant_weights); src += n_per_row; qrow += nblock*sizeof(block_iq3_xxs); } return nrow * nblock * sizeof(block_iq3_xxs); } void quantize_row_iq3_xxs(const float * restrict x, void * restrict vy, int k) { assert(k % QK_K == 0); block_iq3_xxs * restrict y = vy; quantize_row_iq3_xxs_reference(x, y, k); } void quantize_row_iq3_xxs_reference(const float * restrict x, block_iq3_xxs * restrict y, int k) { assert(k % QK_K == 0); quantize_row_iq3_xxs_impl(x, y, k, NULL); } // =================================== 1.5 bpw =================================================== static int iq1_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid, const float * restrict xval, const float * restrict weight, float * scale, int8_t * restrict L, int ngrid) { int num_neighbors = neighbours[0]; GGML_ASSERT(num_neighbors > 0); float best_score = 0; int grid_index = -1; for (int j = 1; j <= num_neighbors; ++j) { const int8_t * pg = (const int8_t *)(grid + neighbours[j]); float sumqx = 0, sumq2 = 0; for (int i = 0; i < 8; ++i) { float q = (pg[i] - 3)/2; float w = weight[i]; sumqx += w*q*xval[i]; sumq2 += w*q*q; } if (sumqx > 0 && sumq2 > 0 && sumqx*sumqx > best_score*sumq2) { *scale = sumqx/sumq2; best_score = *scale * sumqx; grid_index = neighbours[j]; } } if (grid_index < 0) { for (int i = 0; i < ngrid; ++i) { const int8_t * grid_i = (const int8_t *)(grid + i); float sumqx = 0, sumq2 = 0; for (int j = 0; j < 8; ++j) { float w = weight[j]; float q = (grid_i[j] - 3)/2; sumqx += w*q*xval[j]; sumq2 += w*q*q; } if (sumqx > 0 && sumq2 > 0 && sumqx*sumqx > best_score*sumq2) { *scale = sumqx/sumq2; best_score = *scale*sumqx; grid_index = i; } } } if (grid_index < 0) { printf("Oops, did not find grid point\n"); printf("Have %d neighbours\n", num_neighbors); for (int j = 1; j <= num_neighbors; ++j) { const int8_t * pg = (const int8_t *)(grid + neighbours[j]); float sumqx = 0, sumq2 = 0; for (int i = 0; i < 8; ++i) { float q = (pg[i] - 3)/2; float w = weight[i]; sumqx += w*q*xval[i]; sumq2 += w*q*q; } printf(" neighbour %d: sumqx = %g sumq2 = %g\n", j, (double)sumqx, (double)sumq2); } } GGML_ASSERT(grid_index >= 0); //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! *scale *= 1.05f; // This is a fudge factor. Don't ask me why it improves the result. //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! const int8_t * pg = (const int8_t *)(grid + grid_index); for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2; return grid_index; } static int iq1_sort_helper(const void * left, const void * right) { const float * l = left; const float * r = right; return *l < *r ? -1 : *l > *r ? 1 : 0; } static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) { const int gindex = iq2_data_index(GGML_TYPE_IQ1_S); const uint64_t * kgrid_q2xs = iq2_data[gindex].grid; const int * kmap_q2xs = iq2_data[gindex].map; const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours; GGML_ASSERT(quant_weights && "missing quantization weights"); GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?"); GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?"); GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?"); GGML_ASSERT(n%QK_K == 0); const int nbl = n/256; block_iq1_s * y = vy; float scales[QK_K/8]; float weight[8]; int8_t L[8]; float sumx[9]; float sumw[9]; float pairs[16]; int * idx = (int *)(pairs + 1); uint8_t hbit[QK_K/8]; for (int ibl = 0; ibl < nbl; ++ibl) { y[ibl].d = GGML_FP32_TO_FP16(0.f); memset(y[ibl].qs, 0, QK_K/8); memset(y[ibl].scales, 0, QK_K/16); float max_scale = 0; const float * xbl = x + QK_K*ibl; float sumx2 = 0; for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i]; float sigma2 = sumx2/QK_K; for (int ib = 0; ib < QK_K/8; ++ib) { const float * xb = xbl + 8*ib; const float * qw = quant_weights + QK_K*ibl + 8*ib; for (int i = 0; i < 8; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]); float max = fabsf(xb[0]); for (int i = 1; i < 8; ++i) max = MAX(max, fabsf(xb[i])); if (!max) { scales[ib] = 0; memset(L, 1, 8); continue; } // Here we solve exactly the sum of squared difference (SSD) weighted minimization problem. // With just 3 allowed quant values (-1, 0, 1), we can search exhaustively for the two // boundaries that split the weights xb[i] into 3 groups. To do so, we sort the weights // in ascending order, compute Si = sum[weight[j] xb[j], j = 0...i] and // Wi = sum[weight[j], j = 0...i], and use these to quckly get get the optimum scale // for each possible and score for each split. for (int j = 0; j < 8; ++j) { pairs[2*j] = xb[j]; idx[2*j] = j; } qsort(pairs, 8, 2*sizeof(float), iq1_sort_helper); { sumx[0] = sumw[0] = 0; for (int j = 0; j < 8; ++j) { int i = idx[2*j]; sumx[j+1] = sumx[j] + weight[i]*xb[i]; sumw[j+1] = sumw[j] + weight[i]; } } float best_score = 0, scale = max; int besti1 = 0, besti2 = 0; for (int i1 = 0; i1 <= 8; ++i1) { for (int i2 = i1; i2 <= 8; ++i2) { float sumqx = -(sumx[i1] - sumx[0]) + (sumx[8] - sumx[i2]); float sumq2 = (sumw[i1] - sumw[0]) + (sumw[8] - sumw[i2]); if (sumq2 > 0 && sumqx*sumqx > best_score*sumq2) { scale = sumqx/sumq2; best_score = scale*sumqx; besti1 = i1; besti2 = i2; } } } for (int j = 0; j < besti1; ++j) L[idx[2*j]] = 0; for (int j = besti1; j < besti2; ++j) L[idx[2*j]] = 1; for (int j = besti2; j < 8; ++j) L[idx[2*j]] = 2; if (scale < 0) { for (int j = 0; j < 8; ++j) L[j] = 2 - L[j]; scale = -scale; } // Now we check if the solution found above corresponds to a grid point and, if not, use a neighbouring // grid point that minimizes SSD. uint16_t u = 0; for (int j = 0; j < 8; ++j) u |= (L[j] << 2*j); int grid_index = kmap_q2xs[u]; if (grid_index < 0) { const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1; grid_index = iq1_find_best_neighbour(neighbours, kgrid_q2xs, xb, weight, &scale, L, NGRID_IQ2XXS); GGML_ASSERT(grid_index >= 0); } y[ibl].qs[ib] = grid_index & 255; hbit[ib] = grid_index >> 8; GGML_ASSERT(scale >= 0); scales[ib] = scale; max_scale = MAX(max_scale, scale); } if (!max_scale) { memset(y[ibl].qs, 0, QK_K/8); continue; } float d = max_scale/15; y[ibl].d = GGML_FP32_TO_FP16(d*1.085f); // 1.085f is another fudge factor. Don't ask me why it is needed. float id = 1/d; for (int ib = 0; ib < QK_K/8; ++ib) { int l = nearest_int(0.5f*(id*scales[ib]-1)); l = MAX(0, MIN(7, l)); if (hbit[ib]) l |= 8; y[ibl].scales[ib/2] |= (l << 4*(ib%2)); } } } size_t quantize_iq1_s(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { (void)hist; GGML_ASSERT(n_per_row%QK_K == 0); int nblock = n_per_row/QK_K; char * qrow = (char *)dst; for (int row = 0; row < nrow; ++row) { quantize_row_iq1_s_impl(src, qrow, n_per_row, quant_weights); src += n_per_row; qrow += nblock*sizeof(block_iq1_s); } return nrow * nblock * sizeof(block_iq1_s); }