#define GGML_COMMON_DECL_METAL #define GGML_COMMON_IMPL_METAL #if defined(GGML_METAL_EMBED_LIBRARY) __embed_ggml-common.h__ #else // TODO: this should not be a relative path, but can't figure out how to set Metal include paths in Package.swift #include "../ggml-common.h" #endif #include "ggml-metal-impl.h" #include using namespace metal; #define MAX(x, y) ((x) > (y) ? (x) : (y)) #define MIN(x, y) ((x) < (y) ? (x) : (y)) #define SWAP(x, y) { auto tmp = (x); (x) = (y); (y) = tmp; } #define N_SIMDWIDTH 32 // assuming SIMD group size is 32 // ref: https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf // // cmd: // .../usr/bin/metal -dM -E -c ggml/src/ggml-metal/ggml-metal.metal // .../usr/bin/metal -dM -E -c -target air64-apple-ios14.0 ggml/src/ggml-metal/ggml-metal.metal // #if __METAL_VERSION__ < 310 && defined(GGML_METAL_USE_BF16) #undef GGML_METAL_USE_BF16 #endif #if defined(GGML_METAL_USE_BF16) typedef matrix bfloat4x4; #endif constexpr constant static float kvalues_iq4nl_f[16] = { -127.f, -104.f, -83.f, -65.f, -49.f, -35.f, -22.f, -10.f, 1.f, 13.f, 25.f, 38.f, 53.f, 69.f, 89.f, 113.f }; // NOTE: this is not dequantizing - we are simply fitting the template template void dequantize_f32(device const float4x4 * src, short il, thread type4x4 & reg) { reg = (type4x4)(*src); } template void dequantize_f16(device const half4x4 * src, short il, thread type4x4 & reg) { reg = (type4x4)(*src); } #if defined(GGML_METAL_USE_BF16) template void dequantize_bf16(device const bfloat4x4 * src, short il, thread type4x4 & reg) { reg = (type4x4)(*src); } #endif template void dequantize_q4_0(device const block_q4_0 *xb, short il, thread type4x4 & reg) { device const uint16_t * qs = ((device const uint16_t *)xb + 1); const float d1 = il ? (xb->d / 16.h) : xb->d; const float d2 = d1 / 256.f; const float md = -8.h * xb->d; const ushort mask0 = il ? 0x00F0 : 0x000F; const ushort mask1 = mask0 << 8; float4x4 reg_f; for (int i = 0; i < 8; i++) { reg_f[i/2][2*(i%2) + 0] = d1 * (qs[i] & mask0) + md; reg_f[i/2][2*(i%2) + 1] = d2 * (qs[i] & mask1) + md; } reg = (type4x4) reg_f; } template void dequantize_q4_1(device const block_q4_1 *xb, short il, thread type4x4 & reg) { device const uint16_t * qs = ((device const uint16_t *)xb + 2); const float d1 = il ? (xb->d / 16.h) : xb->d; const float d2 = d1 / 256.f; const float m = xb->m; const ushort mask0 = il ? 0x00F0 : 0x000F; const ushort mask1 = mask0 << 8; float4x4 reg_f; for (int i = 0; i < 8; i++) { reg_f[i/2][2*(i%2) + 0] = ((qs[i] & mask0) * d1) + m; reg_f[i/2][2*(i%2) + 1] = ((qs[i] & mask1) * d2) + m; } reg = (type4x4) reg_f; } template void dequantize_q5_0(device const block_q5_0 *xb, short il, thread type4x4 & reg) { device const uint16_t * qs = ((device const uint16_t *)xb + 3); const float d = xb->d; const float md = -16.h * xb->d; const ushort mask = il ? 0x00F0 : 0x000F; const uint32_t qh = *((device const uint32_t *)xb->qh); const int x_mv = il ? 4 : 0; const int gh_mv = il ? 12 : 0; const int gh_bk = il ? 0 : 4; float4x4 reg_f; for (int i = 0; i < 8; i++) { // extract the 5-th bits for x0 and x1 const uint8_t xh_0 = ((qh >> (gh_mv + 2*i )) << gh_bk) & 0x10; const uint8_t xh_1 = ((qh >> (gh_mv + 2*i+1)) << gh_bk) & 0x10; // combine the 4-bits from qs with the 5th bit const int32_t x0 = ((((qs[i] ) & mask) >> x_mv) | xh_0); const int32_t x1 = ((((qs[i] >> 8) & mask) >> x_mv) | xh_1); reg_f[i/2][2*(i%2) + 0] = d * x0 + md; reg_f[i/2][2*(i%2) + 1] = d * x1 + md; } reg = (type4x4) reg_f; } template void dequantize_q5_1(device const block_q5_1 *xb, short il, thread type4x4 & reg) { device const uint16_t * qs = ((device const uint16_t *)xb + 4); const float d = xb->d; const float m = xb->m; const ushort mask = il ? 0x00F0 : 0x000F; const uint32_t qh = *((device const uint32_t *)xb->qh); const int x_mv = il ? 4 : 0; const int gh_mv = il ? 12 : 0; const int gh_bk = il ? 0 : 4; float4x4 reg_f; for (int i = 0; i < 8; i++) { // extract the 5-th bits for x0 and x1 const uint8_t xh_0 = ((qh >> (gh_mv + 2*i )) << gh_bk) & 0x10; const uint8_t xh_1 = ((qh >> (gh_mv + 2*i+1)) << gh_bk) & 0x10; // combine the 4-bits from qs with the 5th bit const int32_t x0 = ((((qs[i] ) & mask) >> x_mv) | xh_0); const int32_t x1 = ((((qs[i] >> 8) & mask) >> x_mv) | xh_1); reg_f[i/2][2*(i%2) + 0] = d * x0 + m; reg_f[i/2][2*(i%2) + 1] = d * x1 + m; } reg = (type4x4) reg_f; } template void dequantize_q8_0(device const block_q8_0 *xb, short il, thread type4x4 & reg) { device const int8_t * qs = ((device const int8_t *)xb->qs); const half d = xb->d; float4x4 reg_f; for (int i = 0; i < 16; i++) { reg_f[i/4][i%4] = (qs[i + 16*il] * d); } reg = (type4x4) reg_f; } template void dequantize_q2_K(device const block_q2_K *xb, short il, thread type4x4 & reg) { const float d = xb->d; const float min = xb->dmin; device const uint8_t * q = (device const uint8_t *)xb->qs; float dl, ml; uint8_t sc = xb->scales[il]; q = q + 32*(il/8) + 16*(il&1); il = (il/2)%4; half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h); uchar mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3); dl = d * (sc & 0xF) * coef, ml = min * (sc >> 4); for (int i = 0; i < 16; ++i) { reg[i/4][i%4] = dl * (q[i] & mask) - ml; } } template void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg) { const half d_all = xb->d; device const uint8_t * q = (device const uint8_t *)xb->qs; device const uint8_t * h = (device const uint8_t *)xb->hmask; device const int8_t * scales = (device const int8_t *)xb->scales; q = q + 32 * (il/8) + 16 * (il&1); h = h + 16 * (il&1); uint8_t m = 1 << (il/2); uint16_t kmask1 = (il/4)>1 ? ((il/4)>2 ? 192 : 48) : \ ((il/4)>0 ? 12 : 3); uint16_t kmask2 = il/8 ? 0xF0 : 0x0F; uint16_t scale_2 = scales[il%8], scale_1 = scales[8 + il%4]; int16_t dl_int = (il/4)&1 ? (scale_2&kmask2) | ((scale_1&kmask1) << 2) : (scale_2&kmask2) | ((scale_1&kmask1) << 4); float dl = il<8 ? d_all * (dl_int - 32.f) : d_all * (dl_int / 16.f - 32.f); const float ml = 4.f * dl; il = (il/2) & 3; const half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h); const uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3); dl *= coef; for (int i = 0; i < 16; ++i) { reg[i/4][i%4] = dl * (q[i] & mask) - (h[i] & m ? 0 : ml); } } static inline uchar2 get_scale_min_k4_just2(int j, int k, device const uchar * q) { return j < 4 ? uchar2{uchar(q[j+0+k] & 63), uchar(q[j+4+k] & 63)} : uchar2{uchar((q[j+4+k] & 0xF) | ((q[j-4+k] & 0xc0) >> 2)), uchar((q[j+4+k] >> 4) | ((q[j-0+k] & 0xc0) >> 2))}; } template void dequantize_q4_K(device const block_q4_K *xb, short il, thread type4x4 & reg) { device const uchar * q = xb->qs; short is = (il/4) * 2; q = q + (il/4) * 32 + 16 * (il&1); il = il & 3; const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales); const float d = il < 2 ? xb->d : xb->d / 16.h; const float min = xb->dmin; const float dl = d * sc[0]; const float ml = min * sc[1]; const ushort mask = il<2 ? 0x0F : 0xF0; for (int i = 0; i < 16; ++i) { reg[i/4][i%4] = dl * (q[i] & mask) - ml; } } template void dequantize_q5_K(device const block_q5_K *xb, short il, thread type4x4 & reg) { device const uint8_t * q = xb->qs; device const uint8_t * qh = xb->qh; short is = (il/4) * 2; q = q + 32 * (il/4) + 16 * (il&1); qh = qh + 16 * (il&1); uint8_t ul = 1 << (il/2); il = il & 3; const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales); const float d = il < 2 ? xb->d : xb->d / 16.f; const float min = xb->dmin; const float dl = d * sc[0]; const float ml = min * sc[1]; const ushort mask = il<2 ? 0x0F : 0xF0; const float qh_val = il<2 ? 16.f : 256.f; for (int i = 0; i < 16; ++i) { reg[i/4][i%4] = dl * ((q[i] & mask) + (qh[i] & ul ? qh_val : 0)) - ml; } } template void dequantize_q6_K(device const block_q6_K *xb, short il, thread type4x4 & reg) { const half d_all = xb->d; device const uint8_t * ql = (device const uint8_t *)xb->ql; device const uint8_t * qh = (device const uint8_t *)xb->qh; device const int8_t * scales = (device const int8_t *)xb->scales; ql = ql + 64*(il/8) + 32*((il/2)&1) + 16*(il&1); qh = qh + 32*(il/8) + 16*(il&1); float sc = scales[(il%2) + 2 * ((il/2))]; il = (il/2) & 3; const uint16_t kmask1 = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3); const uint16_t kmask2 = il>1 ? 0xF0 : 0x0F; const float coef = il>1 ? 1.f/16.f : 1.f; const float ml = d_all * sc * 32.f; const float dl = d_all * sc * coef; for (int i = 0; i < 16; ++i) { const half q = il&1 ? ((ql[i] & kmask2) | ((qh[i] & kmask1) << 2)) : ((ql[i] & kmask2) | ((qh[i] & kmask1) << 4)); reg[i/4][i%4] = dl * q - ml; } } template void dequantize_iq2_xxs(device const block_iq2_xxs * xb, short il, thread type4x4 & reg) { // il is 0...15 for QK_K = 256 => index of block of 32 is il/2 const float d = xb->d; const int ib32 = il/2; il = il%2; // il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16 // each block of 32 needs 2 uint32_t's for the quants & scale, so 4 uint16_t's. device const uint16_t * q2 = xb->qs + 4*ib32; const uint32_t aux32_g = q2[0] | (q2[1] << 16); const uint32_t aux32_s = q2[2] | (q2[3] << 16); thread const uint8_t * aux8 = (thread const uint8_t *)&aux32_g; const float dl = d * (0.5f + (aux32_s >> 28)) * 0.25f; constant uint8_t * grid = (constant uint8_t *)(iq2xxs_grid + aux8[2*il+0]); uint8_t signs = ksigns_iq2xs[(aux32_s >> 14*il) & 127]; for (int i = 0; i < 8; ++i) { reg[i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f); } grid = (constant uint8_t *)(iq2xxs_grid + aux8[2*il+1]); signs = ksigns_iq2xs[(aux32_s >> (14*il+7)) & 127]; for (int i = 0; i < 8; ++i) { reg[2+i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f); } } template void dequantize_iq2_xs(device const block_iq2_xs * xb, short il, thread type4x4 & reg) { // il is 0...15 for QK_K = 256 => index of block of 32 is il/2 const float d = xb->d; const int ib32 = il/2; il = il%2; // il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16 device const uint16_t * q2 = xb->qs + 4*ib32; const float dl = d * (0.5f + ((xb->scales[ib32] >> 4*il) & 0xf)) * 0.25f; constant uint8_t * grid = (constant uint8_t *)(iq2xs_grid + (q2[2*il+0] & 511)); uint8_t signs = ksigns_iq2xs[q2[2*il+0] >> 9]; for (int i = 0; i < 8; ++i) { reg[i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f); } grid = (constant uint8_t *)(iq2xs_grid + (q2[2*il+1] & 511)); signs = ksigns_iq2xs[q2[2*il+1] >> 9]; for (int i = 0; i < 8; ++i) { reg[2+i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f); } } template void dequantize_iq3_xxs(device const block_iq3_xxs * xb, short il, thread type4x4 & reg) { // il is 0...15 for QK_K = 256 => index of block of 32 is il/2 const float d = xb->d; const int ib32 = il/2; il = il%2; // il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16 device const uint8_t * q3 = xb->qs + 8*ib32; device const uint16_t * gas = (device const uint16_t *)(xb->qs + QK_K/4) + 2*ib32; const uint32_t aux32 = gas[0] | (gas[1] << 16); const float dl = d * (0.5f + (aux32 >> 28)) * 0.5f; constant uint8_t * grid1 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+0]); constant uint8_t * grid2 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+1]); uint8_t signs = ksigns_iq2xs[(aux32 >> 14*il) & 127]; for (int i = 0; i < 4; ++i) { reg[0][i] = dl * grid1[i] * (signs & kmask_iq2xs[i+0] ? -1.f : 1.f); reg[1][i] = dl * grid2[i] * (signs & kmask_iq2xs[i+4] ? -1.f : 1.f); } grid1 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+2]); grid2 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+3]); signs = ksigns_iq2xs[(aux32 >> (14*il+7)) & 127]; for (int i = 0; i < 4; ++i) { reg[2][i] = dl * grid1[i] * (signs & kmask_iq2xs[i+0] ? -1.f : 1.f); reg[3][i] = dl * grid2[i] * (signs & kmask_iq2xs[i+4] ? -1.f : 1.f); } } template void dequantize_iq3_s(device const block_iq3_s * xb, short il, thread type4x4 & reg) { // il is 0...15 for QK_K = 256 => index of block of 32 is il/2 const float d = xb->d; const int ib32 = il/2; il = il%2; // il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16 device const uint8_t * qs = xb->qs + 8*ib32; device const uint8_t * signs = xb->signs + 4*ib32 + 2*il; const uint8_t qh = xb->qh[ib32] >> 4*il; const float dl = d * (1 + 2*((xb->scales[ib32/2] >> 4*(ib32%2)) & 0xf)); constant uint8_t * grid1 = (constant uint8_t *)(iq3s_grid + (qs[4*il+0] | ((qh << 8) & 256))); constant uint8_t * grid2 = (constant uint8_t *)(iq3s_grid + (qs[4*il+1] | ((qh << 7) & 256))); for (int i = 0; i < 4; ++i) { reg[0][i] = dl * grid1[i] * select(1, -1, signs[0] & kmask_iq2xs[i+0]); reg[1][i] = dl * grid2[i] * select(1, -1, signs[0] & kmask_iq2xs[i+4]); } grid1 = (constant uint8_t *)(iq3s_grid + (qs[4*il+2] | ((qh << 6) & 256))); grid2 = (constant uint8_t *)(iq3s_grid + (qs[4*il+3] | ((qh << 5) & 256))); for (int i = 0; i < 4; ++i) { reg[2][i] = dl * grid1[i] * select(1, -1, signs[1] & kmask_iq2xs[i+0]); reg[3][i] = dl * grid2[i] * select(1, -1, signs[1] & kmask_iq2xs[i+4]); } } template void dequantize_iq2_s(device const block_iq2_s * xb, short il, thread type4x4 & reg) { // il is 0...15 for QK_K = 256 => index of block of 32 is il/2 const float d = xb->d; const int ib32 = il/2; il = il%2; // il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16 device const uint8_t * qs = xb->qs + 4*ib32 + 2*il; device const uint8_t * signs = qs + QK_K/8; const uint8_t qh = xb->qh[ib32] >> 4*il; const float dl = d * (0.5f + ((xb->scales[ib32] >> 4*il) & 0xf)) * 0.25f; constant uint8_t * grid1 = (constant uint8_t *)(iq2s_grid + (qs[0] | ((qh << 8) & 0x300))); constant uint8_t * grid2 = (constant uint8_t *)(iq2s_grid + (qs[1] | ((qh << 6) & 0x300))); for (int i = 0; i < 8; ++i) { reg[i/4+0][i%4] = dl * grid1[i] * select(1, -1, signs[0] & kmask_iq2xs[i]); reg[i/4+2][i%4] = dl * grid2[i] * select(1, -1, signs[1] & kmask_iq2xs[i]); } } template void dequantize_iq1_s(device const block_iq1_s * xb, short il, thread type4x4 & reg) { // il is 0...15 for QK_K = 256 => index of block of 32 is il/2 const int ib32 = il/2; il = il%2; const float d = xb->d; device const uint8_t * qs = xb->qs + 4*ib32 + 2*il; device const uint16_t * qh = xb->qh; const float dl = d * (2*((qh[ib32] >> 12) & 7) + 1); const float ml = dl * (qh[ib32] & 0x8000 ? -1 - IQ1S_DELTA : -1 + IQ1S_DELTA); const uint16_t h = qh[ib32] >> 6*il; constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((h << 8) & 0x700))); constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((h << 5) & 0x700))); for (int i = 0; i < 4; ++i) { reg[0][i] = dl * (grid1[i] & 0xf) + ml; reg[1][i] = dl * (grid1[i] >> 4) + ml; reg[2][i] = dl * (grid2[i] & 0xf) + ml; reg[3][i] = dl * (grid2[i] >> 4) + ml; } } template void dequantize_iq1_m(device const block_iq1_m * xb, short il, thread type4x4 & reg) { // il is 0...15 for QK_K = 256 => index of block of 32 is il/2 const int ib32 = il/2; il = il%2; device const uint16_t * sc = (device const uint16_t *)xb->scales; iq1m_scale_t scale; scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000); const float d = scale.f16; device const uint8_t * qs = xb->qs + 4*ib32 + 2*il; device const uint8_t * qh = xb->qh + 2*ib32 + il; const float dl = d * (2*((sc[ib32/2] >> (6*(ib32%2)+3*il)) & 7) + 1); const float ml1 = dl * (qh[0] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA); const float ml2 = dl * (qh[0] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA); constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((qh[0] << 8) & 0x700))); constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((qh[0] << 4) & 0x700))); for (int i = 0; i < 4; ++i) { reg[0][i] = dl * (grid1[i] & 0xf) + ml1; reg[1][i] = dl * (grid1[i] >> 4) + ml1; reg[2][i] = dl * (grid2[i] & 0xf) + ml2; reg[3][i] = dl * (grid2[i] >> 4) + ml2; } } template void dequantize_iq4_nl(device const block_iq4_nl * xb, short il, thread type4x4 & reg) { device const uint16_t * q4 = (device const uint16_t *)xb->qs; const float d = xb->d; uint32_t aux32; thread const uint8_t * q8 = (thread const uint8_t *)&aux32; for (int i = 0; i < 4; ++i) { aux32 = ((q4[2*i] | (q4[2*i+1] << 16)) >> 4*il) & 0x0f0f0f0f; reg[i][0] = d * kvalues_iq4nl_f[q8[0]]; reg[i][1] = d * kvalues_iq4nl_f[q8[1]]; reg[i][2] = d * kvalues_iq4nl_f[q8[2]]; reg[i][3] = d * kvalues_iq4nl_f[q8[3]]; } } template void dequantize_iq4_xs(device const block_iq4_xs * xb, short il, thread type4x4 & reg) { // il is 0...15 for QK_K = 256 => index of block of 32 is il/2 const int ib32 = il/2; il = il%2; // il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16 device const uint32_t * q4 = (device const uint32_t *)xb->qs + 4*ib32; const int ls = ((xb->scales_l[ib32/2] >> 4*(ib32%2)) & 0xf) | (((xb->scales_h >> 2*ib32) & 3) << 4); const float d = (float)xb->d * (ls - 32); uint32_t aux32; thread const uint8_t * q8 = (thread const uint8_t *)&aux32; for (int i = 0; i < 4; ++i) { aux32 = (q4[i] >> 4*il) & 0x0f0f0f0f; reg[i][0] = d * kvalues_iq4nl_f[q8[0]]; reg[i][1] = d * kvalues_iq4nl_f[q8[1]]; reg[i][2] = d * kvalues_iq4nl_f[q8[2]]; reg[i][3] = d * kvalues_iq4nl_f[q8[3]]; } } enum ggml_sort_order { GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC, }; // general-purpose kernel for addition, subtraction, multiplication and division of two tensors // pros: works for non-contiguous tensors, supports broadcast across all dims // cons: not very efficient kernel void kernel_add( constant ggml_metal_kargs_bin & args, device const char * src0, device const char * src1, device char * dst, uint3 tgpig[[threadgroup_position_in_grid]], ushort3 tpitg[[thread_position_in_threadgroup]], ushort3 ntg[[threads_per_threadgroup]]) { const int i03 = tgpig.z; const int i02 = tgpig.y; const int i01 = tgpig.x; const int i13 = i03%args.ne13; const int i12 = i02%args.ne12; const int i11 = i01%args.ne11; device const char * src0_ptr = src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + args.offs; device const char * src1_ptr = src1 + i13*args.nb13 + i12*args.nb12 + i11*args.nb11; device char * dst_ptr = dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1 + args.offs; for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) { const int i10 = i0%args.ne10; *((device float *)(dst_ptr + i0*args.nb0)) = *((device float *)(src0_ptr + i0*args.nb00)) + *((device float *)(src1_ptr + i10*args.nb10)); } } kernel void kernel_sub( constant ggml_metal_kargs_bin & args, device const char * src0, device const char * src1, device char * dst, uint3 tgpig[[threadgroup_position_in_grid]], ushort3 tpitg[[thread_position_in_threadgroup]], ushort3 ntg[[threads_per_threadgroup]]) { const int i03 = tgpig.z; const int i02 = tgpig.y; const int i01 = tgpig.x; const int i13 = i03%args.ne13; const int i12 = i02%args.ne12; const int i11 = i01%args.ne11; device const char * src0_ptr = src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + args.offs; device const char * src1_ptr = src1 + i13*args.nb13 + i12*args.nb12 + i11*args.nb11; device char * dst_ptr = dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1 + args.offs; for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) { const int i10 = i0%args.ne10; *((device float *)(dst_ptr + i0*args.nb0)) = *((device float *)(src0_ptr + i0*args.nb00)) - *((device float *)(src1_ptr + i10*args.nb10)); } } kernel void kernel_mul( constant ggml_metal_kargs_bin & args, device const char * src0, device const char * src1, device char * dst, uint3 tgpig[[threadgroup_position_in_grid]], ushort3 tpitg[[thread_position_in_threadgroup]], ushort3 ntg[[threads_per_threadgroup]]) { const int i03 = tgpig.z; const int i02 = tgpig.y; const int i01 = tgpig.x; const int i13 = i03%args.ne13; const int i12 = i02%args.ne12; const int i11 = i01%args.ne11; device const char * src0_ptr = src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01; device const char * src1_ptr = src1 + i13*args.nb13 + i12*args.nb12 + i11*args.nb11; device char * dst_ptr = dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1; for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) { const int i10 = i0%args.ne10; *((device float *)(dst_ptr + i0*args.nb0)) = *((device float *)(src0_ptr + i0*args.nb00)) * *((device float *)(src1_ptr + i10*args.nb10)); } } kernel void kernel_div( constant ggml_metal_kargs_bin & args, device const char * src0, device const char * src1, device char * dst, uint3 tgpig[[threadgroup_position_in_grid]], ushort3 tpitg[[thread_position_in_threadgroup]], ushort3 ntg[[threads_per_threadgroup]]) { const int i03 = tgpig.z; const int i02 = tgpig.y; const int i01 = tgpig.x; const int i13 = i03%args.ne13; const int i12 = i02%args.ne12; const int i11 = i01%args.ne11; device const char * src0_ptr = src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01; device const char * src1_ptr = src1 + i13*args.nb13 + i12*args.nb12 + i11*args.nb11; device char * dst_ptr = dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1; for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) { const int i10 = i0%args.ne10; *((device float *)(dst_ptr + i0*args.nb0)) = *((device float *)(src0_ptr + i0*args.nb00)) / *((device float *)(src1_ptr + i10*args.nb10)); } } template kernel void kernel_repeat( constant ggml_metal_kargs_repeat & args, device const char * src0, device char * dst, uint3 tgpig[[threadgroup_position_in_grid]], ushort3 tpitg[[thread_position_in_threadgroup]], ushort3 ntg[[threads_per_threadgroup]]) { const int i3 = tgpig.z; const int i2 = tgpig.y; const int i1 = tgpig.x; const int i03 = i3%args.ne03; const int i02 = i2%args.ne02; const int i01 = i1%args.ne01; device const char * src0_ptr = src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01; device char * dst_ptr = dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1; for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) { const int i00 = i0%args.ne00; *((device T *)(dst_ptr + i0*args.nb0)) = *((device T *)(src0_ptr + i00*args.nb00)); } } typedef decltype(kernel_repeat) kernel_repeat_t; template [[host_name("kernel_repeat_f32")]] kernel kernel_repeat_t kernel_repeat; template [[host_name("kernel_repeat_f16")]] kernel kernel_repeat_t kernel_repeat; template [[host_name("kernel_repeat_i32")]] kernel kernel_repeat_t kernel_repeat; template [[host_name("kernel_repeat_i16")]] kernel kernel_repeat_t kernel_repeat; // assumption: src1 is a row // broadcast src1 into src0 kernel void kernel_add_row( constant ggml_metal_kargs_bin & args, device const float4 * src0, device const float4 * src1, device float4 * dst, uint tpig[[thread_position_in_grid]]) { const uint nb = args.ne00/4; dst[tpig] = src0[tpig] + src1[tpig % nb]; } kernel void kernel_sub_row( constant ggml_metal_kargs_bin & args, device const float4 * src0, device const float4 * src1, device float4 * dst, uint tpig[[thread_position_in_grid]]) { const uint nb = args.ne00/4; dst[tpig] = src0[tpig] - src1[tpig % nb]; } kernel void kernel_mul_row( constant ggml_metal_kargs_bin & args, device const float4 * src0, device const float4 * src1, device float4 * dst, uint tpig[[thread_position_in_grid]]) { const uint nb = args.ne00/4; dst[tpig] = src0[tpig] * src1[tpig % nb]; } kernel void kernel_div_row( constant ggml_metal_kargs_bin & args, device const float4 * src0, device const float4 * src1, device float4 * dst, uint tpig[[thread_position_in_grid]]) { const uint nb = args.ne00/4; dst[tpig] = src0[tpig] / src1[tpig % nb]; } kernel void kernel_scale( device const float * src0, device float * dst, constant float & scale, uint tpig[[thread_position_in_grid]]) { dst[tpig] = src0[tpig] * scale; } kernel void kernel_scale_4( device const float4 * src0, device float4 * dst, constant float & scale, uint tpig[[thread_position_in_grid]]) { dst[tpig] = src0[tpig] * scale; } kernel void kernel_clamp( device const float * src0, device float * dst, constant float & min, constant float & max, uint tpig[[thread_position_in_grid]]) { dst[tpig] = src0[tpig] < min ? min : (src0[tpig] > max ? max : src0[tpig]); } kernel void kernel_relu( device const float * src0, device float * dst, uint tpig[[thread_position_in_grid]]) { dst[tpig] = max(0.0f, src0[tpig]); } kernel void kernel_sigmoid( device const float * src0, device float * dst, uint tpig[[thread_position_in_grid]]) { dst[tpig] = 1.0f / (1.0f + exp(-src0[tpig])); } kernel void kernel_tanh( device const float * src0, device float * dst, uint tpig[[thread_position_in_grid]]) { device const float & x = src0[tpig]; dst[tpig] = precise::tanh(x); } constant float GELU_COEF_A = 0.044715f; constant float GELU_QUICK_COEF = -1.702f; constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f; kernel void kernel_gelu( device const float * src0, device float * dst, uint tpig[[thread_position_in_grid]]) { device const float & x = src0[tpig]; dst[tpig] = 0.5f*x*(1.0f + precise::tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x))); } kernel void kernel_gelu_4( device const float4 * src0, device float4 * dst, uint tpig[[thread_position_in_grid]]) { device const float4 & x = src0[tpig]; // BEWARE !!! // Simply using "tanh" instead of "precise::tanh" will sometimes results in NaNs! // This was observed with Falcon 7B and 40B models // dst[tpig] = 0.5f*x*(1.0f + precise::tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x))); } kernel void kernel_gelu_quick( device const float * src0, device float * dst, uint tpig[[thread_position_in_grid]]) { device const float & x = src0[tpig]; dst[tpig] = x*(1.0f/(1.0f+exp(GELU_QUICK_COEF*x))); } kernel void kernel_gelu_quick_4( device const float4 * src0, device float4 * dst, uint tpig[[thread_position_in_grid]]) { device const float4 & x = src0[tpig]; dst[tpig] = x*(1.0f/(1.0f+exp(GELU_QUICK_COEF*x))); } kernel void kernel_silu( device const float * src0, device float * dst, uint tpig[[thread_position_in_grid]]) { device const float & x = src0[tpig]; dst[tpig] = x / (1.0f + exp(-x)); } kernel void kernel_silu_4( device const float4 * src0, device float4 * dst, uint tpig[[thread_position_in_grid]]) { device const float4 & x = src0[tpig]; dst[tpig] = x / (1.0f + exp(-x)); } kernel void kernel_sqr( device const float * src0, device float * dst, uint tpig[[thread_position_in_grid]]) { dst[tpig] = src0[tpig] * src0[tpig]; } kernel void kernel_sqrt( device const float * src0, device float * dst, uint tpig[[thread_position_in_grid]]) { dst[tpig] = sqrt(src0[tpig]); } kernel void kernel_sin( device const float * src0, device float * dst, uint tpig[[thread_position_in_grid]]) { dst[tpig] = sin(src0[tpig]); } kernel void kernel_cos( device const float * src0, device float * dst, uint tpig[[thread_position_in_grid]]) { dst[tpig] = cos(src0[tpig]); } kernel void kernel_sum_rows( device const float * src0, device float * dst, constant int64_t & ne00, constant int64_t & ne01, constant int64_t & ne02, constant int64_t & ne03, constant uint64_t & nb00, constant uint64_t & nb01, constant uint64_t & nb02, constant uint64_t & nb03, constant int64_t & ne10, constant int64_t & ne11, constant int64_t & ne12, constant int64_t & ne13, constant uint64_t & nb10, constant uint64_t & nb11, constant uint64_t & nb12, constant uint64_t & nb13, constant int64_t & ne0, constant int64_t & ne1, constant int64_t & ne2, constant int64_t & ne3, constant uint64_t & nb0, constant uint64_t & nb1, constant uint64_t & nb2, constant uint64_t & nb3, uint3 tpig[[thread_position_in_grid]]) { int64_t i3 = tpig.z; int64_t i2 = tpig.y; int64_t i1 = tpig.x; if (i3 >= ne03 || i2 >= ne02 || i1 >= ne01) { return; } device const float * src_row = (device const float *) ((device const char *) src0 + i1*nb01 + i2*nb02 + i3*nb03); device float * dst_row = (device float *) ((device char *) dst + i1*nb1 + i2*nb2 + i3*nb3); float row_sum = 0; for (int64_t i0 = 0; i0 < ne00; i0++) { row_sum += src_row[i0]; } dst_row[0] = row_sum; } template kernel void kernel_soft_max( device const char * src0, device const char * src1, device char * dst, constant int64_t & ne00, constant int64_t & ne01, constant int64_t & ne02, constant float & scale, constant float & max_bias, constant float & m0, constant float & m1, constant uint32_t & n_head_log2, threadgroup float * buf [[threadgroup(0)]], uint tgpig[[threadgroup_position_in_grid]], uint tpitg[[thread_position_in_threadgroup]], uint sgitg[[simdgroup_index_in_threadgroup]], uint tiisg[[thread_index_in_simdgroup]], uint ntg[[threads_per_threadgroup]]) { const int64_t i03 = (tgpig) / (ne02*ne01); const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01; const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01); device const float * psrc0 = (device const float *) src0 + (i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00); device const T * pmask = src1 != src0 ? (device const T *) src1 + i01*ne00 : nullptr; device float * pdst = (device float *) dst + (i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00); float slope = 1.0f; // ALiBi if (max_bias > 0.0f) { const int64_t h = i02; const float base = h < n_head_log2 ? m0 : m1; const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1; slope = pow(base, exp); } // parallel max float lmax = -INFINITY; for (int i00 = tpitg; i00 < ne00; i00 += ntg) { lmax = MAX(lmax, psrc0[i00]*scale + (pmask ? slope*pmask[i00] : 0.0f)); } // find the max value in the block float max_val = simd_max(lmax); if (ntg > N_SIMDWIDTH) { if (sgitg == 0) { buf[tiisg] = -INFINITY; } threadgroup_barrier(mem_flags::mem_threadgroup); if (tiisg == 0) { buf[sgitg] = max_val; } threadgroup_barrier(mem_flags::mem_threadgroup); max_val = buf[tiisg]; max_val = simd_max(max_val); } // parallel sum float lsum = 0.0f; for (int i00 = tpitg; i00 < ne00; i00 += ntg) { const float exp_psrc0 = exp((psrc0[i00]*scale + (pmask ? slope*pmask[i00] : 0.0f)) - max_val); lsum += exp_psrc0; pdst[i00] = exp_psrc0; } // This barrier fixes a failing test // ref: https://github.com/ggerganov/ggml/pull/621#discussion_r1425156335 threadgroup_barrier(mem_flags::mem_none); float sum = simd_sum(lsum); if (ntg > N_SIMDWIDTH) { if (sgitg == 0) { buf[tiisg] = 0.0f; } threadgroup_barrier(mem_flags::mem_threadgroup); if (tiisg == 0) { buf[sgitg] = sum; } threadgroup_barrier(mem_flags::mem_threadgroup); sum = buf[tiisg]; sum = simd_sum(sum); } const float inv_sum = 1.0f/sum; for (int i00 = tpitg; i00 < ne00; i00 += ntg) { pdst[i00] *= inv_sum; } } template kernel void kernel_soft_max_4( device const char * src0, device const char * src1, device char * dst, constant int64_t & ne00, constant int64_t & ne01, constant int64_t & ne02, constant float & scale, constant float & max_bias, constant float & m0, constant float & m1, constant uint32_t & n_head_log2, threadgroup float * buf [[threadgroup(0)]], uint tgpig[[threadgroup_position_in_grid]], uint tpitg[[thread_position_in_threadgroup]], uint sgitg[[simdgroup_index_in_threadgroup]], uint tiisg[[thread_index_in_simdgroup]], uint ntg[[threads_per_threadgroup]]) { const int64_t i03 = (tgpig) / (ne02*ne01); const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01; const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01); device const float4 * psrc4 = (device const float4 *) src0 + (i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00)/4; device const T * pmask = src1 != src0 ? (device const T *) src1 + i01*ne00/4 : nullptr; device float4 * pdst4 = (device float4 *) dst + (i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00)/4; float slope = 1.0f; if (max_bias > 0.0f) { const int64_t h = i02; const float base = h < n_head_log2 ? m0 : m1; const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1; slope = pow(base, exp); } // parallel max float4 lmax4 = -INFINITY; for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) { lmax4 = fmax(lmax4, psrc4[i00]*scale + (float4)((pmask ? slope*pmask[i00] : 0.0f))); } const float lmax = MAX(MAX(lmax4[0], lmax4[1]), MAX(lmax4[2], lmax4[3])); float max_val = simd_max(lmax); if (ntg > N_SIMDWIDTH) { if (sgitg == 0) { buf[tiisg] = -INFINITY; } threadgroup_barrier(mem_flags::mem_threadgroup); if (tiisg == 0) { buf[sgitg] = max_val; } threadgroup_barrier(mem_flags::mem_threadgroup); max_val = buf[tiisg]; max_val = simd_max(max_val); } // parallel sum float4 lsum4 = 0.0f; for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) { const float4 exp_psrc4 = exp((psrc4[i00]*scale + (float4)((pmask ? slope*pmask[i00] : 0.0f))) - max_val); lsum4 += exp_psrc4; pdst4[i00] = exp_psrc4; } const float lsum = lsum4[0] + lsum4[1] + lsum4[2] + lsum4[3]; // This barrier fixes a failing test // ref: https://github.com/ggerganov/ggml/pull/621#discussion_r1425156335 threadgroup_barrier(mem_flags::mem_none); float sum = simd_sum(lsum); if (ntg > N_SIMDWIDTH) { if (sgitg == 0) { buf[tiisg] = 0.0f; } threadgroup_barrier(mem_flags::mem_threadgroup); if (tiisg == 0) { buf[sgitg] = sum; } threadgroup_barrier(mem_flags::mem_threadgroup); sum = buf[tiisg]; sum = simd_sum(sum); } const float inv_sum = 1.0f/sum; for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) { pdst4[i00] *= inv_sum; } } typedef decltype(kernel_soft_max) kernel_soft_max_t; typedef decltype(kernel_soft_max_4) kernel_soft_max_4_t; template [[host_name("kernel_soft_max_f16")]] kernel kernel_soft_max_t kernel_soft_max; template [[host_name("kernel_soft_max_f32")]] kernel kernel_soft_max_t kernel_soft_max; template [[host_name("kernel_soft_max_f16_4")]] kernel kernel_soft_max_4_t kernel_soft_max_4; template [[host_name("kernel_soft_max_f32_4")]] kernel kernel_soft_max_4_t kernel_soft_max_4; kernel void kernel_diag_mask_inf( device const float * src0, device float * dst, constant int64_t & ne00, constant int64_t & ne01, constant int & n_past, uint3 tpig[[thread_position_in_grid]]) { const int64_t i02 = tpig[2]; const int64_t i01 = tpig[1]; const int64_t i00 = tpig[0]; if (i00 > n_past + i01) { dst[i02*ne01*ne00 + i01*ne00 + i00] = -INFINITY; } else { dst[i02*ne01*ne00 + i01*ne00 + i00] = src0[i02*ne01*ne00 + i01*ne00 + i00]; } } kernel void kernel_diag_mask_inf_8( device const float4 * src0, device float4 * dst, constant int64_t & ne00, constant int64_t & ne01, constant int & n_past, uint3 tpig[[thread_position_in_grid]]) { const int64_t i = 2*tpig[0]; dst[i+0] = src0[i+0]; dst[i+1] = src0[i+1]; int64_t i4 = 4*i; const int64_t i02 = i4/(ne00*ne01); i4 -= i02*ne00*ne01; const int64_t i01 = i4/(ne00); i4 -= i01*ne00; const int64_t i00 = i4; for (int k = 3; k >= 0; --k) { if (i00 + 4 + k <= n_past + i01) { break; } dst[i+1][k] = -INFINITY; if (i00 + k > n_past + i01) { dst[i][k] = -INFINITY; } } } // ref: ggml.c:ggml_compute_forward_ssm_conv_f32 // TODO: optimize kernel void kernel_ssm_conv_f32( device const void * src0, device const void * src1, device float * dst, constant int64_t & ne00, constant int64_t & ne01, constant int64_t & ne02, constant uint64_t & nb00, constant uint64_t & nb01, constant uint64_t & nb02, constant int64_t & ne10, constant int64_t & ne11, constant uint64_t & nb10, constant uint64_t & nb11, constant int64_t & ne0, constant int64_t & ne1, constant int64_t & ne2, constant uint64_t & nb0, constant uint64_t & nb1, constant uint64_t & nb2, uint3 tgpig[[threadgroup_position_in_grid]], uint3 tpitg[[thread_position_in_threadgroup]], uint3 ntg[[threads_per_threadgroup]]) { const int64_t ir = tgpig.x; const int64_t i2 = tgpig.y; const int64_t i3 = tgpig.z; const int64_t nc = ne10; //const int64_t ncs = ne00; //const int64_t nr = ne01; //const int64_t n_t = ne1; //const int64_t n_s = ne2; device const float * s = (device const float *) ((device const char *) src0 + ir*nb01 + i2*nb00 + i3*nb02); device const float * c = (device const float *) ((device const char *) src1 + ir*nb11); device float * x = (device float *) ((device char *) dst + ir*nb0 + i2*nb1 + i3*nb2); float sumf = 0.0f; for (int64_t i0 = 0; i0 < nc; ++i0) { sumf += s[i0] * c[i0]; } x[0] = sumf; } // ref: ggml.c:ggml_compute_forward_ssm_scan_f32 // TODO: optimize kernel void kernel_ssm_scan_f32( device const void * src0, device const void * src1, device const void * src2, device const void * src3, device const void * src4, device const void * src5, device float * dst, constant int64_t & d_state, constant int64_t & d_inner, constant int64_t & n_seq_tokens, constant int64_t & n_seqs, constant uint64_t & nb00, constant uint64_t & nb01, constant uint64_t & nb02, constant uint64_t & nb10, constant uint64_t & nb11, constant uint64_t & nb12, constant uint64_t & nb13, constant uint64_t & nb20, constant uint64_t & nb21, constant uint64_t & nb22, constant uint64_t & nb30, constant uint64_t & nb31, constant uint64_t & nb40, constant uint64_t & nb41, constant uint64_t & nb42, constant uint64_t & nb50, constant uint64_t & nb51, constant uint64_t & nb52, uint3 tgpig[[threadgroup_position_in_grid]], uint3 tpitg[[thread_position_in_threadgroup]], uint3 ntg[[threads_per_threadgroup]]) { const int64_t ir = tgpig.x; const int64_t i3 = tgpig.y; const int64_t nc = d_state; //const int64_t nr = d_inner; const int64_t n_t = n_seq_tokens; //const int64_t n_s = n_seqs; for (int64_t i2 = 0; i2 < n_t; ++i2) { device const float * s0 = (device const float *) ((device const char *) src0 + ir*nb01 + i3*nb02); device const float * x = (device const float *) ((device const char *) src1 + ir*nb10 + i2*nb11 + i3*nb12); device const float * dt = (device const float *) ((device const char *) src2 + ir*nb20 + i2*nb21 + i3*nb22); device const float * A = (device const float *) ((device const char *) src3 + ir*nb31); device const float * B = (device const float *) ((device const char *) src4 + i2*nb41 + i3*nb42); device const float * C = (device const float *) ((device const char *) src5 + i2*nb51 + i3*nb52); device float * y = (device float *) ((device char *) dst + ir*nb10 + i2*nb11 + i3*nb12); // TODO: do not use src1 strides device float * s = (device float *) ((device char *) dst + ir*nb01 + i3*nb02 + nb13); if (i2 > 0) { s0 = s; } // i1 == 0 float dt_soft_plus = dt[0] <= 20.0f ? log(1.0f + exp(dt[0])) : dt[0]; float x_dt = x[0] * dt_soft_plus; float sumf = 0.0f; for (int64_t i0 = 0; i0 < nc; ++i0) { int64_t i = i0; float state = (s0[i] * exp(dt_soft_plus * A[i])) + (B[i0] * x_dt); sumf += state * C[i0]; s[i] = state; } y[0] = sumf; } } kernel void kernel_norm( constant ggml_metal_kargs_norm & args, device const char * src0, device char * dst, threadgroup float * shmem_f32 [[threadgroup(0)]], uint tgpig[[threadgroup_position_in_grid]], ushort tpitg[[thread_position_in_threadgroup]], ushort sgitg[[simdgroup_index_in_threadgroup]], ushort tiisg[[thread_index_in_simdgroup]], ushort ntg[[threads_per_threadgroup]]) { if (sgitg == 0) { shmem_f32[tiisg] = 0.0f; } device const float4 * x = (device const float4 *) (src0 + tgpig*args.nb01); float4 sumf4(0.0f); float sumf = 0.0f; for (int i00 = tpitg; i00 < args.ne00_4; i00 += ntg) { sumf4 += x[i00]; } sumf = sumf4[0] + sumf4[1] + sumf4[2] + sumf4[3]; sumf = simd_sum(sumf); threadgroup_barrier(mem_flags::mem_threadgroup); if (tiisg == 0) { shmem_f32[sgitg] = sumf; } threadgroup_barrier(mem_flags::mem_threadgroup); sumf = shmem_f32[tiisg]; sumf = simd_sum(sumf); const float mean = sumf/args.ne00; device float4 * y = (device float4 *) dst + tgpig*args.ne00_4; sumf = 0.0f; for (int i00 = tpitg; i00 < args.ne00_4; i00 += ntg) { y[i00] = x[i00] - mean; sumf += dot(y[i00], y[i00]); } sumf = simd_sum(sumf); threadgroup_barrier(mem_flags::mem_threadgroup); if (tiisg == 0) { shmem_f32[sgitg] = sumf; } threadgroup_barrier(mem_flags::mem_threadgroup); sumf = shmem_f32[tiisg]; sumf = simd_sum(sumf); const float variance = sumf/args.ne00; const float scale = 1.0f/sqrt(variance + args.eps); for (int i00 = tpitg; i00 < args.ne00_4; i00 += ntg) { y[i00] = y[i00] * scale; } } kernel void kernel_rms_norm( constant ggml_metal_kargs_rms_norm & args, device const char * src0, device char * dst, threadgroup float * shmem_f32 [[threadgroup(0)]], uint tgpig[[threadgroup_position_in_grid]], ushort tpitg[[thread_position_in_threadgroup]], ushort sgitg[[simdgroup_index_in_threadgroup]], ushort tiisg[[thread_index_in_simdgroup]], ushort ntg[[threads_per_threadgroup]]) { if (sgitg == 0) { shmem_f32[tiisg] = 0.0f; } device const float4 * x = (device const float4 *) (src0 + tgpig*args.nb01); float sumf = 0.0f; // parallel sum for (int i00 = tpitg; i00 < args.ne00_4; i00 += ntg) { sumf += dot(x[i00], x[i00]); } sumf = simd_sum(sumf); threadgroup_barrier(mem_flags::mem_threadgroup); if (tiisg == 0) { shmem_f32[sgitg] = sumf; } threadgroup_barrier(mem_flags::mem_threadgroup); sumf = shmem_f32[tiisg]; sumf = simd_sum(sumf); const float mean = sumf/args.ne00; const float scale = 1.0f/sqrt(mean + args.eps); device float4 * y = (device float4 *) dst + tgpig*args.ne00_4; for (int i00 = tpitg; i00 < args.ne00_4; i00 += ntg) { y[i00] = x[i00] * scale; } } kernel void kernel_group_norm( device const float * src0, device float * dst, constant int64_t & ne00, constant int64_t & ne01, constant int64_t & ne02, constant uint64_t & nb00, constant uint64_t & nb01, constant uint64_t & nb02, constant int32_t & n_groups, constant float & eps, threadgroup float * buf [[threadgroup(0)]], uint tgpig[[threadgroup_position_in_grid]], uint tpitg[[thread_position_in_threadgroup]], uint sgitg[[simdgroup_index_in_threadgroup]], uint tiisg[[thread_index_in_simdgroup]], uint ntg[[threads_per_threadgroup]]) { const int64_t ne = ne00*ne01*ne02; const int64_t gs = ne00*ne01*((ne02 + n_groups - 1) / n_groups); int start = tgpig * gs; int end = start + gs; start += tpitg; if (end >= ne) { end = ne; } float tmp = 0.0f; // partial sum for thread in warp for (int j = start; j < end; j += ntg) { tmp += src0[j]; } threadgroup_barrier(mem_flags::mem_threadgroup); tmp = simd_sum(tmp); if (ntg > N_SIMDWIDTH) { if (sgitg == 0) { buf[tiisg] = 0.0f; } threadgroup_barrier(mem_flags::mem_threadgroup); if (tiisg == 0) { buf[sgitg] = tmp; } threadgroup_barrier(mem_flags::mem_threadgroup); tmp = buf[tiisg]; tmp = simd_sum(tmp); } const float mean = tmp / gs; tmp = 0.0f; for (int j = start; j < end; j += ntg) { float xi = src0[j] - mean; dst[j] = xi; tmp += xi * xi; } tmp = simd_sum(tmp); if (ntg > N_SIMDWIDTH) { if (sgitg == 0) { buf[tiisg] = 0.0f; } threadgroup_barrier(mem_flags::mem_threadgroup); if (tiisg == 0) { buf[sgitg] = tmp; } threadgroup_barrier(mem_flags::mem_threadgroup); tmp = buf[tiisg]; tmp = simd_sum(tmp); } const float variance = tmp / gs; const float scale = 1.0f/sqrt(variance + eps); for (int j = start; j < end; j += ntg) { dst[j] *= scale; } } // function for calculate inner product between half a q4_0 block and 16 floats (yl), sumy is SUM(yl[i]) // il indicates where the q4 quants begin (0 or QK4_0/4) // we assume that the yl's have been multiplied with the appropriate scale factor // that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096) inline float block_q_n_dot_y(device const block_q4_0 * qb_curr, float sumy, thread float * yl, int il) { float d = qb_curr->d; float acc[4] = { 0.0f, 0.0f, 0.0f, 0.0f }; device const uint16_t * qs = ((device const uint16_t *) qb_curr + 1 + il/2); for (int i = 0; i < 8; i += 2) { acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F); acc[1] += yl[i + 1] * (qs[i / 2] & 0x0F00); acc[2] += yl[i + 8] * (qs[i / 2] & 0x00F0); acc[3] += yl[i + 9] * (qs[i / 2] & 0xF000); } return d * (sumy * -8.f + acc[0] + acc[1] + acc[2] + acc[3]); } // function for calculate inner product between half a q4_1 block and 16 floats (yl), sumy is SUM(yl[i]) // il indicates where the q4 quants begin (0 or QK4_0/4) // we assume that the yl's have been multiplied with the appropriate scale factor // that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096) inline float block_q_n_dot_y(device const block_q4_1 * qb_curr, float sumy, thread float * yl, int il) { float d = qb_curr->d; float m = qb_curr->m; float acc[4] = { 0.0f, 0.0f, 0.0f, 0.0f }; device const uint16_t * qs = ((device const uint16_t *) qb_curr + 2 + il/2); for (int i = 0; i < 8; i+=2) { acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F); acc[1] += yl[i + 1] * (qs[i / 2] & 0x0F00); acc[2] += yl[i + 8] * (qs[i / 2] & 0x00F0); acc[3] += yl[i + 9] * (qs[i / 2] & 0xF000); } return d * (acc[0] + acc[1] + acc[2] + acc[3]) + sumy * m; } // function for calculate inner product between half a q5_0 block and 16 floats (yl), sumy is SUM(yl[i]) // il indicates where the q5 quants begin (0 or QK5_0/4) // we assume that the yl's have been multiplied with the appropriate scale factor // that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096) inline float block_q_n_dot_y(device const block_q5_0 * qb_curr, float sumy, thread float * yl, int il) { float d = qb_curr->d; float acc[4] = { 0.0f, 0.0f, 0.0f, 0.0f }; device const uint16_t * qs = ((device const uint16_t *)qb_curr + 3 + il/2); const uint32_t qh = *((device const uint32_t *)qb_curr->qh); for (int i = 0; i < 8; i+=2) { acc[0] += yl[i + 0] * ((qs[i / 2] & 0x000F) | ((qh >> (i+0+il ) << 4 ) & 0x00010)); acc[1] += yl[i + 1] * ((qs[i / 2] & 0x0F00) | ((qh >> (i+1+il ) << 12) & 0x01000)); acc[2] += yl[i + 8] * ((qs[i / 2] & 0x00F0) | ((qh >> (i+0+il+QK5_0/2) << 8 ) & 0x00100)); acc[3] += yl[i + 9] * ((qs[i / 2] & 0xF000) | ((qh >> (i+1+il+QK5_0/2) << 16) & 0x10000)); } return d * (sumy * -16.f + acc[0] + acc[1] + acc[2] + acc[3]); } // function for calculate inner product between half a q5_1 block and 16 floats (yl), sumy is SUM(yl[i]) // il indicates where the q5 quants begin (0 or QK5_1/4) // we assume that the yl's have been multiplied with the appropriate scale factor // that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096) inline float block_q_n_dot_y(device const block_q5_1 * qb_curr, float sumy, thread float * yl, int il) { float d = qb_curr->d; float m = qb_curr->m; float acc[4] = { 0.0f, 0.0f, 0.0f, 0.0f }; device const uint16_t * qs = ((device const uint16_t *)qb_curr + 4 + il/2); const uint32_t qh = *((device const uint32_t *)qb_curr->qh); for (int i = 0; i < 8; i+=2) { acc[0] += yl[i + 0] * ((qs[i / 2] & 0x000F) | ((qh >> (i+0+il ) << 4 ) & 0x00010)); acc[1] += yl[i + 1] * ((qs[i / 2] & 0x0F00) | ((qh >> (i+1+il ) << 12) & 0x01000)); acc[2] += yl[i + 8] * ((qs[i / 2] & 0x00F0) | ((qh >> (i+0+il+QK5_0/2) << 8 ) & 0x00100)); acc[3] += yl[i + 9] * ((qs[i / 2] & 0xF000) | ((qh >> (i+1+il+QK5_0/2) << 16) & 0x10000)); } return d * (acc[0] + acc[1] + acc[2] + acc[3]) + sumy * m; } // putting them in the kernel cause a significant performance penalty #define N_DST 4 // each SIMD group works on 4 rows #define N_SIMDGROUP 2 // number of SIMD groups in a thread group //Note: This is a template, but strictly speaking it only applies to // quantizations where the block size is 32. It also does not // guard against the number of rows not being divisible by // N_DST, so this is another explicit assumption of the implementation. template void mul_vec_q_n_f32_impl( args_t args, device const char * src0, device const char * src1, device char * dst, threadgroup char * shmem, uint3 tgpig, ushort tiisg, ushort sgitg) { const int nb = args.ne00/QK4_0; const int r0 = tgpig.x; const int r1 = tgpig.y; const int im = tgpig.z; const int first_row = (r0 * nsg + sgitg) * nr; const uint i12 = im%args.ne12; const uint i13 = im/args.ne12; //const uint64_t offset0 = first_row*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03; const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13; //device const block_q_type * x = (device const block_q_type *) (src0 + offset0); device const float * y = (device const float *) (src1 + offset1); // pointers to src0 rows device const block_q_type * ax[nr]; for (int row = 0; row < nr; ++row) { const uint64_t offset0 = (first_row + row)*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03; ax[row] = (device const block_q_type *) ((device char *) src0 + offset0); } float yl[16]; // src1 vector cache float sumf[nr] = {0.f}; const short ix = (tiisg/2); const short il = (tiisg%2)*8; device const float * yb = y + ix*QK4_0 + il; // each thread in a SIMD group deals with half a block. for (int ib = ix; ib < nb; ib += nw/2) { float sumy[2] = { 0.f, 0.f }; #pragma unroll for (int i = 0; i < 8; i += 2) { sumy[0] += yb[i + 0] + yb[i + 1]; yl[i + 0] = yb[i + 0]; yl[i + 1] = yb[i + 1]/256.f; sumy[1] += yb[i + 16] + yb[i + 17]; yl[i + 8] = yb[i + 16]/16.f; yl[i + 9] = yb[i + 17]/4096.f; } #pragma unroll for (int row = 0; row < nr; row++) { sumf[row] += block_q_n_dot_y(ax[row] + ib, sumy[0] + sumy[1], yl, il); } yb += QK4_0 * 16; } device float * dst_f32 = (device float *) dst + im*args.ne0*args.ne1 + r1*args.ne0; for (int row = 0; row < nr; ++row) { const float tot = simd_sum(sumf[row]); if (tiisg == 0 && first_row + row < args.ne01) { dst_f32[first_row + row] = tot; } } } kernel void kernel_mul_mv_q4_0_f32( constant ggml_metal_kargs_mul_mv & args, device const char * src0, device const char * src1, device char * dst, uint3 tgpig[[threadgroup_position_in_grid]], ushort tiisg[[thread_index_in_simdgroup]], ushort sgitg[[simdgroup_index_in_threadgroup]]) { mul_vec_q_n_f32_impl(args, src0, src1, dst, nullptr, tgpig, tiisg, sgitg); } kernel void kernel_mul_mv_q4_1_f32( constant ggml_metal_kargs_mul_mv & args, device const char * src0, device const char * src1, device char * dst, uint3 tgpig[[threadgroup_position_in_grid]], ushort tiisg[[thread_index_in_simdgroup]], ushort sgitg[[simdgroup_index_in_threadgroup]]) { mul_vec_q_n_f32_impl(args, src0, src1, dst, nullptr, tgpig, tiisg, sgitg); } kernel void kernel_mul_mv_q5_0_f32( constant ggml_metal_kargs_mul_mv & args, device const char * src0, device const char * src1, device char * dst, uint3 tgpig[[threadgroup_position_in_grid]], ushort tiisg[[thread_index_in_simdgroup]], ushort sgitg[[simdgroup_index_in_threadgroup]]) { mul_vec_q_n_f32_impl(args, src0, src1, dst, nullptr, tgpig, tiisg, sgitg); } kernel void kernel_mul_mv_q5_1_f32( constant ggml_metal_kargs_mul_mv & args, device const char * src0, device const char * src1, device char * dst, uint3 tgpig[[threadgroup_position_in_grid]], ushort tiisg[[thread_index_in_simdgroup]], ushort sgitg[[simdgroup_index_in_threadgroup]]) { mul_vec_q_n_f32_impl(args, src0, src1, dst, nullptr, tgpig, tiisg, sgitg); } #define NB_Q8_0 8 template void kernel_mul_mv_q8_0_f32_impl( args_t args, device const char * src0, device const char * src1, device char * dst, threadgroup char * shmem, uint3 tgpig, ushort tiisg, ushort sgitg) { const int nr = N_DST; const int nsg = N_SIMDGROUP; const int nw = N_SIMDWIDTH; const int nb = args.ne00/QK8_0; const int r0 = tgpig.x; const int r1 = tgpig.y; const int im = tgpig.z; const int first_row = (r0*nsg + sgitg)*nr; const uint i12 = im%args.ne12; const uint i13 = im/args.ne12; //const uint64_t offset0 = first_row*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03; const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13; //device const block_q8_0 * x = (device const block_q8_0 *) (src0 + offset0); device const float * y = (device const float *) (src1 + offset1); // pointers to src0 rows device const block_q8_0 * ax[nr]; for (int row = 0; row < nr; ++row) { const uint64_t offset0 = (first_row + row)*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03; ax[row] = (device const block_q8_0 *) ((device char *) src0 + offset0); } float yl[NB_Q8_0]; float sumf[nr] = { 0.f }; const short ix = tiisg/4; const short il = tiisg%4; device const float * yb = y + ix*QK8_0 + il*NB_Q8_0; // each thread in a SIMD group deals with NB_Q8_0 quants at a time for (int ib = ix; ib < nb; ib += nw/4) { for (short i = 0; i < NB_Q8_0; ++i) { yl[i] = yb[i]; } for (int row = 0; row < nr; row++) { device const int8_t * qs = ax[row][ib].qs + il*NB_Q8_0; float sumq = 0.f; for (short iq = 0; iq < NB_Q8_0; ++iq) { sumq += qs[iq] * yl[iq]; } sumf[row] += sumq*ax[row][ib].d; } yb += nw*NB_Q8_0; } device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0; for (int row = 0; row < nr; ++row) { const float tot = simd_sum(sumf[row]); if (tiisg == 0 && first_row + row < args.ne01) { dst_f32[first_row + row] = tot; } } } [[host_name("kernel_mul_mv_q8_0_f32")]] kernel void kernel_mul_mv_q8_0_f32( constant ggml_metal_kargs_mul_mv & args, device const char * src0, device const char * src1, device char * dst, uint3 tgpig[[threadgroup_position_in_grid]], ushort tiisg[[thread_index_in_simdgroup]], ushort sgitg[[simdgroup_index_in_threadgroup]]) { kernel_mul_mv_q8_0_f32_impl(args, src0, src1, dst, nullptr, tgpig, tiisg, sgitg); } #define N_MV_T_T 4 template void kernel_mul_mv_impl( args_t args, device const char * src0, device const char * src1, device char * dst, uint3 tgpig, ushort tiisg) { const int r0 = tgpig.x; const int rb = tgpig.y*N_MV_T_T; const int im = tgpig.z; const uint i12 = im%args.ne12; const uint i13 = im/args.ne12; const uint64_t offset0 = r0*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03; device const T0 * x = (device const T0 *) (src0 + offset0); device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1; if (args.ne00 < 128) { for (int row = 0; row < N_MV_T_T; ++row) { int r1 = rb + row; if (r1 >= args.ne11) { break; } const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13; device const T1 * y = (device const T1 *) (src1 + offset1); float sumf = 0; for (int i = tiisg; i < args.ne00; i += 32) { sumf += (T0) x[i] * (T1) y[i]; } float all_sum = simd_sum(sumf); if (tiisg == 0) { dst_f32[(uint64_t)r1*args.ne0 + r0] = all_sum; } } } else { device const T04 * x4 = (device const T04 *) x; for (int row = 0; row < N_MV_T_T; ++row) { int r1 = rb + row; if (r1 >= args.ne11) { break; } const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13; device const T1 * y = (device const T1 *) (src1 + offset1); device const T14 * y4 = (device const T14 *) y; float sumf = 0; for (int i = tiisg; i < args.ne00/4; i += 32) { sumf += dot((float4) x4[i], (float4) y4[i]); } float all_sum = simd_sum(sumf); if (tiisg == 0) { for (int i = 4*(args.ne00/4); i < args.ne00; ++i) all_sum += (float) (x[i] * y[i]); dst_f32[(uint64_t)r1*args.ne0 + r0] = all_sum; } } } } template kernel void kernel_mul_mv( constant ggml_metal_kargs_mul_mv & args, device const char * src0, device const char * src1, device char * dst, uint3 tgpig[[threadgroup_position_in_grid]], ushort tiisg[[thread_index_in_simdgroup]]) { kernel_mul_mv_impl( args, src0, src1, dst, tgpig, tiisg); } typedef decltype(kernel_mul_mv) mul_mv_t; template [[host_name("kernel_mul_mv_f32_f32")]] kernel mul_mv_t kernel_mul_mv; template [[host_name("kernel_mul_mv_f16_f32")]] kernel mul_mv_t kernel_mul_mv; template [[host_name("kernel_mul_mv_f16_f16")]] kernel mul_mv_t kernel_mul_mv; #if defined(GGML_METAL_USE_BF16) template [[host_name("kernel_mul_mv_bf16_f32")]] kernel mul_mv_t kernel_mul_mv; template [[host_name("kernel_mul_mv_bf16_bf16")]] kernel mul_mv_t kernel_mul_mv; #endif template kernel void kernel_mul_mv_1row( constant ggml_metal_kargs_mul_mv & args, device const char * src0, device const char * src1, device char * dst, uint3 tgpig[[threadgroup_position_in_grid]], ushort tiisg[[thread_index_in_simdgroup]]) { const int r0 = tgpig.x; const int r1 = tgpig.y; const int im = tgpig.z; const uint i12 = im%args.ne12; const uint i13 = im/args.ne12; const uint64_t offset0 = r0*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03; const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13; device const T * x = (device const T *) (src0 + offset0); device const float * y = (device const float *) (src1 + offset1); device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0; float sumf = 0; if (args.ne00 < 128) { for (int i = tiisg; i < args.ne00; i += 32) { sumf += (float) x[i] * (float) y[i]; } float all_sum = simd_sum(sumf); if (tiisg == 0) { dst_f32[r0] = all_sum; } } else { device const T4 * x4 = (device const T4 *) x; device const float4 * y4 = (device const float4 *) y; for (int i = tiisg; i < args.ne00/4; i += 32) { sumf += dot((float4) x4[i], y4[i]); } float all_sum = simd_sum(sumf); if (tiisg == 0) { for (int i = 4*(args.ne00/4); i < args.ne00; ++i) all_sum += (float) (x[i] * y[i]); dst_f32[r0] = all_sum; } } } typedef decltype(kernel_mul_mv_1row) mul_mv_1row_t; template [[host_name("kernel_mul_mv_f16_f32_1row")]] kernel mul_mv_1row_t kernel_mul_mv_1row; #if defined(GGML_METAL_USE_BF16) template [[host_name("kernel_mul_mv_bf16_f32_1row")]] kernel mul_mv_1row_t kernel_mul_mv_1row; #endif // Assumes row size (ne00) is a multiple of 4 template kernel void kernel_mul_mv_l4( constant ggml_metal_kargs_mul_mv & args, device const char * src0, device const char * src1, device char * dst, uint3 tgpig[[threadgroup_position_in_grid]], ushort tiisg[[thread_index_in_simdgroup]]) { const int nrows = args.ne11; const int r0 = tgpig.x; const int im = tgpig.z; const uint i12 = im%args.ne12; const uint i13 = im/args.ne12; const uint64_t offset0 = r0*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03; device const T4 * x4 = (device const T4 *) (src0 + offset0); device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1; for (int r1 = 0; r1 < nrows; ++r1) { const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13; device const float4 * y4 = (device const float4 *) (src1 + offset1); float sumf = 0; for (int i = tiisg; i < args.ne00/4; i += 32) { sumf += dot((float4) x4[i], y4[i]); } float all_sum = simd_sum(sumf); if (tiisg == 0) { dst_f32[(uint64_t)r1*args.ne0 + r0] = all_sum; } } } typedef decltype(kernel_mul_mv_l4) mul_mv_l4_t; template [[host_name("kernel_mul_mv_f16_f32_l4")]] kernel mul_mv_l4_t kernel_mul_mv_l4; #if defined(GGML_METAL_USE_BF16) template [[host_name("kernel_mul_mv_bf16_f32_l4")]] kernel mul_mv_l4_t kernel_mul_mv_l4; #endif static float rope_yarn_ramp(const float low, const float high, const int i0) { const float y = (i0 / 2 - low) / max(0.001f, high - low); return 1.0f - min(1.0f, max(0.0f, y)); } // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng. static void rope_yarn( float theta_extrap, float freq_scale, float corr_dims[2], int i0, float ext_factor, float mscale, thread float * cos_theta, thread float * sin_theta) { // Get n-d rotational scaling corrected for extrapolation float theta_interp = freq_scale * theta_extrap; float theta = theta_interp; if (ext_factor != 0.0f) { float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor; theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix; // Get n-d magnitude scaling corrected for interpolation mscale *= 1.0f + 0.1f * log(1.0f / freq_scale); } *cos_theta = cos(theta) * mscale; *sin_theta = sin(theta) * mscale; } // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get // `corr_fac(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))` static float rope_yarn_corr_factor(int n_dims, int n_ctx_orig, float n_rot, float base) { return n_dims * log(n_ctx_orig / (n_rot * 2 * M_PI_F)) / (2 * log(base)); } static void rope_yarn_corr_dims( int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2] ) { // start and end correction dims dims[0] = max(0.0f, floor(rope_yarn_corr_factor(n_dims, n_ctx_orig, beta_fast, freq_base))); dims[1] = min(n_dims - 1.0f, ceil(rope_yarn_corr_factor(n_dims, n_ctx_orig, beta_slow, freq_base))); } template kernel void kernel_rope_norm( constant ggml_metal_kargs_rope & args, device const char * src0, device const char * src1, device const char * src2, device char * dst, ushort tiitg[[thread_index_in_threadgroup]], ushort3 tptg [[threads_per_threadgroup]], uint3 tgpig[[threadgroup_position_in_grid]]) { const int i3 = tgpig[2]; const int i2 = tgpig[1]; const int i1 = tgpig[0]; float corr_dims[2]; rope_yarn_corr_dims(args.n_dims, args.n_ctx_orig, args.freq_base, args.beta_fast, args.beta_slow, corr_dims); device const int32_t * pos = (device const int32_t *) src1; const float theta_base = (float) pos[i2]; const float inv_ndims = -1.f/args.n_dims; float cos_theta; float sin_theta; for (int i0 = 2*tiitg; i0 < args.ne0; i0 += 2*tptg.x) { if (i0 < args.n_dims) { const int ic = i0/2; const float theta = theta_base * pow(args.freq_base, inv_ndims*i0); const float freq_factor = src2 != src0 ? ((device const float *) src2)[ic] : 1.0f; rope_yarn(theta/freq_factor, args.freq_scale, corr_dims, i0, args.ext_factor, args.attn_factor, &cos_theta, &sin_theta); device const T * const src = (device T *)(src0 + i3*args.nb03 + i2*args.nb02 + i1*args.nb01 + i0*args.nb00); device T * dst_data = (device T *)( dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1 + i0*args.nb0); const float x0 = src[0]; const float x1 = src[1]; dst_data[0] = x0*cos_theta - x1*sin_theta; dst_data[1] = x0*sin_theta + x1*cos_theta; } else { device const T * const src = (device T *)(src0 + i3*args.nb03 + i2*args.nb02 + i1*args.nb01 + i0*args.nb00); device T * dst_data = (device T *)( dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1 + i0*args.nb0); dst_data[0] = src[0]; dst_data[1] = src[1]; } } } template kernel void kernel_rope_neox( constant ggml_metal_kargs_rope & args, device const char * src0, device const char * src1, device const char * src2, device char * dst, ushort tiitg[[thread_index_in_threadgroup]], ushort3 tptg [[threads_per_threadgroup]], uint3 tgpig[[threadgroup_position_in_grid]]) { const int i3 = tgpig[2]; const int i2 = tgpig[1]; const int i1 = tgpig[0]; float corr_dims[2]; rope_yarn_corr_dims(args.n_dims, args.n_ctx_orig, args.freq_base, args.beta_fast, args.beta_slow, corr_dims); device const int32_t * pos = (device const int32_t *) src1; const float theta_base = (float) pos[i2]; const float inv_ndims = -1.f/args.n_dims; float cos_theta; float sin_theta; for (int i0 = 2*tiitg; i0 < args.ne0; i0 += 2*tptg.x) { if (i0 < args.n_dims) { const int ic = i0/2; const float theta = theta_base * pow(args.freq_base, inv_ndims*i0); const float freq_factor = src2 != src0 ? ((device const float *) src2)[ic] : 1.0f; rope_yarn(theta/freq_factor, args.freq_scale, corr_dims, i0, args.ext_factor, args.attn_factor, &cos_theta, &sin_theta); device const T * const src = (device T *)(src0 + i3*args.nb03 + i2*args.nb02 + i1*args.nb01 + ic*args.nb00); device T * dst_data = (device T *)( dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1 + ic*args.nb0); const float x0 = src[0]; const float x1 = src[args.n_dims/2]; dst_data[0] = x0*cos_theta - x1*sin_theta; dst_data[args.n_dims/2] = x0*sin_theta + x1*cos_theta; } else { device const T * const src = (device T *)(src0 + i3*args.nb03 + i2*args.nb02 + i1*args.nb01 + i0*args.nb00); device T * dst_data = (device T *)( dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1 + i0*args.nb0); dst_data[0] = src[0]; dst_data[1] = src[1]; } } } typedef decltype(kernel_rope_norm) kernel_rope_norm_t; typedef decltype(kernel_rope_neox) kernel_rope_neox_t; template [[host_name("kernel_rope_norm_f32")]] kernel kernel_rope_norm_t kernel_rope_norm; template [[host_name("kernel_rope_norm_f16")]] kernel kernel_rope_norm_t kernel_rope_norm; template [[host_name("kernel_rope_neox_f32")]] kernel kernel_rope_neox_t kernel_rope_neox; template [[host_name("kernel_rope_neox_f16")]] kernel kernel_rope_neox_t kernel_rope_neox; typedef void (im2col_t)( device const float * x, device char * dst, constant int32_t & ofs0, constant int32_t & ofs1, constant int32_t & IW, constant int32_t & IH, constant int32_t & CHW, constant int32_t & s0, constant int32_t & s1, constant int32_t & p0, constant int32_t & p1, constant int32_t & d0, constant int32_t & d1, uint3 tgpig[[threadgroup_position_in_grid]], uint3 tgpg[[threadgroups_per_grid]], uint3 tpitg[[thread_position_in_threadgroup]], uint3 ntg[[threads_per_threadgroup]]); template kernel void kernel_im2col( device const float * x, device char * dst, constant int32_t & ofs0, constant int32_t & ofs1, constant int32_t & IW, constant int32_t & IH, constant int32_t & CHW, constant int32_t & s0, constant int32_t & s1, constant int32_t & p0, constant int32_t & p1, constant int32_t & d0, constant int32_t & d1, uint3 tgpig[[threadgroup_position_in_grid]], uint3 tgpg[[threadgroups_per_grid]], uint3 tpitg[[thread_position_in_threadgroup]], uint3 ntg[[threads_per_threadgroup]]) { const int32_t iiw = tgpig[2] * s0 + tpitg[2] * d0 - p0; const int32_t iih = tgpig[1] * s1 + tpitg[1] * d1 - p1; const int32_t offset_dst = (tpitg[0] * tgpg[1] * tgpg[2] + tgpig[1] * tgpg[2] + tgpig[2]) * CHW + (tgpig[0] * (ntg[1] * ntg[2]) + tpitg[1] * ntg[2] + tpitg[2]); device T * pdst = (device T *) (dst); if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) { pdst[offset_dst] = 0.0f; } else { const int32_t offset_src = tpitg[0] * ofs0 + tgpig[0] * ofs1; pdst[offset_dst] = x[offset_src + iih * IW + iiw]; } } template [[host_name("kernel_im2col_f32")]] kernel im2col_t kernel_im2col; template [[host_name("kernel_im2col_f16")]] kernel im2col_t kernel_im2col; typedef void (im2col_ext_t)( device const float * x, device char * dst, constant int32_t & ofs0, constant int32_t & ofs1, constant int32_t & IW, constant int32_t & IH, constant int32_t & CHW, constant int32_t & s0, constant int32_t & s1, constant int32_t & p0, constant int32_t & p1, constant int32_t & d0, constant int32_t & d1, constant int32_t & N, constant int32_t & KH, constant int32_t & KW, uint3 tgpig[[threadgroup_position_in_grid]], uint3 tgpg[[threadgroups_per_grid]], uint3 tpitg[[thread_position_in_threadgroup]], uint3 ntg[[threads_per_threadgroup]]); template kernel void kernel_im2col_ext( device const float * x, device char * dst, constant int32_t & ofs0, constant int32_t & ofs1, constant int32_t & IW, constant int32_t & IH, constant int32_t & CHW, constant int32_t & s0, constant int32_t & s1, constant int32_t & p0, constant int32_t & p1, constant int32_t & d0, constant int32_t & d1, constant int32_t & N, constant int32_t & KH, constant int32_t & KW, uint3 tgpig[[threadgroup_position_in_grid]], uint3 tgpg[[threadgroups_per_grid]], // tgpg[0] = D x IC x KH x KW, CHW = IC x KH x KW uint3 tpitg[[thread_position_in_threadgroup]], uint3 ntg[[threads_per_threadgroup]]) { // [M, 1, 1] const int32_t KHW = KH * KW; // KHW == ntg[1] * ntg[2], KW == ntg[2] const int32_t d = tgpig[0] / CHW; const int32_t chw = tgpig[0] % CHW; const int32_t tgpig_0 = chw / KHW; // 0 ~ (IC - 1) const int32_t HW = tgpig[0] % KHW; const int32_t tpitg_0 = (d * ntg[0]) + tpitg[0]; if (tpitg_0 >= N) { return; } const int32_t tpitg_1 = HW / KW; const int32_t tpitg_2 = HW % KW; const int32_t iiw = tgpig[2] * s0 + tpitg_2 * d0 - p0; const int32_t iih = tgpig[1] * s1 + tpitg_1 * d1 - p1; const int32_t offset_dst = (tpitg_0 * tgpg[1] * tgpg[2] + tgpig[1] * tgpg[2] + tgpig[2]) * CHW + (tgpig_0 * KHW + tpitg_1 * KW + tpitg_2); device T * pdst = (device T *) (dst); if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) { pdst[offset_dst] = 0.0f; } else { const int32_t offset_src = tpitg_0 * ofs0 + tgpig_0 * ofs1; pdst[offset_dst] = x[offset_src + iih * IW + iiw]; } } template [[host_name("kernel_im2col_ext_f32")]] kernel im2col_ext_t kernel_im2col_ext; template [[host_name("kernel_im2col_ext_f16")]] kernel im2col_ext_t kernel_im2col_ext; kernel void kernel_upscale_f32( device const char * src0, device char * dst, constant int64_t & ne00, constant int64_t & ne01, constant int64_t & ne02, constant int64_t & ne03, constant uint64_t & nb00, constant uint64_t & nb01, constant uint64_t & nb02, constant uint64_t & nb03, constant int64_t & ne0, constant int64_t & ne1, constant int64_t & ne2, constant int64_t & ne3, constant uint64_t & nb0, constant uint64_t & nb1, constant uint64_t & nb2, constant uint64_t & nb3, constant float & sf0, constant float & sf1, constant float & sf2, constant float & sf3, uint3 tgpig[[threadgroup_position_in_grid]], uint3 tpitg[[thread_position_in_threadgroup]], uint3 ntg[[threads_per_threadgroup]]) { const int64_t i3 = tgpig.z; const int64_t i2 = tgpig.y; const int64_t i1 = tgpig.x; const int64_t i03 = i3/sf3; const int64_t i02 = i2/sf2; const int64_t i01 = i1/sf1; for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) { const int64_t i00 = i0/sf0; device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00); device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); dst_ptr[0] = src0_ptr[0]; } } kernel void kernel_pad_f32( device const char * src0, device char * dst, constant int64_t & ne00, constant int64_t & ne01, constant int64_t & ne02, constant int64_t & ne03, constant uint64_t & nb00, constant uint64_t & nb01, constant uint64_t & nb02, constant uint64_t & nb03, constant int64_t & ne0, constant int64_t & ne1, constant int64_t & ne2, constant int64_t & ne3, constant uint64_t & nb0, constant uint64_t & nb1, constant uint64_t & nb2, constant uint64_t & nb3, uint3 tgpig[[threadgroup_position_in_grid]], uint3 tpitg[[thread_position_in_threadgroup]], uint3 ntg[[threads_per_threadgroup]]) { const int64_t i3 = tgpig.z; const int64_t i2 = tgpig.y; const int64_t i1 = tgpig.x; const int64_t i03 = i3; const int64_t i02 = i2; const int64_t i01 = i1; device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01); device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1); if (i1 < ne01 && i2 < ne02 && i3 < ne03) { for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) { if (i0 < ne00) { dst_ptr[i0] = src0_ptr[i0]; } else { dst_ptr[i0] = 0.0f; } } return; } for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) { dst_ptr[i0] = 0.0f; } } kernel void kernel_arange_f32( device char * dst, constant int64_t & ne0, constant float & start, constant float & step, uint3 tgpig[[threadgroup_position_in_grid]], uint3 tpitg[[thread_position_in_threadgroup]], uint3 ntg[[threads_per_threadgroup]]) { device float * dst_ptr = (device float *) dst; for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) { dst_ptr[i0] = start + step * i0; } } kernel void kernel_timestep_embedding_f32( device const char * src0, device char * dst, constant uint64_t & nb1, constant int & dim, constant int & max_period, uint3 tgpig[[threadgroup_position_in_grid]], uint3 tpitg[[thread_position_in_threadgroup]], uint3 ntg[[threads_per_threadgroup]]) { int i = tgpig.x; device float * embed_data = (device float *)(dst + i*nb1); int half_ = dim / 2; for (int j = tpitg.x; j < half_; j += ntg.x) { float timestep = ((device float *)src0)[i]; float freq = (float)exp(-log((float)max_period) * j / half_); float arg = timestep * freq; embed_data[j ] = cos(arg); embed_data[j + half_] = sin(arg); } if (dim % 2 != 0 && tpitg.x == 0) { embed_data[dim] = 0.f; } } // bitonic sort implementation following the CUDA kernels as reference typedef void (argsort_t)( device const float * x, device int32_t * dst, constant int64_t & ncols, constant int64_t & ncols_pad, threadgroup int32_t * shared_values [[threadgroup(0)]], uint3 tgpig[[threadgroup_position_in_grid]], uint3 tpitg[[thread_position_in_threadgroup]]); template kernel void kernel_argsort_f32_i32( device const float * x, device int32_t * dst, constant int64_t & ncols, constant int64_t & ncols_pad, threadgroup int32_t * shared_values [[threadgroup(0)]], uint3 tgpig[[threadgroup_position_in_grid]], uint3 tpitg[[thread_position_in_threadgroup]]) { // bitonic sort int col = tpitg[0]; int row = tgpig[1]; if (col >= ncols_pad) return; device const float * x_row = x + row * ncols; threadgroup int32_t * dst_row = shared_values; // initialize indices dst_row[col] = col; threadgroup_barrier(mem_flags::mem_threadgroup); for (int k = 2; k <= ncols_pad; k *= 2) { for (int j = k / 2; j > 0; j /= 2) { int ixj = col ^ j; if (ixj > col) { if ((col & k) == 0) { if (dst_row[col] >= ncols || (dst_row[ixj] < ncols && (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]])) ) { SWAP(dst_row[col], dst_row[ixj]); } } else { if (dst_row[ixj] >= ncols || (dst_row[col] < ncols && (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]])) ) { SWAP(dst_row[col], dst_row[ixj]); } } } threadgroup_barrier(mem_flags::mem_threadgroup); } } // copy the result to dst without the padding if (col < ncols) { dst[row * ncols + col] = dst_row[col]; } } template [[host_name("kernel_argsort_f32_i32_asc")]] kernel argsort_t kernel_argsort_f32_i32; template [[host_name("kernel_argsort_f32_i32_desc")]] kernel argsort_t kernel_argsort_f32_i32; kernel void kernel_leaky_relu_f32( device const float * src0, device float * dst, constant float & slope, uint tpig[[thread_position_in_grid]]) { dst[tpig] = src0[tpig] > 0.0f ? src0[tpig] : src0[tpig] * slope; } // ref: https://arxiv.org/pdf/2307.08691.pdf template< typename q_t, // query types in shared memory typename q4_t, typename q8x8_t, typename k_t, // key types in shared memory typename k4x4_t, typename k8x8_t, typename v_t, // value types in shared memory typename v4x4_t, typename v8x8_t, typename qk_t, // Q*K types typename qk8x8_t, typename s_t, // soft-max types typename s8x8_t, typename o_t, // attention accumulation types typename o4_t, typename o8x8_t, typename kd4x4_t, // key type in device memory short nl_k, void (*deq_k)(device const kd4x4_t *, short, thread k4x4_t &), typename vd4x4_t, // key type in device memory short nl_v, void (*deq_v)(device const vd4x4_t *, short, thread v4x4_t &), short D, // head size short Q = 8, // queries per threadgroup short KV = 8, // key/value processed per each simdgroup short C = 32> // cache items per threadgroup kernel void kernel_flash_attn_ext( constant ggml_metal_kargs_flash_attn_ext & args, device const char * q, device const char * k, device const char * v, device const char * mask, device char * dst, threadgroup half * shmem_f16 [[threadgroup(0)]], uint3 tgpig[[threadgroup_position_in_grid]], ushort3 ntg[[threads_per_threadgroup]], ushort tiisg[[thread_index_in_simdgroup]], ushort sgitg[[simdgroup_index_in_threadgroup]]) { const short nsg = ntg.y; // number of simdgroups const int iq3 = tgpig[2]; const int iq2 = tgpig[1]; const int iq1 = tgpig[0]*Q; const short D4 = D/4; const short D8 = D/8; const short D16 = D/16; const short NW = N_SIMDWIDTH; const short SH = (2*C + Q); // shared memory per simdgroup (s_t == float) const short TS = nsg*SH; // shared memory size per query in (s_t == float) const short T = D + 2*TS; // shared memory size per query in (half) threadgroup q_t * sq = (threadgroup q_t *) (shmem_f16 + 0*D); // holds the query data threadgroup q4_t * sq4 = (threadgroup q4_t *) (shmem_f16 + 0*D); // same as above but in q4_t threadgroup o_t * so = (threadgroup o_t *) (shmem_f16 + 0*D); // reuse query data for accumulation threadgroup o4_t * so4 = (threadgroup o4_t *) (shmem_f16 + 0*D); // same as above but in o4_t threadgroup s_t * ss = (threadgroup s_t *) (shmem_f16 + 2*sgitg*SH + Q*D); // scratch buffer for attention, mask and diagonal matrix threadgroup k_t * sk = (threadgroup k_t *) (shmem_f16 + sgitg*(4*16*KV) + Q*T); // scratch buffer to load K in shared memory threadgroup k4x4_t * sk4x4 = (threadgroup k4x4_t *) (shmem_f16 + sgitg*(4*16*KV) + Q*T); // same as above but in k4x4_t threadgroup v_t * sv = (threadgroup v_t *) (shmem_f16 + sgitg*(4*16*KV) + Q*T); // scratch buffer to load V in shared memory threadgroup v4x4_t * sv4x4 = (threadgroup v4x4_t *) (shmem_f16 + sgitg*(4*16*KV) + Q*T); // same as above but in v4x4_t // store the result for all queries in local memory in 8x8 matrices (the O matrix from the paper) o8x8_t lo[D8]; // load heads from Q to shared memory for (short j = sgitg; j < Q; j += nsg) { device const float4 * q4 = (device const float4 *) ((device const char *) q + ((iq1 + j)*args.nb01 + iq2*args.nb02 + iq3*args.nb03)); for (short i = tiisg; i < D4; i += NW) { if (iq1 + j < args.ne01) { sq4[j*D4 + i] = (q4_t) q4[i]; } else { sq4[j*D4 + i] = (q4_t) 0.0f; } } } // zero out lo for (short i = 0; i < D8; ++i) { lo[i] = make_filled_simdgroup_matrix((o_t) 0.0f); } // zero out shared memory SH for (short j = 0; j < Q; ++j) { for (short i = tiisg; i < SH; i += NW) { ss[j*TS + i] = 0.0f; } } threadgroup_barrier(mem_flags::mem_threadgroup); { half S[Q] = { [0 ... Q-1] = 0.0f }; half M[Q] = { [0 ... Q-1] = -__FLT16_MAX__/2 }; // thread indices inside the simdgroup // TODO: see if we can utilize quad-group functions for better performance // https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf (6.9.3) const short tx = tiisg%4; const short ty = tiisg/4; // broadcast kv //const short rk2 = args.ne02/args.ne12; //const short rk3 = args.ne03/args.ne13; const short ikv2 = iq2/(args.ne02/args.ne_12_2); const short ikv3 = iq3/(args.ne03/args.ne_12_3); // load the queries from shared memory into local memory q8x8_t mq[D8]; for (short i = 0; i < D8; ++i) { simdgroup_load(mq[i], sq + i*8, D); } const bool has_mask = mask != q; half slope = 1.0f; // ALiBi if (args.max_bias > 0.0f) { const short h = iq2; const half base = h < args.n_head_log2 ? args.m0 : args.m1; const short exph = h < args.n_head_log2 ? h + 1 : 2*(h - args.n_head_log2) + 1; slope = pow(base, exph); } // loop over the KV cache // each simdgroup handles blocks of Q rows and C columns for (int ic0 = 0; ic0 < args.ne11; ic0 += C*nsg) { const int ic = ic0 + C*sgitg; if (ic >= args.ne11) { break; } if (has_mask) { // used to detect blocks full of -INF half smax = -INFINITY; // load the mask in shared memory #pragma unroll(Q) for (short j = 0; j < Q; ++j) { device const half * pm = (device const half *) ((device const char *) mask + (iq1 + j)*args.nb31); const half m = pm[ic + tiisg]; ss[j*TS + C + tiisg] = m; smax = max(smax, m); } smax = simd_max(smax); if (smax == -INFINITY) { continue; } } // Q*K^T { for (short cc = 0; cc < C/8; ++cc) { qk8x8_t mqk = make_filled_simdgroup_matrix((qk_t) 0.0f); // this is compile-time check, so it does not have runtime overhead if (is_same::value) { // we can read directly from global memory device const k_t * pk = (device const k_t *) ((device const char *) k + ((ic + 8*cc)*args.nb_12_1 + ikv2*args.nb_12_2 + ikv3*args.nb_12_3)); #pragma unroll(D8) for (short i = 0; i < D8; ++i) { k8x8_t mk; simdgroup_load(mk, pk + i*8, args.nb_12_1/sizeof(k_t), 0, true); // transpose // TODO: use ne10 simdgroup_multiply_accumulate(mqk, mq[i], mk, mqk); } } else { for (short ii = 0; ii < D16; ii += 4) { device const kd4x4_t * pk4x4 = (device const kd4x4_t *) ((device const char *) k + ((ic + 8*cc + ty)*args.nb_12_1 + ikv2*args.nb_12_2 + ikv3*args.nb_12_3)); if (D16%4 == 0) { // the head is evenly divisible by 4*16 = 64, so no need for bound checks { k4x4_t tmp; deq_k(pk4x4 + (ii + tx)/nl_k, (ii + tx)%nl_k, tmp); sk4x4[4*ty + tx] = tmp; } simdgroup_barrier(mem_flags::mem_threadgroup); #pragma unroll(4) for (short k = 0; k < 4; ++k) { k8x8_t mk; simdgroup_load(mk, sk + 16*k + 0*8, 4*16, 0, true); // transpose simdgroup_multiply_accumulate(mqk, mq[2*(ii + k) + 0], mk, mqk); simdgroup_load(mk, sk + 16*k + 1*8, 4*16, 0, true); // transpose simdgroup_multiply_accumulate(mqk, mq[2*(ii + k) + 1], mk, mqk); } } else { if (ii + tx < D16) { k4x4_t tmp; deq_k(pk4x4 + (ii + tx)/nl_k, (ii + tx)%nl_k, tmp); sk4x4[4*ty + tx] = tmp; } simdgroup_barrier(mem_flags::mem_threadgroup); for (short k = 0; k < 4 && ii + k < D16; ++k) { k8x8_t mk; simdgroup_load(mk, sk + 16*k + 0*8, 4*16, 0, true); // transpose simdgroup_multiply_accumulate(mqk, mq[2*(ii + k) + 0], mk, mqk); simdgroup_load(mk, sk + 16*k + 1*8, 4*16, 0, true); // transpose simdgroup_multiply_accumulate(mqk, mq[2*(ii + k) + 1], mk, mqk); } } } } // cast qk_t -> s_t //s8x8_t mqks(1.0f); //simdgroup_multiply(mqks, mqk, mqks); //simdgroup_store(mqks, ss + 8*cc, TS, 0, false); simdgroup_store(mqk, ss + 8*cc, TS, 0, false); } } // online softmax { for (ushort j = 0; j < Q; ++j) { const half m = M[j]; // scale and apply the logitcap / mask half s = ss[j*TS + tiisg]*args.scale; if (args.logit_softcap != 0.0f) { s = args.logit_softcap*precise::tanh(s); } // mqk = mqk + mask*slope s += slope*ss[j*TS + C + tiisg]; M[j] = simd_max(max(M[j], s)); const half ms = exp(m - M[j]); const half vs = exp(s - M[j]); S[j] = S[j]*ms + simd_sum(vs); // the P matrix from the paper (Q rows, C columns) ss[j*TS + tiisg] = vs; // create a QxQ diagonal matrix for rescaling the output if (tiisg == j) { ss[j*TS + 2*C + j] = ms; } } } // O = diag(ms)*O { s8x8_t mm; simdgroup_load(mm, ss + 2*C, TS, 0, false); #pragma unroll(D8) for (short i = 0; i < D8; ++i) { simdgroup_multiply(lo[i], mm, lo[i]); } } // O = O + (Q*K^T)*V { for (short cc = 0; cc < C/8; ++cc) { s8x8_t ms; simdgroup_load(ms, ss + 8*cc, TS, 0, false); if (is_same::value) { // we can read directly from global memory device const v_t * pv = (device const v_t *) ((device const char *) v + ((ic + 8*cc)*args.nb_12_1 + ikv2*args.nb_12_2 + ikv3*args.nb_12_3)); #pragma unroll(D8) for (short i = 0; i < D8; ++i) { v8x8_t mv; simdgroup_load(mv, pv + i*8, args.nb_12_1/sizeof(v_t), 0, false); // TODO: use ne20 simdgroup_multiply_accumulate(lo[i], ms, mv, lo[i]); } } else { for (short ii = 0; ii < D16; ii += 4) { device const vd4x4_t * pv4x4 = (device const vd4x4_t *) ((device const char *) v + ((ic + 8*cc + ty)*args.nb_12_1 + ikv2*args.nb_12_2 + ikv3*args.nb_12_3)); if (D16%4 == 0) { // no need for bound checks { v4x4_t tmp; deq_v(pv4x4 + (ii + tx)/nl_v, (ii + tx)%nl_v, tmp); sv4x4[4*ty + tx] = tmp; } simdgroup_barrier(mem_flags::mem_threadgroup); #pragma unroll(4) for (short k = 0; k < 4; ++k) { v8x8_t mv; simdgroup_load(mv, sv + 16*k + 0*8, 4*16, 0, false); simdgroup_multiply_accumulate(lo[2*(ii + k) + 0], ms, mv, lo[2*(ii + k) + 0]); simdgroup_load(mv, sv + 16*k + 1*8, 4*16, 0, false); simdgroup_multiply_accumulate(lo[2*(ii + k) + 1], ms, mv, lo[2*(ii + k) + 1]); } } else { if (ii + tx < D16) { v4x4_t tmp; deq_v(pv4x4 + (ii + tx)/nl_v, (ii + tx)%nl_v, tmp); sv4x4[4*ty + tx] = tmp; } simdgroup_barrier(mem_flags::mem_threadgroup); for (short k = 0; k < 4 && ii + k < D16; ++k) { v8x8_t mv; simdgroup_load(mv, sv + 16*k + 0*8, 4*16, 0, false); simdgroup_multiply_accumulate(lo[2*(ii + k) + 0], ms, mv, lo[2*(ii + k) + 0]); simdgroup_load(mv, sv + 16*k + 1*8, 4*16, 0, false); simdgroup_multiply_accumulate(lo[2*(ii + k) + 1], ms, mv, lo[2*(ii + k) + 1]); } } } } } } } // these are needed for reducing the results from the simdgroups (reuse the ss buffer) for (short j = 0; j < Q; ++j) { if (tiisg == 0) { ss[j*TS + 0] = S[j]; ss[j*TS + 1] = M[j]; } } } // reduce the warps sequentially for (ushort sg = 1; sg < nsg; ++sg) { half S = { 0.0f }; half M = { -__FLT16_MAX__/2 }; threadgroup_barrier(mem_flags::mem_threadgroup); // each simdgroup stores its output to shared memory, reusing sq if (sgitg == sg) { for (short i = 0; i < D8; ++i) { simdgroup_store(lo[i], so + i*8, D, 0, false); } } threadgroup_barrier(mem_flags::mem_threadgroup); // the first simdgroup accumulates the results from the other simdgroups if (sgitg == 0) { for (short j = 0; j < Q; ++j) { const half S0 = ss[j*TS + 0]; const half S1 = ss[j*TS + sg*SH + 0]; const half M0 = ss[j*TS + 1]; const half M1 = ss[j*TS + sg*SH + 1]; M = max(M0, M1); const half ms0 = exp(M0 - M); const half ms1 = exp(M1 - M); S = S0*ms0 + S1*ms1; if (tiisg == 0) { ss[j*TS + 0] = S; ss[j*TS + 1] = M; ss[j*TS + 2*C + j ] = ms0; ss[j*TS + 2*C + j + sg*SH] = ms1; } } // O_0 = diag(ms0)*O_0 + diag(ms1)*O_1 { s8x8_t ms0; s8x8_t ms1; simdgroup_load(ms0, ss + 2*C, TS, 0, false); simdgroup_load(ms1, ss + 2*C + sg*SH, TS, 0, false); #pragma unroll(D8) for (short i = 0; i < D8; ++i) { o8x8_t t; simdgroup_load (t, so + i*8, D, 0, false); simdgroup_multiply(t, ms1, t); simdgroup_multiply_accumulate(lo[i], ms0, lo[i], t); } } } } // store result to shared memory (reuse sq) if (sgitg == 0) { for (short i = 0; i < D8; ++i) { simdgroup_store(lo[i], so + i*8, D, 0, false); } } device float4 * dst4 = (device float4 *) dst; // final rescale with 1/S and store to global memory if (sgitg == 0) { for (short j = 0; j < Q && iq1 + j < args.ne01; ++j) { const float S = ss[j*TS + 0]; for (short i = tiisg; i < D4; i += NW) { dst4[((uint64_t)iq3*args.ne2*args.ne1 + iq2 + (uint64_t)(iq1 + j)*args.ne1)*D4 + i] = (float4) so4[j*D4 + i]/S; } } } } // TODO: this is quite ugly. in the future these types will be hardcoded in the kernel, but for now keep them as // template to be able to explore different combinations // #define FA_TYPES \ half, half4, simdgroup_half8x8, \ half, half4x4, simdgroup_half8x8, \ half, half4x4, simdgroup_half8x8, \ float, simdgroup_float8x8, \ float, simdgroup_float8x8, \ half, half4, simdgroup_half8x8 typedef decltype(kernel_flash_attn_ext) flash_attn_ext_t; template [[host_name("kernel_flash_attn_ext_f16_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_f16_h80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_f16_h96" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_f16_h112")]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_f16_h128")]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_f16_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext; #if defined(GGML_METAL_USE_BF16) template [[host_name("kernel_flash_attn_ext_bf16_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_bf16_h80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_bf16_h96" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_bf16_h112")]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_bf16_h128")]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_bf16_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext; #endif template [[host_name("kernel_flash_attn_ext_q4_0_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q4_0_h80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q4_0_h96" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q4_0_h112")]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q4_0_h128")]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q4_0_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q4_1_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q4_1_h80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q4_1_h96" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q4_1_h112")]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q4_1_h128")]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q4_1_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q5_0_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q5_0_h80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q5_0_h96" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q5_0_h112")]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q5_0_h128")]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q5_0_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q5_1_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q5_1_h80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q5_1_h96" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q5_1_h112")]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q5_1_h128")]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q5_1_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q8_0_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q8_0_h80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q8_0_h96" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q8_0_h112")]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q8_0_h128")]] kernel flash_attn_ext_t kernel_flash_attn_ext; template [[host_name("kernel_flash_attn_ext_q8_0_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext; #undef FA_TYPES template< typename q4_t, // query types in shared memory typename q4x4_t, typename k4x4_t, // key types in shared memory typename v4x4_t, // value types in shared memory typename qk_t, // Q*K types typename s_t, // soft-max types typename s4_t, typename s4x4_t, typename o4x4_t, // attention accumulation types typename kd4x4_t, // key type in device memory short nl_k, void (*deq_k)(device const kd4x4_t *, short, thread k4x4_t &), typename vd4x4_t, // key type in device memory short nl_v, void (*deq_v)(device const vd4x4_t *, short, thread v4x4_t &), short D, // head size short Q = 1, // queries per threadgroup short C = 32> // cache items per threadgroup kernel void kernel_flash_attn_ext_vec( constant ggml_metal_kargs_flash_attn_ext & args, device const char * q, device const char * k, device const char * v, device const char * mask, device char * dst, threadgroup half * shmem_f16 [[threadgroup(0)]], uint3 tgpig[[threadgroup_position_in_grid]], ushort3 ntg[[threads_per_threadgroup]], ushort tiisg[[thread_index_in_simdgroup]], ushort sgitg[[simdgroup_index_in_threadgroup]]) { const short nsg = ntg.y; // number of simdgroups const int iq3 = tgpig[2]; const int iq2 = tgpig[1]; const int iq1 = tgpig[0]; const short D4 = D/4; const short D16 = D/16; const short NW = N_SIMDWIDTH; const short NL = NW/4; // note: this can be adjusted to support D%64 == 0 and D%32 == 0 const short SH = 2*C; // shared memory per simdgroup const short T = D + nsg*SH; // shared memory size per query in (half) //threadgroup q_t * sq = (threadgroup q_t *) (shmem_f16 + 0*D); // holds the query data threadgroup q4_t * sq4 = (threadgroup q4_t *) (shmem_f16 + 0*D); // same as above but in q4_t threadgroup q4x4_t * sq4x4 = (threadgroup q4x4_t *) (shmem_f16 + 0*D); // same as above but in q4x4_t threadgroup s_t * ss = (threadgroup s_t *) (shmem_f16 + sgitg*SH + Q*D); // scratch buffer for attention threadgroup s4_t * ss4 = (threadgroup s4_t *) (shmem_f16 + sgitg*SH + Q*D); // same as above but in s4_t threadgroup half * sm = (threadgroup half *) (shmem_f16 + sgitg*SH + C + Q*D); // scratch buffer for mask threadgroup o4x4_t * sr4x4 = (threadgroup o4x4_t *) (shmem_f16 + sgitg*D + Q*T); // scratch buffer for the results // store the result for all queries in local memory in 8x8 matrices (the O matrix from the paper) o4x4_t lo[D16/NL]; // load heads from Q to shared memory device const float4 * q4 = (device const float4 *) ((device const char *) q + (iq1*args.nb01 + iq2*args.nb02 + iq3*args.nb03)); for (short i = tiisg; i < D4; i += NW) { if (iq1 < args.ne01) { sq4[i] = (q4_t) q4[i]; } else { sq4[i] = (q4_t) 0.0f; } } // zero out lo for (short i = 0; i < D16/NL; ++i) { lo[i] = (o4x4_t) 0.0f; } // zero out shared memory SH for (short i = tiisg; i < SH/4; i += NW) { ss4[i] = (s4_t) 0.0f; } threadgroup_barrier(mem_flags::mem_threadgroup); { half S = 0.0f; half M = -__FLT16_MAX__/2; // thread indices inside the simdgroup const short tx = tiisg%NL; const short ty = tiisg/NL; // broadcast kv //const short rk2 = args.ne02/args.ne12; //const short rk3 = args.ne03/args.ne13; const short ikv2 = iq2/(args.ne02/args.ne_12_2); const short ikv3 = iq3/(args.ne03/args.ne_12_3); // load the queries from shared memory into local memory q4x4_t mq[D16/NL]; #pragma unroll(D16/NL) for (short ii = 0; ii < D16; ii += NL) { mq[ii/NL] = sq4x4[ii + tx]; } const bool has_mask = mask != q; // pointer to the mask device const half * pm = (device const half *) (mask + iq1*args.nb31); half slope = 1.0f; // ALiBi if (args.max_bias > 0.0f) { const short h = iq2; const half base = h < args.n_head_log2 ? args.m0 : args.m1; const short exph = h < args.n_head_log2 ? h + 1 : 2*(h - args.n_head_log2) + 1; slope = pow(base, exph); } // loop over the KV cache // each simdgroup handles blocks of Q rows and C columns for (int ic0 = 0; ic0 < args.ne11; ic0 += C*nsg) { const int ic = ic0 + C*sgitg; if (ic >= args.ne11) { break; } if (has_mask) { sm[tiisg] = pm[ic + tiisg]; } // Q*K^T { // each simdgroup processes 1 query and 4 (NW/NL) keys for (short cc = 0; cc < C/4; ++cc) { qk_t mqka[4] = { 0.0, 0.0, 0.0, 0.0 }; device const kd4x4_t * pk = (device const kd4x4_t *) ((device const char *) k + ((ic + 4*cc + ty)*args.nb_12_1 + ikv2*args.nb_12_2 + ikv3*args.nb_12_3)); #pragma unroll(D16/NL) for (short ii = 0; ii < D16; ii += NL) { const short i = ii + tx; k4x4_t mk; deq_k(pk + i/nl_k, i%nl_k, mk); // note: this is less precise than the version below //mqka[0] += dot(mq[ii/NL][0], mk[0]); //mqka[1] += dot(mq[ii/NL][1], mk[1]); //mqka[2] += dot(mq[ii/NL][2], mk[2]); //mqka[3] += dot(mq[ii/NL][3], mk[3]); mqka[0] += dot((float4) mq[ii/NL][0], (float4) mk[0]); mqka[1] += dot((float4) mq[ii/NL][1], (float4) mk[1]); mqka[2] += dot((float4) mq[ii/NL][2], (float4) mk[2]); mqka[3] += dot((float4) mq[ii/NL][3], (float4) mk[3]); } qk_t mqk = mqka[0] + mqka[1] + mqka[2] + mqka[3]; // simdgroup reduce // [ 0 .. 7] -> [ 0] // [ 8 .. 15] -> [ 8] // [16 .. 23] -> [16] // [24 .. 31] -> [24] //mqk += simd_shuffle_down(mqk, 16); //mqk += simd_shuffle_down(mqk, 8); mqk += simd_shuffle_down(mqk, 4); mqk += simd_shuffle_down(mqk, 2); mqk += simd_shuffle_down(mqk, 1); // mqk = mqk*scale + mask*slope if (tx == 0) { mqk *= args.scale; if (args.logit_softcap != 0.0f) { mqk = args.logit_softcap*precise::tanh(mqk); } mqk += sm[4*cc + ty]*slope; ss[4*cc + ty] = mqk; } } } simdgroup_barrier(mem_flags::mem_threadgroup); // online softmax { const half m = M; const half s = ss[tiisg]; M = simd_max(max(M, s)); const half ms = exp(m - M); const half vs = exp(s - M); S = S*ms + simd_sum(vs); // the P matrix from the paper (Q rows, C columns) ss[tiisg] = vs; // O = diag(ms)*O #pragma unroll(D16/NL) for (short ii = 0; ii < D16; ii += NL) { lo[ii/NL] *= ms; } } simdgroup_barrier(mem_flags::mem_threadgroup); // O = O + (Q*K^T)*V { for (short cc = 0; cc < C/4; ++cc) { device const vd4x4_t * pv4 = (device const vd4x4_t *) ((device const char *) v + ((ic + 4*cc + ty)*args.nb_12_1 + ikv2*args.nb_12_2 + ikv3*args.nb_12_3)); const s4x4_t ms(ss[4*cc + ty]); #pragma unroll(D16/NL) for (short ii = 0; ii < D16; ii += NL) { const short i = ii + tx; v4x4_t mv; deq_v(pv4 + i/nl_v, i%nl_v, mv); lo[ii/NL] += mv*ms; } } } } // these are needed for reducing the results from the simdgroups (reuse the ss buffer) if (tiisg == 0) { ss[0] = (s_t) S; ss[1] = (s_t) M; } } // simdgroup reduce // [ 0, 8, 16, 24] -> [ 0] // [ 1, 9, 17, 25] -> [ 1] // [ 2, 10, 18, 26] -> [ 2] // [ 3, 11, 19, 27] -> [ 3] // [ 4, 12, 20, 28] -> [ 4] // [ 5, 13, 21, 29] -> [ 5] // [ 6, 14, 22, 30] -> [ 6] // [ 7, 15, 23, 31] -> [ 7] for (short ii = 0; ii < D16; ii += NL) { lo[ii/NL][0] += simd_shuffle_down(lo[ii/NL][0], 16); lo[ii/NL][0] += simd_shuffle_down(lo[ii/NL][0], 8); //lo[ii/NL][0] += simd_shuffle_down(lo[ii/NL][0], 4); //lo[ii/NL][0] += simd_shuffle_down(lo[ii/NL][0], 2); //lo[ii/NL][0] += simd_shuffle_down(lo[ii/NL][0], 1); lo[ii/NL][1] += simd_shuffle_down(lo[ii/NL][1], 16); lo[ii/NL][1] += simd_shuffle_down(lo[ii/NL][1], 8); //lo[ii/NL][1] += simd_shuffle_down(lo[ii/NL][1], 4); //lo[ii/NL][1] += simd_shuffle_down(lo[ii/NL][1], 2); //lo[ii/NL][1] += simd_shuffle_down(lo[ii/NL][1], 1); lo[ii/NL][2] += simd_shuffle_down(lo[ii/NL][2], 16); lo[ii/NL][2] += simd_shuffle_down(lo[ii/NL][2], 8); //lo[ii/NL][2] += simd_shuffle_down(lo[ii/NL][2], 4); //lo[ii/NL][2] += simd_shuffle_down(lo[ii/NL][2], 2); //lo[ii/NL][2] += simd_shuffle_down(lo[ii/NL][2], 1); lo[ii/NL][3] += simd_shuffle_down(lo[ii/NL][3], 16); lo[ii/NL][3] += simd_shuffle_down(lo[ii/NL][3], 8); //lo[ii/NL][3] += simd_shuffle_down(lo[ii/NL][3], 4); //lo[ii/NL][3] += simd_shuffle_down(lo[ii/NL][3], 2); //lo[ii/NL][3] += simd_shuffle_down(lo[ii/NL][3], 1); } threadgroup_barrier(mem_flags::mem_threadgroup); // store results to shared memory for (short i = tiisg; i < D16; i += NL) { sr4x4[i] = lo[i/NL]; } threadgroup_barrier(mem_flags::mem_threadgroup); // parallel reduce for (short r = nsg/2; r > 0; r >>= 1) { if (sgitg < r) { const half S0 = ss[ 0]; const half S1 = ss[r*SH + 0]; const half M0 = ss[ 1]; const half M1 = ss[r*SH + 1]; const half M = max(M0, M1); const half ms0 = exp(M0 - M); const half ms1 = exp(M1 - M); const half S = S0*ms0 + S1*ms1; if (tiisg == 0) { ss[0] = S; ss[1] = M; } // O_0 = diag(ms0)*O_0 + diag(ms1)*O_1 for (short i = tiisg; i < D16; i += NW) { sr4x4[i] = sr4x4[i]*ms0 + sr4x4[i + r*D16]*ms1; } } threadgroup_barrier(mem_flags::mem_threadgroup); } device float4x4 * dst44 = (device float4x4 *) dst; // final rescale with 1/S and store to global memory if (sgitg == 0) { const float S = ss[0]; for (short i = tiisg; i < D16; i += NW) { dst44[((uint64_t)iq3*args.ne2*args.ne1 + iq2 + (uint64_t)iq1*args.ne1)*D16 + i] = (float4x4) sr4x4[i]/S; } } } // note: I think the s_t can be half instead of float, because the Q*K scaling is done before storing to shared mem // in the other (non-vec) kernel, we need s_t to also be float because we scale during the soft_max // #define FA_TYPES \ half4, half4x4, \ half4x4, \ half4x4, \ float, \ half, half4, half4x4, \ half4x4 typedef decltype(kernel_flash_attn_ext_vec) flash_attn_ext_vec_t; template [[host_name("kernel_flash_attn_ext_vec_f16_h128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec; #if defined(GGML_METAL_USE_BF16) template [[host_name("kernel_flash_attn_ext_vec_bf16_h128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec; #endif template [[host_name("kernel_flash_attn_ext_vec_q4_0_h128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec; template [[host_name("kernel_flash_attn_ext_vec_q4_1_h128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec; template [[host_name("kernel_flash_attn_ext_vec_q5_0_h128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec; template [[host_name("kernel_flash_attn_ext_vec_q5_1_h128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec; template [[host_name("kernel_flash_attn_ext_vec_q8_0_h128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec; template [[host_name("kernel_flash_attn_ext_vec_f16_h256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec; #if defined(GGML_METAL_USE_BF16) template [[host_name("kernel_flash_attn_ext_vec_bf16_h256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec; #endif template [[host_name("kernel_flash_attn_ext_vec_q4_0_h256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec; template [[host_name("kernel_flash_attn_ext_vec_q4_1_h256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec; template [[host_name("kernel_flash_attn_ext_vec_q5_0_h256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec; template [[host_name("kernel_flash_attn_ext_vec_q5_1_h256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec; template [[host_name("kernel_flash_attn_ext_vec_q8_0_h256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec; #undef FA_TYPES template kernel void kernel_cpy( constant ggml_metal_kargs_cpy & args, device const char * src0, device char * dst, uint3 tgpig[[threadgroup_position_in_grid]], ushort3 tpitg[[thread_position_in_threadgroup]], ushort3 ntg[[threads_per_threadgroup]]) { const int i03 = tgpig[2]; const int i02 = tgpig[1]; const int i01 = tgpig[0]; const int64_t n = i03*args.ne02*args.ne01*args.ne00 + i02*args.ne01*args.ne00 + i01*args.ne00; const int64_t i3 = n/(args.ne2*args.ne1*args.ne0); const int64_t i2 = (n - i3*args.ne2*args.ne1*args.ne0)/(args.ne1*args.ne0); const int64_t i1 = (n - i3*args.ne2*args.ne1*args.ne0 - i2*args.ne1*args.ne0)/args.ne0; const int64_t i0 = (n - i3*args.ne2*args.ne1*args.ne0 - i2*args.ne1*args.ne0 - i1*args.ne0); device T1 * dst_data = (device T1 *) (dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1 + i0*args.nb0); for (int64_t i00 = tpitg.x; i00 < args.ne00; i00 += ntg.x) { device const T0 * src = (device T0 *)(src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + i00*args.nb00); dst_data[i00] = (T1) src[0]; } } typedef decltype(kernel_cpy) kernel_cpy_t; template [[host_name("kernel_cpy_f32_f32")]] kernel kernel_cpy_t kernel_cpy; template [[host_name("kernel_cpy_f32_f16")]] kernel kernel_cpy_t kernel_cpy; #if defined(GGML_METAL_USE_BF16) template [[host_name("kernel_cpy_f32_bf16")]] kernel kernel_cpy_t kernel_cpy; #endif template [[host_name("kernel_cpy_f16_f32")]] kernel kernel_cpy_t kernel_cpy; template [[host_name("kernel_cpy_f16_f16")]] kernel kernel_cpy_t kernel_cpy; #if defined(GGML_METAL_USE_BF16) template [[host_name("kernel_cpy_bf16_f32")]] kernel kernel_cpy_t kernel_cpy; template [[host_name("kernel_cpy_bf16_bf16")]] kernel kernel_cpy_t kernel_cpy; #endif kernel void kernel_cpy_f32_q8_0( constant ggml_metal_kargs_cpy & args, device const char * src0, device char * dst, uint3 tgpig[[threadgroup_position_in_grid]], ushort3 tpitg[[thread_position_in_threadgroup]], ushort3 ntg[[threads_per_threadgroup]]) { const int i03 = tgpig[2]; const int i02 = tgpig[1]; const int i01 = tgpig[0]; const int64_t n = i03*args.ne02*args.ne01*args.ne00 + i02*args.ne01*args.ne00 + i01*args.ne00; const int64_t i3 = n / (args.ne2*args.ne1*args.ne0); const int64_t i2 = (n - i3*args.ne2*args.ne1*args.ne0) / (args.ne1*args.ne0); const int64_t i1 = (n - i3*args.ne2*args.ne1*args.ne0 - i2*args.ne1*args.ne0) / args.ne0; const int64_t i0 = (n - i3*args.ne2*args.ne1*args.ne0 - i2*args.ne1*args.ne0 - i1*args.ne0)/QK8_0; device block_q8_0 * dst_data = (device block_q8_0 *) (dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1 + i0*args.nb0); for (int64_t i00 = tpitg.x*QK8_0; i00 < args.ne00; i00 += ntg.x*QK8_0) { device const float * src = (device float *)(src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + i00*args.nb00); float amax = 0.0f; // absolute max for (int j = 0; j < QK8_0; j++) { const float v = src[j]; amax = MAX(amax, fabs(v)); } const float d = amax / ((1 << 7) - 1); const float id = d ? 1.0f/d : 0.0f; dst_data[i00/QK8_0].d = d; for (int j = 0; j < QK8_0; ++j) { const float x0 = src[j]*id; dst_data[i00/QK8_0].qs[j] = round(x0); } } } kernel void kernel_cpy_f32_q4_0( constant ggml_metal_kargs_cpy & args, device const char * src0, device char * dst, uint3 tgpig[[threadgroup_position_in_grid]], ushort3 tpitg[[thread_position_in_threadgroup]], ushort3 ntg[[threads_per_threadgroup]]) { const int i03 = tgpig[2]; const int i02 = tgpig[1]; const int i01 = tgpig[0]; const int64_t n = i03*args.ne02*args.ne01*args.ne00 + i02*args.ne01*args.ne00 + i01*args.ne00; const int64_t i3 = n / (args.ne2*args.ne1*args.ne0); const int64_t i2 = (n - i3*args.ne2*args.ne1*args.ne0) / (args.ne1*args.ne0); const int64_t i1 = (n - i3*args.ne2*args.ne1*args.ne0 - i2*args.ne1*args.ne0) / args.ne0; const int64_t i0 = (n - i3*args.ne2*args.ne1*args.ne0 - i2*args.ne1*args.ne0 - i1*args.ne0)/QK4_0; device block_q4_0 * dst_data = (device block_q4_0 *) (dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1 + i0*args.nb0); for (int64_t i00 = tpitg.x*QK4_0; i00 < args.ne00; i00 += ntg.x*QK4_0) { device const float * src = (device float *)(src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + i00*args.nb00); float amax = 0.0f; // absolute max float max = 0.0f; for (int j = 0; j < QK4_0; j++) { const float v = src[j]; if (amax < fabs(v)) { amax = fabs(v); max = v; } } const float d = max / -8; const float id = d ? 1.0f/d : 0.0f; dst_data[i00/QK4_0].d = d; for (int j = 0; j < QK4_0/2; ++j) { const float x0 = src[0 + j]*id; const float x1 = src[QK4_0/2 + j]*id; const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f)); const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f)); dst_data[i00/QK4_0].qs[j] = xi0; dst_data[i00/QK4_0].qs[j] |= xi1 << 4; } } } kernel void kernel_cpy_f32_q4_1( constant ggml_metal_kargs_cpy & args, device const char * src0, device char * dst, uint3 tgpig[[threadgroup_position_in_grid]], ushort3 tpitg[[thread_position_in_threadgroup]], ushort3 ntg[[threads_per_threadgroup]]) { const int i03 = tgpig[2]; const int i02 = tgpig[1]; const int i01 = tgpig[0]; const int64_t n = i03*args.ne02*args.ne01*args.ne00 + i02*args.ne01*args.ne00 + i01*args.ne00; const int64_t i3 = n / (args.ne2*args.ne1*args.ne0); const int64_t i2 = (n - i3*args.ne2*args.ne1*args.ne0) / (args.ne1*args.ne0); const int64_t i1 = (n - i3*args.ne2*args.ne1*args.ne0 - i2*args.ne1*args.ne0) / args.ne0; const int64_t i0 = (n - i3*args.ne2*args.ne1*args.ne0 - i2*args.ne1*args.ne0 - i1*args.ne0)/QK4_1; device block_q4_1 * dst_data = (device block_q4_1 *) (dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1 + i0*args.nb0); for (int64_t i00 = tpitg.x*QK4_1; i00 < args.ne00; i00 += ntg.x*QK4_1) { device const float * src = (device float *)(src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + i00*args.nb00); float min = FLT_MAX; float max = -FLT_MAX; for (int j = 0; j < QK4_1; j++) { const float v = src[j]; if (min > v) min = v; if (max < v) max = v; } const float d = (max - min) / ((1 << 4) - 1); const float id = d ? 1.0f/d : 0.0f; dst_data[i00/QK4_1].d = d; dst_data[i00/QK4_1].m = min; for (int j = 0; j < QK4_1/2; ++j) { const float x0 = (src[0 + j] - min)*id; const float x1 = (src[QK4_1/2 + j] - min)*id; const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f)); const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f)); dst_data[i00/QK4_1].qs[j] = xi0; dst_data[i00/QK4_1].qs[j] |= xi1 << 4; } } } kernel void kernel_cpy_f32_q5_0( constant ggml_metal_kargs_cpy & args, device const char * src0, device char * dst, uint3 tgpig[[threadgroup_position_in_grid]], ushort3 tpitg[[thread_position_in_threadgroup]], ushort3 ntg[[threads_per_threadgroup]]) { const int i03 = tgpig[2]; const int i02 = tgpig[1]; const int i01 = tgpig[0]; const int64_t n = i03*args.ne02*args.ne01*args.ne00 + i02*args.ne01*args.ne00 + i01*args.ne00; const int64_t i3 = n / (args.ne2*args.ne1*args.ne0); const int64_t i2 = (n - i3*args.ne2*args.ne1*args.ne0) / (args.ne1*args.ne0); const int64_t i1 = (n - i3*args.ne2*args.ne1*args.ne0 - i2*args.ne1*args.ne0) / args.ne0; const int64_t i0 = (n - i3*args.ne2*args.ne1*args.ne0 - i2*args.ne1*args.ne0 - i1*args.ne0)/QK5_0; device block_q5_0 * dst_data = (device block_q5_0 *) (dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1 + i0*args.nb0); for (int64_t i00 = tpitg.x*QK5_0; i00 < args.ne00; i00 += ntg.x*QK5_0) { device const float * src = (device float *)(src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + i00*args.nb00); float amax = 0.0f; // absolute max float max = 0.0f; for (int j = 0; j < QK5_0; j++) { const float v = src[j]; if (amax < fabs(v)) { amax = fabs(v); max = v; } } const float d = max / -16; const float id = d ? 1.0f/d : 0.0f; dst_data[i00/QK5_0].d = d; uint32_t qh = 0; for (int j = 0; j < QK5_0/2; ++j) { const float x0 = src[0 + j]*id; const float x1 = src[QK5_0/2 + j]*id; const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f)); const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f)); dst_data[i00/QK5_0].qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4); qh |= ((xi0 & 0x10u) >> 4) << (j + 0); qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2); } thread const uint8_t * qh8 = (thread const uint8_t *)&qh; for (int j = 0; j < 4; ++j) { dst_data[i00/QK5_0].qh[j] = qh8[j]; } } } kernel void kernel_cpy_f32_q5_1( constant ggml_metal_kargs_cpy & args, device const char * src0, device char * dst, uint3 tgpig[[threadgroup_position_in_grid]], ushort3 tpitg[[thread_position_in_threadgroup]], ushort3 ntg[[threads_per_threadgroup]]) { const int i03 = tgpig[2]; const int i02 = tgpig[1]; const int i01 = tgpig[0]; const int64_t n = i03*args.ne02*args.ne01*args.ne00 + i02*args.ne01*args.ne00 + i01*args.ne00; const int64_t i3 = n / (args.ne2*args.ne1*args.ne0); const int64_t i2 = (n - i3*args.ne2*args.ne1*args.ne0) / (args.ne1*args.ne0); const int64_t i1 = (n - i3*args.ne2*args.ne1*args.ne0 - i2*args.ne1*args.ne0) / args.ne0; const int64_t i0 = (n - i3*args.ne2*args.ne1*args.ne0 - i2*args.ne1*args.ne0 - i1*args.ne0)/QK5_1; device block_q5_1 * dst_data = (device block_q5_1 *) (dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1 + i0*args.nb0); for (int64_t i00 = tpitg.x*QK5_1; i00 < args.ne00; i00 += ntg.x*QK5_1) { device const float * src = (device float *)(src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + i00*args.nb00); float max = src[0]; float min = src[0]; for (int j = 1; j < QK5_1; j++) { const float v = src[j]; min = v < min ? v : min; max = v > max ? v : max; } const float d = (max - min) / 31; const float id = d ? 1.0f/d : 0.0f; dst_data[i00/QK5_1].d = d; dst_data[i00/QK5_1].m = min; uint32_t qh = 0; for (int j = 0; j < QK5_1/2; ++j) { const float x0 = (src[0 + j] - min)*id; const float x1 = (src[QK5_1/2 + j] - min)*id; const uint8_t xi0 = (uint8_t)(x0 + 0.5f); const uint8_t xi1 = (uint8_t)(x1 + 0.5f); dst_data[i00/QK5_1].qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4); qh |= ((xi0 & 0x10u) >> 4) << (j + 0); qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_1/2); } thread const uint8_t * qh8 = (thread const uint8_t *)&qh; for (int j = 0; j < 4; ++j) { dst_data[i00/QK5_1].qh[j] = qh8[j]; } } } static inline int best_index_int8(int n, constant float * val, float x) { if (x <= val[0]) return 0; if (x >= val[n-1]) return n-1; int ml = 0, mu = n-1; while (mu-ml > 1) { int mav = (ml+mu)/2; if (x < val[mav]) mu = mav; else ml = mav; } return x - val[mu-1] < val[mu] - x ? mu-1 : mu; } kernel void kernel_cpy_f32_iq4_nl( constant ggml_metal_kargs_cpy & args, device const char * src0, device char * dst, uint3 tgpig[[threadgroup_position_in_grid]], ushort3 tpitg[[thread_position_in_threadgroup]], ushort3 ntg[[threads_per_threadgroup]]) { const int i03 = tgpig[2]; const int i02 = tgpig[1]; const int i01 = tgpig[0]; const int64_t n = i03*args.ne02*args.ne01*args.ne00 + i02*args.ne01*args.ne00 + i01*args.ne00; const int64_t i3 = n / (args.ne2*args.ne1*args.ne0); const int64_t i2 = (n - i3*args.ne2*args.ne1*args.ne0) / (args.ne1*args.ne0); const int64_t i1 = (n - i3*args.ne2*args.ne1*args.ne0 - i2*args.ne1*args.ne0) / args.ne0; const int64_t i0 = (n - i3*args.ne2*args.ne1*args.ne0 - i2*args.ne1*args.ne0 - i1*args.ne0)/QK4_NL; device block_iq4_nl * dst_data = (device block_iq4_nl *) (dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1 + i0*args.nb0); for (int64_t i00 = tpitg.x*QK4_NL; i00 < args.ne00; i00 += ntg.x*QK4_NL) { device const float * src = (device float *)(src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + i00*args.nb00); float amax = 0.0f; // absolute max float max = 0.0f; for (int j = 0; j < QK4_0; j++) { const float v = src[j]; if (amax < fabs(v)) { amax = fabs(v); max = v; } } const float d = max / kvalues_iq4nl_f[0]; const float id = d ? 1.0f/d : 0.0f; float sumqx = 0, sumq2 = 0; for (int j = 0; j < QK4_NL/2; ++j) { const float x0 = src[0 + j]*id; const float x1 = src[QK4_NL/2 + j]*id; const uint8_t xi0 = best_index_int8(16, kvalues_iq4nl_f, x0); const uint8_t xi1 = best_index_int8(16, kvalues_iq4nl_f, x1); dst_data[i00/QK4_NL].qs[j] = xi0 | (xi1 << 4); const float v0 = kvalues_iq4nl_f[xi0]; const float v1 = kvalues_iq4nl_f[xi1]; const float w0 = src[0 + j]*src[0 + j]; const float w1 = src[QK4_NL/2 + j]*src[QK4_NL/2 + j]; sumqx += w0*v0*src[j] + w1*v1*src[QK4_NL/2 + j]; sumq2 += w0*v0*v0 + w1*v1*v1; } dst_data[i00/QK4_NL].d = sumq2 > 0 ? sumqx/sumq2 : d; } } kernel void kernel_concat( constant ggml_metal_kargs_concat & args, device const char * src0, device const char * src1, device char * dst, uint3 tgpig[[threadgroup_position_in_grid]], ushort3 tpitg[[thread_position_in_threadgroup]], ushort3 ntg[[threads_per_threadgroup]]) { const int i3 = tgpig.z; const int i2 = tgpig.y; const int i1 = tgpig.x; int o[4] = {0, 0, 0, 0}; o[args.dim] = args.dim == 0 ? args.ne00 : (args.dim == 1 ? args.ne01 : (args.dim == 2 ? args.ne02 : args.ne03)); device const float * x; for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) { if (i0 < args.ne00 && i1 < args.ne01 && i2 < args.ne02 && i3 < args.ne03) { x = (device const float *)(src0 + (i3 )*args.nb03 + (i2 )*args.nb02 + (i1 )*args.nb01 + (i0 )*args.nb00); } else { x = (device const float *)(src1 + (i3 - o[3])*args.nb13 + (i2 - o[2])*args.nb12 + (i1 - o[1])*args.nb11 + (i0 - o[0])*args.nb10); } device float * y = (device float *)(dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1 + i0*args.nb0); *y = *x; } } template void kernel_mul_mv_q2_K_f32_impl( args_t args, device const char * src0, device const char * src1, device char * dst, threadgroup char * shmem, uint3 tgpig, ushort tiisg, ushort sgitg) { const int nb = args.ne00/QK_K; const int r0 = tgpig.x; const int r1 = tgpig.y; const int im = tgpig.z; const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST; const uint i12 = im%args.ne12; const uint i13 = im/args.ne12; const uint64_t offset0 = first_row*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03; const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13; device const block_q2_K * x = (device const block_q2_K *) (src0 + offset0); device const float * y = (device const float *) (src1 + offset1); float yl[32]; float sumf[N_DST]={0.f}, all_sum; const int ix = tiisg/8; // 0...3 const int it = tiisg%8; // 0...7 const int iq = it/4; // 0 or 1 const int ir = it%4; // 0...3 const int is = (8*ir)/16;// 0 or 1 device const float * y4 = y + ix * QK_K + 128 * iq + 8 * ir; for (int ib = ix; ib < nb; ib += 4) { float4 sumy = {0.f, 0.f, 0.f, 0.f}; for (int i = 0; i < 8; ++i) { yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0]; yl[i+ 8] = y4[i+32]; sumy[1] += yl[i+ 8]; yl[i+16] = y4[i+64]; sumy[2] += yl[i+16]; yl[i+24] = y4[i+96]; sumy[3] += yl[i+24]; } device const uint8_t * sc = (device const uint8_t *)x[ib].scales + 8*iq + is; device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 16 * iq + 4 * ir; device const half * dh = &x[ib].d; for (int row = 0; row < N_DST; row++) { float4 acc1 = {0.f, 0.f, 0.f, 0.f}; float4 acc2 = {0.f, 0.f, 0.f, 0.f}; for (int i = 0; i < 8; i += 2) { acc1[0] += yl[i+ 0] * (qs[i/2] & 0x0003); acc2[0] += yl[i+ 1] * (qs[i/2] & 0x0300); acc1[1] += yl[i+ 8] * (qs[i/2] & 0x000c); acc2[1] += yl[i+ 9] * (qs[i/2] & 0x0c00); acc1[2] += yl[i+16] * (qs[i/2] & 0x0030); acc2[2] += yl[i+17] * (qs[i/2] & 0x3000); acc1[3] += yl[i+24] * (qs[i/2] & 0x00c0); acc2[3] += yl[i+25] * (qs[i/2] & 0xc000); } float dall = dh[0]; float dmin = dh[1] * 1.f/16.f; sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc2[0]) * (sc[0] & 0xF) * 1.f/ 1.f + (acc1[1] + 1.f/256.f * acc2[1]) * (sc[2] & 0xF) * 1.f/ 4.f + (acc1[2] + 1.f/256.f * acc2[2]) * (sc[4] & 0xF) * 1.f/16.f + (acc1[3] + 1.f/256.f * acc2[3]) * (sc[6] & 0xF) * 1.f/64.f) - dmin * (sumy[0] * (sc[0] & 0xF0) + sumy[1] * (sc[2] & 0xF0) + sumy[2] * (sc[4] & 0xF0) + sumy[3] * (sc[6] & 0xF0)); qs += args.nb01/2; sc += args.nb01; dh += args.nb01/2; } y4 += 4 * QK_K; } device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0; for (int row = 0; row < N_DST; ++row) { all_sum = simd_sum(sumf[row]); if (tiisg == 0) { dst_f32[first_row + row] = all_sum; } } } [[host_name("kernel_mul_mv_q2_K_f32")]] kernel void kernel_mul_mv_q2_K_f32( constant ggml_metal_kargs_mul_mv & args, device const char * src0, device const char * src1, device char * dst, uint3 tgpig[[threadgroup_position_in_grid]], ushort tiisg[[thread_index_in_simdgroup]], ushort sgitg[[simdgroup_index_in_threadgroup]]) { kernel_mul_mv_q2_K_f32_impl(args, src0, src1, dst, nullptr, tgpig, tiisg, sgitg); } template void kernel_mul_mv_q3_K_f32_impl( args_t args, device const char * src0, device const char * src1, device char * dst, threadgroup char * shmem, uint3 tgpig, ushort tiisg, ushort sgitg) { const int nb = args.ne00/QK_K; const int r0 = tgpig.x; const int r1 = tgpig.y; const int im = tgpig.z; const int first_row = (r0 * N_SIMDGROUP + sgitg) * 2; const uint i12 = im%args.ne12; const uint i13 = im/args.ne12; const uint64_t offset0 = first_row*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03; const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13; device const block_q3_K * x = (device const block_q3_K *) (src0 + offset0); device const float * yy = (device const float *) (src1 + offset1); float yl[32]; //const uint16_t kmask1 = 0x3030; //const uint16_t kmask2 = 0x0f0f; const int tid = tiisg/4; const int ix = tiisg%4; const int ip = tid/4; // 0 or 1 const int il = 2*((tid%4)/2); // 0 or 2 const int ir = tid%2; const int n = 8; const int l0 = n*ir; // One would think that the Metal compiler would figure out that ip and il can only have // 4 possible states, and optimize accordingly. Well, no. It needs help, and we do it // with these two tales. // // Possible masks for the high bit const ushort4 mm[4] = {{0x0001, 0x0100, 0x0002, 0x0200}, // ip = 0, il = 0 {0x0004, 0x0400, 0x0008, 0x0800}, // ip = 0, il = 2 {0x0010, 0x1000, 0x0020, 0x2000}, // ip = 1, il = 0 {0x0040, 0x4000, 0x0080, 0x8000}}; // ip = 1, il = 2 // Possible masks for the low 2 bits const int4 qm[2] = {{0x0003, 0x0300, 0x000c, 0x0c00}, {0x0030, 0x3000, 0x00c0, 0xc000}}; const ushort4 hm = mm[2*ip + il/2]; const short shift = 2*il; const float v1 = il == 0 ? 4.f : 64.f; const float v2 = 4.f * v1; const uint16_t s_shift1 = 4*ip; const uint16_t s_shift2 = s_shift1 + il; const int q_offset = 32*ip + l0; const int y_offset = 128*ip + 32*il + l0; device const float * y1 = yy + ix*QK_K + y_offset; uint32_t scales32, aux32; thread uint16_t * scales16 = (thread uint16_t *)&scales32; thread const int8_t * scales = (thread const int8_t *)&scales32; float sumf1[2] = {0.f}; float sumf2[2] = {0.f}; for (int i = ix; i < nb; i += 4) { for (int l = 0; l < 8; ++l) { yl[l+ 0] = y1[l+ 0]; yl[l+ 8] = y1[l+16]; yl[l+16] = y1[l+32]; yl[l+24] = y1[l+48]; } device const uint16_t * q = (device const uint16_t *)(x[i].qs + q_offset); device const uint16_t * h = (device const uint16_t *)(x[i].hmask + l0); device const uint16_t * a = (device const uint16_t *)(x[i].scales); device const half * dh = &x[i].d; for (int row = 0; row < 2; ++row) { const float d_all = (float)dh[0]; scales16[0] = a[4]; scales16[1] = a[5]; aux32 = ((scales32 >> s_shift2) << 4) & 0x30303030; scales16[0] = a[il+0]; scales16[1] = a[il+1]; scales32 = ((scales32 >> s_shift1) & 0x0f0f0f0f) | aux32; float s1 = 0, s2 = 0, s3 = 0, s4 = 0, s5 = 0, s6 = 0; for (int l = 0; l < n; l += 2) { const int32_t qs = q[l/2]; s1 += yl[l+0] * (qs & qm[il/2][0]); s2 += yl[l+1] * (qs & qm[il/2][1]); s3 += ((h[l/2] & hm[0]) ? 0.f : yl[l+0]) + ((h[l/2] & hm[1]) ? 0.f : yl[l+1]); s4 += yl[l+16] * (qs & qm[il/2][2]); s5 += yl[l+17] * (qs & qm[il/2][3]); s6 += ((h[l/2] & hm[2]) ? 0.f : yl[l+16]) + ((h[l/2] & hm[3]) ? 0.f : yl[l+17]); } float d1 = d_all * (s1 + 1.f/256.f * s2 - s3*v1); float d2 = d_all * (s4 + 1.f/256.f * s5 - s6*v2); sumf1[row] += d1 * (scales[0] - 32); sumf2[row] += d2 * (scales[2] - 32); s1 = s2 = s3 = s4 = s5 = s6 = 0; for (int l = 0; l < n; l += 2) { const int32_t qs = q[l/2+8]; s1 += yl[l+8] * (qs & qm[il/2][0]); s2 += yl[l+9] * (qs & qm[il/2][1]); s3 += ((h[l/2+8] & hm[0]) ? 0.f : yl[l+8]) + ((h[l/2+8] & hm[1]) ? 0.f : yl[l+9]); s4 += yl[l+24] * (qs & qm[il/2][2]); s5 += yl[l+25] * (qs & qm[il/2][3]); s6 += ((h[l/2+8] & hm[2]) ? 0.f : yl[l+24]) + ((h[l/2+8] & hm[3]) ? 0.f : yl[l+25]); } d1 = d_all * (s1 + 1.f/256.f * s2 - s3*v1); d2 = d_all * (s4 + 1.f/256.f * s5 - s6*v2); sumf1[row] += d1 * (scales[1] - 32); sumf2[row] += d2 * (scales[3] - 32); q += args.nb01/2; h += args.nb01/2; a += args.nb01/2; dh += args.nb01/2; } y1 += 4 * QK_K; } for (int row = 0; row < 2; ++row) { const float sumf = (sumf1[row] + 0.25f * sumf2[row]) / (1 << shift); sumf1[row] = simd_sum(sumf); } device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0; if (tiisg == 0) { for (int row = 0; row < 2; ++row) { dst_f32[first_row + row] = sumf1[row]; } } } [[host_name("kernel_mul_mv_q3_K_f32")]] kernel void kernel_mul_mv_q3_K_f32( constant ggml_metal_kargs_mul_mv & args, device const char * src0, device const char * src1, device char * dst, uint3 tgpig[[threadgroup_position_in_grid]], ushort tiisg[[thread_index_in_simdgroup]], ushort sgitg[[simdgroup_index_in_threadgroup]]) { kernel_mul_mv_q3_K_f32_impl(args, src0, src1, dst, nullptr, tgpig, tiisg, sgitg); } template void kernel_mul_mv_q4_K_f32_impl( args_t args, device const char * src0, device const char * src1, device char * dst, threadgroup char * shmem, uint3 tgpig, ushort tiisg, ushort sgitg) { const uint16_t kmask1 = 0x3f3f; const uint16_t kmask2 = 0x0f0f; const uint16_t kmask3 = 0xc0c0; const int ix = tiisg/8; // 0...3 const int it = tiisg%8; // 0...7 const int iq = it/4; // 0 or 1 const int ir = it%4; // 0...3 const int nb = args.ne00/QK_K; const int r0 = tgpig.x; const int r1 = tgpig.y; const int im = tgpig.z; //const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST; const int first_row = r0 * N_DST; const uint i12 = im%args.ne12; const uint i13 = im/args.ne12; const uint64_t offset0 = first_row*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03; const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13; device const block_q4_K * x = (device const block_q4_K *) (src0 + offset0); device const float * y = (device const float *) (src1 + offset1); float yl[16]; float yh[16]; float sumf[N_DST]={0.f}, all_sum; device const float * y4 = y + ix * QK_K + 64 * iq + 8 * ir; uint16_t sc16[4]; thread const uint8_t * sc8 = (thread const uint8_t *)sc16; for (int ib = ix; ib < nb; ib += 4) { float4 sumy = {0.f, 0.f, 0.f, 0.f}; for (int i = 0; i < 8; ++i) { yl[i+0] = y4[i+ 0]; sumy[0] += yl[i+0]; yl[i+8] = y4[i+ 32]; sumy[1] += yl[i+8]; yh[i+0] = y4[i+128]; sumy[2] += yh[i+0]; yh[i+8] = y4[i+160]; sumy[3] += yh[i+8]; } device const uint16_t * sc = (device const uint16_t *)x[ib].scales + iq; device const uint16_t * q1 = (device const uint16_t *)x[ib].qs + 16 * iq + 4 * ir; device const half * dh = &x[ib].d; for (int row = 0; row < N_DST; row++) { sc16[0] = sc[0] & kmask1; sc16[1] = sc[2] & kmask1; sc16[2] = ((sc[4] >> 0) & kmask2) | ((sc[0] & kmask3) >> 2); sc16[3] = ((sc[4] >> 4) & kmask2) | ((sc[2] & kmask3) >> 2); device const uint16_t * q2 = q1 + 32; float4 acc1 = {0.f, 0.f, 0.f, 0.f}; float4 acc2 = {0.f, 0.f, 0.f, 0.f}; for (int i = 0; i < 8; i += 2) { acc1[0] += yl[i+0] * (q1[i/2] & 0x000F); acc1[1] += yl[i+1] * (q1[i/2] & 0x0F00); acc1[2] += yl[i+8] * (q1[i/2] & 0x00F0); acc1[3] += yl[i+9] * (q1[i/2] & 0xF000); acc2[0] += yh[i+0] * (q2[i/2] & 0x000F); acc2[1] += yh[i+1] * (q2[i/2] & 0x0F00); acc2[2] += yh[i+8] * (q2[i/2] & 0x00F0); acc2[3] += yh[i+9] * (q2[i/2] & 0xF000); } float dall = dh[0]; float dmin = dh[1]; sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc1[1]) * sc8[0] + (acc1[2] + 1.f/256.f * acc1[3]) * sc8[1] * 1.f/16.f + (acc2[0] + 1.f/256.f * acc2[1]) * sc8[4] + (acc2[2] + 1.f/256.f * acc2[3]) * sc8[5] * 1.f/16.f) - dmin * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]); q1 += args.nb01/2; sc += args.nb01/2; dh += args.nb01/2; } y4 += 4 * QK_K; } device float * dst_f32 = (device float *) dst + (int64_t)im*args.ne0*args.ne1 + (int64_t)r1*args.ne0; for (int row = 0; row < N_DST; ++row) { all_sum = simd_sum(sumf[row]); if (tiisg == 0) { dst_f32[first_row + row] = all_sum; } } } [[host_name("kernel_mul_mv_q4_K_f32")]] kernel void kernel_mul_mv_q4_K_f32( constant ggml_metal_kargs_mul_mv & args, device const char * src0, device const char * src1, device char * dst, uint3 tgpig[[threadgroup_position_in_grid]], ushort tiisg[[thread_index_in_simdgroup]], ushort sgitg[[simdgroup_index_in_threadgroup]]) { kernel_mul_mv_q4_K_f32_impl(args, src0, src1, dst, nullptr, tgpig, tiisg, sgitg); } template void kernel_mul_mv_q5_K_f32_impl( args_t args, device const char * src0, device const char * src1, device char * dst, threadgroup char * shmem, uint3 tgpig, ushort tiisg, ushort sgitg) { const int nb = args.ne00/QK_K; const int r0 = tgpig.x; const int r1 = tgpig.y; const int im = tgpig.z; const int first_row = (r0 * N_SIMDGROUP + sgitg) * 2; const uint i12 = im%args.ne12; const uint i13 = im/args.ne12; const uint64_t offset0 = first_row*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03; const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13; device const block_q5_K * x = (device const block_q5_K *) (src0 + offset0); device const float * yy = (device const float *) (src1 + offset1); float sumf[2]={0.f}; float yl[16], yh[16]; const uint16_t kmask1 = 0x3f3f; const uint16_t kmask2 = 0x0f0f; const uint16_t kmask3 = 0xc0c0; const int tid = tiisg/4; const int ix = tiisg%4; const int iq = tid/4; const int ir = tid%4; const int n = 8; const int l0 = n*ir; const int q_offset = 32*iq + l0; const int y_offset = 64*iq + l0; const uint8_t hm1 = 1u << (2*iq); const uint8_t hm2 = hm1 << 1; const uint8_t hm3 = hm1 << 4; const uint8_t hm4 = hm2 << 4; uint16_t sc16[4]; thread const uint8_t * sc8 = (thread const uint8_t *)sc16; device const float * y1 = yy + ix*QK_K + y_offset; for (int i = ix; i < nb; i += 4) { device const uint8_t * q1 = x[i].qs + q_offset; device const uint8_t * qh = x[i].qh + l0; device const half * dh = &x[i].d; device const uint16_t * a = (device const uint16_t *)x[i].scales + iq; device const float * y2 = y1 + 128; float4 sumy = {0.f, 0.f, 0.f, 0.f}; for (int l = 0; l < 8; ++l) { yl[l+0] = y1[l+ 0]; sumy[0] += yl[l+0]; yl[l+8] = y1[l+32]; sumy[1] += yl[l+8]; yh[l+0] = y2[l+ 0]; sumy[2] += yh[l+0]; yh[l+8] = y2[l+32]; sumy[3] += yh[l+8]; } for (int row = 0; row < 2; ++row) { device const uint8_t * q2 = q1 + 64; sc16[0] = a[0] & kmask1; sc16[1] = a[2] & kmask1; sc16[2] = ((a[4] >> 0) & kmask2) | ((a[0] & kmask3) >> 2); sc16[3] = ((a[4] >> 4) & kmask2) | ((a[2] & kmask3) >> 2); float4 acc1 = {0.f}; float4 acc2 = {0.f}; for (int l = 0; l < n; ++l) { uint8_t h = qh[l]; acc1[0] += yl[l+0] * (q1[l] & 0x0F); acc1[1] += yl[l+8] * (q1[l] & 0xF0); acc1[2] += yh[l+0] * (q2[l] & 0x0F); acc1[3] += yh[l+8] * (q2[l] & 0xF0); acc2[0] += h & hm1 ? yl[l+0] : 0.f; acc2[1] += h & hm2 ? yl[l+8] : 0.f; acc2[2] += h & hm3 ? yh[l+0] : 0.f; acc2[3] += h & hm4 ? yh[l+8] : 0.f; } const float dall = dh[0]; const float dmin = dh[1]; sumf[row] += dall * (sc8[0] * (acc1[0] + 16.f*acc2[0]) + sc8[1] * (acc1[1]/16.f + 16.f*acc2[1]) + sc8[4] * (acc1[2] + 16.f*acc2[2]) + sc8[5] * (acc1[3]/16.f + 16.f*acc2[3])) - dmin * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]); q1 += args.nb01; qh += args.nb01; dh += args.nb01/2; a += args.nb01/2; } y1 += 4 * QK_K; } device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0; for (int row = 0; row < 2; ++row) { const float tot = simd_sum(sumf[row]); if (tiisg == 0) { dst_f32[first_row + row] = tot; } } } [[host_name("kernel_mul_mv_q5_K_f32")]] kernel void kernel_mul_mv_q5_K_f32( constant ggml_metal_kargs_mul_mv & args, device const char * src0, device const char * src1, device char * dst, uint3 tgpig[[threadgroup_position_in_grid]], ushort tiisg[[thread_index_in_simdgroup]], ushort sgitg[[simdgroup_index_in_threadgroup]]) { kernel_mul_mv_q5_K_f32_impl(args, src0, src1, dst, nullptr, tgpig, tiisg, sgitg); } template void kernel_mul_mv_q6_K_f32_impl( args_t args, device const char * src0, device const char * src1, device char * dst, threadgroup char * shmem, uint3 tgpig, ushort tiisg, ushort sgitg) { const uint8_t kmask1 = 0x03; const uint8_t kmask2 = 0x0C; const uint8_t kmask3 = 0x30; const uint8_t kmask4 = 0xC0; const int nb = args.ne00/QK_K; const int r0 = tgpig.x; const int r1 = tgpig.y; const int im = tgpig.z; const int row = 2*r0 + sgitg; const uint i12 = im%args.ne12; const uint i13 = im/args.ne12; const uint64_t offset0 = row*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03; const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13; device const block_q6_K * x = (device const block_q6_K *) (src0 + offset0); device const float * yy = (device const float *) (src1 + offset1); float sumf = 0; const int tid = tiisg/2; const int ix = tiisg%2; const int ip = tid/8; // 0 or 1 const int il = tid%8; const int n = 4; const int l0 = n*il; const int is = 8*ip + l0/16; const int y_offset = 128*ip + l0; const int q_offset_l = 64*ip + l0; const int q_offset_h = 32*ip + l0; for (int i = ix; i < nb; i += 2) { device const uint8_t * q1 = x[i].ql + q_offset_l; device const uint8_t * q2 = q1 + 32; device const uint8_t * qh = x[i].qh + q_offset_h; device const int8_t * sc = x[i].scales + is; device const float * y = yy + i * QK_K + y_offset; const float dall = x[i].d; float4 sums = {0.f, 0.f, 0.f, 0.f}; for (int l = 0; l < n; ++l) { sums[0] += y[l+ 0] * ((int8_t)((q1[l] & 0xF) | ((qh[l] & kmask1) << 4)) - 32); sums[1] += y[l+32] * ((int8_t)((q2[l] & 0xF) | ((qh[l] & kmask2) << 2)) - 32); sums[2] += y[l+64] * ((int8_t)((q1[l] >> 4) | ((qh[l] & kmask3) << 0)) - 32); sums[3] += y[l+96] * ((int8_t)((q2[l] >> 4) | ((qh[l] & kmask4) >> 2)) - 32); } sumf += dall * (sums[0] * sc[0] + sums[1] * sc[2] + sums[2] * sc[4] + sums[3] * sc[6]); } device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0; const float tot = simd_sum(sumf); if (tiisg == 0) { dst_f32[row] = tot; } } [[host_name("kernel_mul_mv_q6_K_f32")]] kernel void kernel_mul_mv_q6_K_f32( constant ggml_metal_kargs_mul_mv & args, device const char * src0, device const char * src1, device char * dst, uint3 tgpig[[threadgroup_position_in_grid]], ushort tiisg[[thread_index_in_simdgroup]], ushort sgitg[[simdgroup_index_in_threadgroup]]) { kernel_mul_mv_q6_K_f32_impl(args, src0, src1, dst, nullptr, tgpig, tiisg, sgitg); } // ======================= "True" 2-bit template void kernel_mul_mv_iq2_xxs_f32_impl( args_t args, device const char * src0, device const char * src1, device char * dst, threadgroup char * shmem, uint3 tgpig, ushort tiisg, ushort sgitg) { const int nb = args.ne00/QK_K; const int r0 = tgpig.x; const int r1 = tgpig.y; const int im = tgpig.z; const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST; const uint i12 = im%args.ne12; const uint i13 = im/args.ne12; const uint64_t offset0 = first_row*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03; const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13; device const block_iq2_xxs * x = (device const block_iq2_xxs *) (src0 + offset0); device const float * y = (device const float *) (src1 + offset1); float yl[32]; float sumf[N_DST]={0.f}, all_sum; const int nb32 = nb * (QK_K / 32); threadgroup uint64_t * svalues = (threadgroup uint64_t *)(shmem); threadgroup uint8_t * ssigns = (threadgroup uint8_t *)(svalues + 256); { int nval = 4; int pos = (32*sgitg + tiisg)*nval; for (int i = 0; i < nval; ++i) svalues[pos + i] = iq2xxs_grid[pos + i]; nval = 2; pos = (32*sgitg + tiisg)*nval; for (int i = 0; i < nval; ++i) ssigns[pos+i] = ksigns_iq2xs[pos+i]; threadgroup_barrier(mem_flags::mem_threadgroup); } const int ix = tiisg; device const float * y4 = y + 32 * ix; for (int ib32 = ix; ib32 < nb32; ib32 += 32) { for (int i = 0; i < 32; ++i) { yl[i] = y4[i]; } const int ibl = ib32 / (QK_K / 32); const int ib = ib32 % (QK_K / 32); device const block_iq2_xxs * xr = x + ibl; device const uint16_t * q2 = xr->qs + 4 * ib; device const half * dh = &xr->d; for (int row = 0; row < N_DST; row++) { const float db = dh[0]; device const uint8_t * aux8 = (device const uint8_t *)q2; const uint32_t aux32 = q2[2] | (q2[3] << 16); const float d = db * (0.5f + (aux32 >> 28)); float sum = 0; for (int l = 0; l < 4; ++l) { const threadgroup uint8_t * grid = (const threadgroup uint8_t *)(svalues + aux8[l]); const uint8_t signs = ssigns[(aux32 >> 7*l) & 127]; for (int j = 0; j < 8; ++j) { sum += yl[8*l + j] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f); } } sumf[row] += d * sum; dh += args.nb01/2; q2 += args.nb01/2; } y4 += 32 * 32; } device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0; for (int row = 0; row < N_DST; ++row) { all_sum = simd_sum(sumf[row]); if (tiisg == 0) { dst_f32[first_row + row] = all_sum * 0.25f; } } } [[host_name("kernel_mul_mv_iq2_xxs_f32")]] kernel void kernel_mul_mv_iq2_xxs_f32( constant ggml_metal_kargs_mul_mv & args, device const char * src0, device const char * src1, device char * dst, threadgroup char * shmem [[threadgroup(0)]], uint3 tgpig[[threadgroup_position_in_grid]], ushort tiisg[[thread_index_in_simdgroup]], ushort sgitg[[simdgroup_index_in_threadgroup]]) { kernel_mul_mv_iq2_xxs_f32_impl(args, src0, src1, dst, shmem, tgpig, tiisg, sgitg); } template void kernel_mul_mv_iq2_xs_f32_impl( args_t args, device const char * src0, device const char * src1, device char * dst, threadgroup char * shmem, uint3 tgpig, ushort tiisg, ushort sgitg) { const int nb = args.ne00/QK_K; const int r0 = tgpig.x; const int r1 = tgpig.y; const int im = tgpig.z; const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST; const uint i12 = im%args.ne12; const uint i13 = im/args.ne12; const uint64_t offset0 = first_row*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03; const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13; device const block_iq2_xs * x = (device const block_iq2_xs *) (src0 + offset0); device const float * y = (device const float *) (src1 + offset1); float yl[32]; float sumf[N_DST]={0.f}, all_sum; const int nb32 = nb * (QK_K / 32); threadgroup uint64_t * svalues = (threadgroup uint64_t *)(shmem); threadgroup uint8_t * ssigns = (threadgroup uint8_t *)(svalues + 512); { int nval = 8; int pos = (32*sgitg + tiisg)*nval; for (int i = 0; i < nval; ++i) svalues[pos + i] = iq2xs_grid[pos + i]; nval = 2; pos = (32*sgitg + tiisg)*nval; for (int i = 0; i < nval; ++i) ssigns[pos+i] = ksigns_iq2xs[pos+i]; threadgroup_barrier(mem_flags::mem_threadgroup); } const int ix = tiisg; device const float * y4 = y + 32 * ix; for (int ib32 = ix; ib32 < nb32; ib32 += 32) { for (int i = 0; i < 32; ++i) { yl[i] = y4[i]; } const int ibl = ib32 / (QK_K / 32); const int ib = ib32 % (QK_K / 32); device const block_iq2_xs * xr = x + ibl; device const uint16_t * q2 = xr->qs + 4 * ib; device const uint8_t * sc = xr->scales + ib; device const half * dh = &xr->d; for (int row = 0; row < N_DST; row++) { const float db = dh[0]; const uint8_t ls1 = sc[0] & 0xf; const uint8_t ls2 = sc[0] >> 4; const float d1 = db * (0.5f + ls1); const float d2 = db * (0.5f + ls2); float sum1 = 0, sum2 = 0; for (int l = 0; l < 2; ++l) { const threadgroup uint8_t * grid = (const threadgroup uint8_t *)(svalues + (q2[l] & 511)); const uint8_t signs = ssigns[(q2[l] >> 9)]; for (int j = 0; j < 8; ++j) { sum1 += yl[8*l + j] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f); } } for (int l = 2; l < 4; ++l) { const threadgroup uint8_t * grid = (const threadgroup uint8_t *)(svalues + (q2[l] & 511)); const uint8_t signs = ssigns[(q2[l] >> 9)]; for (int j = 0; j < 8; ++j) { sum2 += yl[8*l + j] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f); } } sumf[row] += d1 * sum1 + d2 * sum2; dh += args.nb01/2; q2 += args.nb01/2; sc += args.nb01; } y4 += 32 * 32; } device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0; for (int row = 0; row < N_DST; ++row) { all_sum = simd_sum(sumf[row]); if (tiisg == 0) { dst_f32[first_row + row] = all_sum * 0.25f; } } } [[host_name("kernel_mul_mv_iq2_xs_f32")]] kernel void kernel_mul_mv_iq2_xs_f32( constant ggml_metal_kargs_mul_mv & args, device const char * src0, device const char * src1, device char * dst, threadgroup char * shmem [[threadgroup(0)]], uint3 tgpig[[threadgroup_position_in_grid]], ushort tiisg[[thread_index_in_simdgroup]], ushort sgitg[[simdgroup_index_in_threadgroup]]) { kernel_mul_mv_iq2_xs_f32_impl(args, src0, src1, dst, shmem, tgpig, tiisg, sgitg); } template void kernel_mul_mv_iq3_xxs_f32_impl( args_t args, device const char * src0, device const char * src1, device char * dst, threadgroup char * shmem, uint3 tgpig, ushort tiisg, ushort sgitg) { const int nb = args.ne00/QK_K; const int r0 = tgpig.x; const int r1 = tgpig.y; const int im = tgpig.z; const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST; const uint i12 = im%args.ne12; const uint i13 = im/args.ne12; const uint64_t offset0 = first_row*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03; const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13; device const block_iq3_xxs * x = (device const block_iq3_xxs *) (src0 + offset0); device const float * y = (device const float *) (src1 + offset1); float yl[32]; float sumf[N_DST]={0.f}, all_sum; const int nb32 = nb * (QK_K / 32); threadgroup uint32_t * svalues = (threadgroup uint32_t *)(shmem); threadgroup uint8_t * ssigns = (threadgroup uint8_t *)(svalues + 256); { int nval = 4; int pos = (32*sgitg + tiisg)*nval; for (int i = 0; i < nval; ++i) svalues[pos + i] = iq3xxs_grid[pos + i]; nval = 2; pos = (32*sgitg + tiisg)*nval; for (int i = 0; i < nval; ++i) ssigns[pos+i] = ksigns_iq2xs[pos+i]; threadgroup_barrier(mem_flags::mem_threadgroup); } const int ix = tiisg; device const float * y4 = y + 32 * ix; for (int ib32 = ix; ib32 < nb32; ib32 += 32) { for (int i = 0; i < 32; ++i) { yl[i] = y4[i]; } const int ibl = ib32 / (QK_K / 32); const int ib = ib32 % (QK_K / 32); device const block_iq3_xxs * xr = x + ibl; device const uint8_t * q3 = xr->qs + 8 * ib; device const uint16_t * gas = (device const uint16_t *)(xr->qs + QK_K/4) + 2 * ib; device const half * dh = &xr->d; for (int row = 0; row < N_DST; row++) { const float db = dh[0]; const uint32_t aux32 = gas[0] | (gas[1] << 16); const float d = db * (0.5f + (aux32 >> 28)); float2 sum = {0}; for (int l = 0; l < 4; ++l) { const threadgroup uint8_t * grid1 = (const threadgroup uint8_t *)(svalues + q3[2*l+0]); const threadgroup uint8_t * grid2 = (const threadgroup uint8_t *)(svalues + q3[2*l+1]); const uint8_t signs = ssigns[(aux32 >> 7*l) & 127]; for (int j = 0; j < 4; ++j) { sum[0] += yl[8*l + j + 0] * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f); sum[1] += yl[8*l + j + 4] * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f); } } sumf[row] += d * (sum[0] + sum[1]); dh += args.nb01/2; q3 += args.nb01; gas += args.nb01/2; } y4 += 32 * 32; } device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0; for (int row = 0; row < N_DST; ++row) { all_sum = simd_sum(sumf[row]); if (tiisg == 0) { dst_f32[first_row + row] = all_sum * 0.5f; } } } [[host_name("kernel_mul_mv_iq3_xxs_f32")]] kernel void kernel_mul_mv_iq3_xxs_f32( constant ggml_metal_kargs_mul_mv & args, device const char * src0, device const char * src1, device char * dst, threadgroup char * shmem [[threadgroup(0)]], uint3 tgpig[[threadgroup_position_in_grid]], ushort tiisg[[thread_index_in_simdgroup]], ushort sgitg[[simdgroup_index_in_threadgroup]]) { kernel_mul_mv_iq3_xxs_f32_impl(args, src0, src1, dst, shmem, tgpig, tiisg, sgitg); } template void kernel_mul_mv_iq3_s_f32_impl( args_t args, device const char * src0, device const char * src1, device char * dst, threadgroup char * shmem, uint3 tgpig, ushort tiisg, ushort sgitg) { const int nb = args.ne00/QK_K; const int r0 = tgpig.x; const int r1 = tgpig.y; const int im = tgpig.z; const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST; const uint i12 = im%args.ne12; const uint i13 = im/args.ne12; const uint64_t offset0 = first_row*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03; const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13; device const block_iq3_s * x = (device const block_iq3_s *) (src0 + offset0); device const float * y = (device const float *) (src1 + offset1); float yl[32]; float sumf[N_DST]={0.f}, all_sum; const int nb32 = nb * (QK_K / 32); threadgroup uint32_t * svalues = (threadgroup uint32_t *) shmem; { int nval = 8; int pos = (32*sgitg + tiisg)*nval; for (int i = 0; i < nval; ++i) svalues[pos + i] = iq3s_grid[pos + i]; threadgroup_barrier(mem_flags::mem_threadgroup); } const int ix = tiisg; device const float * y4 = y + 32 * ix; for (int ib32 = ix; ib32 < nb32; ib32 += 32) { for (int i = 0; i < 32; ++i) { yl[i] = y4[i]; } const int ibl = ib32 / (QK_K / 32); const int ib = ib32 % (QK_K / 32); device const block_iq3_s * xr = x + ibl; device const uint8_t * qs = xr->qs + 8 * ib; device const uint8_t * qh = xr->qh + ib; device const uint8_t * sc = xr->scales + (ib/2); device const uint8_t * signs = xr->signs + 4 * ib; device const half * dh = &xr->d; for (int row = 0; row < N_DST; row++) { const float db = dh[0]; const float d = db * (1 + 2*((sc[0] >> 4*(ib%2)) & 0xf)); float2 sum = {0}; for (int l = 0; l < 4; ++l) { const threadgroup uint32_t * table1 = qh[0] & kmask_iq2xs[2*l+0] ? svalues + 256 : svalues; const threadgroup uint32_t * table2 = qh[0] & kmask_iq2xs[2*l+1] ? svalues + 256 : svalues; const threadgroup uint8_t * grid1 = (const threadgroup uint8_t *)(table1 + qs[2*l+0]); const threadgroup uint8_t * grid2 = (const threadgroup uint8_t *)(table2 + qs[2*l+1]); for (int j = 0; j < 4; ++j) { sum[0] += yl[8*l + j + 0] * grid1[j] * select(1, -1, signs[l] & kmask_iq2xs[j+0]); sum[1] += yl[8*l + j + 4] * grid2[j] * select(1, -1, signs[l] & kmask_iq2xs[j+4]); } } sumf[row] += d * (sum[0] + sum[1]); dh += args.nb01/2; qs += args.nb01; qh += args.nb01; sc += args.nb01; signs += args.nb01; } y4 += 32 * 32; } device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0; for (int row = 0; row < N_DST; ++row) { all_sum = simd_sum(sumf[row]); if (tiisg == 0) { dst_f32[first_row + row] = all_sum; } } } [[host_name("kernel_mul_mv_iq3_s_f32")]] kernel void kernel_mul_mv_iq3_s_f32( constant ggml_metal_kargs_mul_mv & args, device const char * src0, device const char * src1, device char * dst, threadgroup char * shmem [[threadgroup(0)]], uint3 tgpig[[threadgroup_position_in_grid]], ushort tiisg[[thread_index_in_simdgroup]], ushort sgitg[[simdgroup_index_in_threadgroup]]) { kernel_mul_mv_iq3_s_f32_impl(args, src0, src1, dst, shmem, tgpig, tiisg, sgitg); } template void kernel_mul_mv_iq2_s_f32_impl( args_t args, device const char * src0, device const char * src1, device char * dst, threadgroup char * shmem, uint3 tgpig, ushort tiisg, ushort sgitg) { const int nb = args.ne00/QK_K; const int r0 = tgpig.x; const int r1 = tgpig.y; const int im = tgpig.z; const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST; const uint i12 = im%args.ne12; const uint i13 = im/args.ne12; const uint64_t offset0 = first_row*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03; const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13; device const block_iq2_s * x = (device const block_iq2_s *) (src0 + offset0); device const float * y = (device const float *) (src1 + offset1); float yl[32]; float sumf[N_DST]={0.f}, all_sum; const int nb32 = nb * (QK_K / 32); //threadgroup uint64_t * svalues = (threadgroup uint64_t *) shmem; //{ // int nval = 32; // int pos = (32*sgitg + tiisg)*nval; // for (int i = 0; i < nval; ++i) svalues[pos + i] = iq2s_grid[pos + i]; // threadgroup_barrier(mem_flags::mem_threadgroup); //} const int ix = tiisg; device const float * y4 = y + 32 * ix; for (int ib32 = ix; ib32 < nb32; ib32 += 32) { for (int i = 0; i < 32; ++i) { yl[i] = y4[i]; } const int ibl = ib32 / (QK_K / 32); const int ib = ib32 % (QK_K / 32); device const block_iq2_s * xr = x + ibl; device const uint8_t * qs = xr->qs + 4 * ib; device const uint8_t * qh = xr->qh + ib; device const uint8_t * sc = xr->scales + ib; device const uint8_t * signs = qs + QK_K/8; device const half * dh = &xr->d; for (int row = 0; row < N_DST; row++) { const float db = dh[0]; const float d1 = db * (0.5f + (sc[0] & 0xf)); const float d2 = db * (0.5f + (sc[0] >> 4)); float2 sum = {0}; for (int l = 0; l < 2; ++l) { //const threadgroup uint8_t * grid1 = (const threadgroup uint8_t *)(svalues + (qs[l+0] | ((qh[0] << (8-2*l)) & 0x300))); //const threadgroup uint8_t * grid2 = (const threadgroup uint8_t *)(svalues + (qs[l+2] | ((qh[0] << (4-2*l)) & 0x300))); constant uint8_t * grid1 = (constant uint8_t *)(iq2s_grid + (qs[l+0] | ((qh[0] << (8-2*l)) & 0x300))); constant uint8_t * grid2 = (constant uint8_t *)(iq2s_grid + (qs[l+2] | ((qh[0] << (4-2*l)) & 0x300))); for (int j = 0; j < 8; ++j) { sum[0] += yl[8*l + j + 0] * grid1[j] * select(1, -1, signs[l+0] & kmask_iq2xs[j]); sum[1] += yl[8*l + j + 16] * grid2[j] * select(1, -1, signs[l+2] & kmask_iq2xs[j]); } } sumf[row] += d1 * sum[0] + d2 * sum[1]; dh += args.nb01/2; qs += args.nb01; qh += args.nb01; sc += args.nb01; signs += args.nb01; } y4 += 32 * 32; } device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0; for (int row = 0; row < N_DST; ++row) { all_sum = simd_sum(sumf[row]); if (tiisg == 0) { dst_f32[first_row + row] = all_sum * 0.25f; } } } [[host_name("kernel_mul_mv_iq2_s_f32")]] kernel void kernel_mul_mv_iq2_s_f32( constant ggml_metal_kargs_mul_mv & args, device const char * src0, device const char * src1, device char * dst, threadgroup char * shmem [[threadgroup(0)]], uint3 tgpig[[threadgroup_position_in_grid]], ushort tiisg[[thread_index_in_simdgroup]], ushort sgitg[[simdgroup_index_in_threadgroup]]) { kernel_mul_mv_iq2_s_f32_impl(args, src0, src1, dst, shmem, tgpig, tiisg, sgitg); } template void kernel_mul_mv_iq1_s_f32_impl( args_t args, device const char * src0, device const char * src1, device char * dst, threadgroup char * shmem, uint3 tgpig, ushort tiisg, ushort sgitg) { const int nb = args.ne00/QK_K; const int r0 = tgpig.x; const int r1 = tgpig.y; const int im = tgpig.z; const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST; const uint i12 = im%args.ne12; const uint i13 = im/args.ne12; const uint64_t offset0 = first_row*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03; const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13; device const block_iq1_s * x = (device const block_iq1_s *) (src0 + offset0); device const float * y = (device const float *) (src1 + offset1); float yl[32]; float sumf[N_DST]={0.f}, all_sum; const int nb32 = nb * (QK_K / 32); const int ix = tiisg; device const float * y4 = y + 32 * ix; for (int ib32 = ix; ib32 < nb32; ib32 += 32) { float sumy = 0; for (int i = 0; i < 32; ++i) { yl[i] = y4[i]; sumy += yl[i]; } const int ibl = ib32 / (QK_K / 32); const int ib = ib32 % (QK_K / 32); device const block_iq1_s * xr = x + ibl; device const uint8_t * qs = xr->qs + 4 * ib; device const uint16_t * qh = xr->qh + ib; device const half * dh = &xr->d; for (int row = 0; row < N_DST; row++) { constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((qh[0] << 8) & 0x700))); constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((qh[0] << 5) & 0x700))); constant uint8_t * grid3 = (constant uint8_t *)(iq1s_grid_gpu + (qs[2] | ((qh[0] << 2) & 0x700))); constant uint8_t * grid4 = (constant uint8_t *)(iq1s_grid_gpu + (qs[3] | ((qh[0] >> 1) & 0x700))); float sum = 0; for (int j = 0; j < 4; ++j) { sum += yl[j+ 0] * (grid1[j] & 0xf) + yl[j+ 4] * (grid1[j] >> 4) + yl[j+ 8] * (grid2[j] & 0xf) + yl[j+12] * (grid2[j] >> 4) + yl[j+16] * (grid3[j] & 0xf) + yl[j+20] * (grid3[j] >> 4) + yl[j+24] * (grid4[j] & 0xf) + yl[j+28] * (grid4[j] >> 4); } sumf[row] += (float)dh[0] * (sum + sumy * (qh[0] & 0x8000 ? -1 - IQ1S_DELTA : -1 + IQ1S_DELTA)) * (2*((qh[0] >> 12) & 7) + 1); dh += args.nb01/2; qs += args.nb01; qh += args.nb01/2; } y4 += 32 * 32; } device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0; for (int row = 0; row < N_DST; ++row) { all_sum = simd_sum(sumf[row]); if (tiisg == 0) { dst_f32[first_row + row] = all_sum; } } } template void kernel_mul_mv_iq1_m_f32_impl( args_t args, device const char * src0, device const char * src1, device char * dst, threadgroup char * shmem, uint3 tgpig, ushort tiisg, ushort sgitg) { const int nb = args.ne00/QK_K; const int r0 = tgpig.x; const int r1 = tgpig.y; const int im = tgpig.z; const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST; const uint i12 = im%args.ne12; const uint i13 = im/args.ne12; const uint64_t offset0 = first_row*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03; const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13; device const block_iq1_m * x = (device const block_iq1_m *) (src0 + offset0); device const float * y = (device const float *) (src1 + offset1); float yl[32]; float sumf[N_DST]={0.f}, all_sum; const int nb32 = nb * (QK_K / 32); const int ix = tiisg; device const float * y4 = y + 32 * ix; iq1m_scale_t scale; for (int ib32 = ix; ib32 < nb32; ib32 += 32) { float4 sumy = {0.f}; for (int i = 0; i < 8; ++i) { yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0]; yl[i+ 8] = y4[i+ 8]; sumy[1] += yl[i+ 8]; yl[i+16] = y4[i+16]; sumy[2] += yl[i+16]; yl[i+24] = y4[i+24]; sumy[3] += yl[i+24]; } const int ibl = ib32 / (QK_K / 32); const int ib = ib32 % (QK_K / 32); device const block_iq1_m * xr = x + ibl; device const uint8_t * qs = xr->qs + 4 * ib; device const uint8_t * qh = xr->qh + 2 * ib; device const uint16_t * sc = (device const uint16_t *)xr->scales; for (int row = 0; row < N_DST; row++) { scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000); constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((qh[0] << 8) & 0x700))); constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((qh[0] << 4) & 0x700))); constant uint8_t * grid3 = (constant uint8_t *)(iq1s_grid_gpu + (qs[2] | ((qh[1] << 8) & 0x700))); constant uint8_t * grid4 = (constant uint8_t *)(iq1s_grid_gpu + (qs[3] | ((qh[1] << 4) & 0x700))); float2 sum = {0.f}; for (int j = 0; j < 4; ++j) { sum[0] += yl[j+ 0] * (grid1[j] & 0xf) + yl[j+ 4] * (grid1[j] >> 4) + yl[j+ 8] * (grid2[j] & 0xf) + yl[j+12] * (grid2[j] >> 4); sum[1] += yl[j+16] * (grid3[j] & 0xf) + yl[j+20] * (grid3[j] >> 4) + yl[j+24] * (grid4[j] & 0xf) + yl[j+28] * (grid4[j] >> 4); } const float delta1 = sumy[0] * (qh[0] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA) + sumy[1] * (qh[0] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA); const float delta2 = sumy[2] * (qh[1] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA) + sumy[3] * (qh[1] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA); sumf[row] += (float)scale.f16 * ((sum[0] + delta1) * (2*((sc[ib/2] >> (6*(ib%2)+0)) & 7) + 1) + (sum[1] + delta2) * (2*((sc[ib/2] >> (6*(ib%2)+3)) & 7) + 1)); sc += args.nb01/2; qs += args.nb01; qh += args.nb01; } y4 += 32 * 32; } device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0; for (int row = 0; row < N_DST; ++row) { all_sum = simd_sum(sumf[row]); if (tiisg == 0) { dst_f32[first_row + row] = all_sum; } } } template void kernel_mul_mv_iq4_nl_f32_impl( args_t args, device const char * src0, device const char * src1, device char * dst, threadgroup char * shmem, uint3 tgpig, ushort tiisg, ushort sgitg) { threadgroup float * shmem_f32 = (threadgroup float *) shmem; const int nb = args.ne00/QK4_NL; const int r0 = tgpig.x; const int r1 = tgpig.y; const int im = tgpig.z; const int first_row = (r0 * 2 + sgitg) * 2; const uint i12 = im%args.ne12; const uint i13 = im/args.ne12; const uint64_t offset0 = first_row*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03; const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13; device const block_iq4_nl * x = (device const block_iq4_nl *) (src0 + offset0); device const float * y = (device const float *) (src1 + offset1); const int ix = tiisg/2; // 0...15 const int it = tiisg%2; // 0 or 1 shmem_f32[tiisg] = kvalues_iq4nl_f[tiisg%16]; threadgroup_barrier(mem_flags::mem_threadgroup); float4 yl[4]; float sumf[2]={0.f}, all_sum; device const float * yb = y + ix * QK4_NL + it * 8; uint32_t aux32[2]; thread const uint8_t * q8 = (thread const uint8_t *)aux32; float4 qf1, qf2; for (int ib = ix; ib < nb; ib += 16) { device const float4 * y4 = (device const float4 *)yb; yl[0] = y4[0]; yl[1] = y4[4]; yl[2] = y4[1]; yl[3] = y4[5]; for (int row = 0; row < 2 && first_row + row < args.ne01; ++row) { device const block_iq4_nl & xb = x[row*nb + ib]; device const uint16_t * q4 = (device const uint16_t *)(xb.qs + 8*it); float4 acc1 = {0.f}, acc2 = {0.f}; aux32[0] = q4[0] | (q4[1] << 16); aux32[1] = (aux32[0] >> 4) & 0x0f0f0f0f; aux32[0] &= 0x0f0f0f0f; qf1 = {shmem_f32[q8[0]], shmem_f32[q8[1]], shmem_f32[q8[2]], shmem_f32[q8[3]]}; qf2 = {shmem_f32[q8[4]], shmem_f32[q8[5]], shmem_f32[q8[6]], shmem_f32[q8[7]]}; acc1 += yl[0] * qf1; acc2 += yl[1] * qf2; aux32[0] = q4[2] | (q4[3] << 16); aux32[1] = (aux32[0] >> 4) & 0x0f0f0f0f; aux32[0] &= 0x0f0f0f0f; qf1 = {shmem_f32[q8[0]], shmem_f32[q8[1]], shmem_f32[q8[2]], shmem_f32[q8[3]]}; qf2 = {shmem_f32[q8[4]], shmem_f32[q8[5]], shmem_f32[q8[6]], shmem_f32[q8[7]]}; acc1 += yl[2] * qf1; acc2 += yl[3] * qf2; acc1 += acc2; sumf[row] += (float)xb.d * (acc1[0] + acc1[1] + acc1[2] + acc1[3]); } yb += 16 * QK4_NL; } device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0; for (int row = 0; row < 2 && first_row + row < args.ne01; ++row) { all_sum = simd_sum(sumf[row]); if (tiisg == 0) { dst_f32[first_row + row] = all_sum; } } } template void kernel_mul_mv_iq4_xs_f32_impl( args_t args, device const char * src0, device const char * src1, device char * dst, threadgroup char * shmem, uint3 tgpig, ushort tiisg, ushort sgitg) { threadgroup float * shmem_f32 = (threadgroup float *) shmem; const int nb = args.ne00/QK_K; const int r0 = tgpig.x; const int r1 = tgpig.y; const int im = tgpig.z; const int first_row = (r0 * 2 + sgitg) * 2; const uint i12 = im%args.ne12; const uint i13 = im/args.ne12; const uint64_t offset0 = first_row*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03; const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13; device const block_iq4_xs * x = (device const block_iq4_xs *) (src0 + offset0); device const float * y = (device const float *) (src1 + offset1); const int ix = tiisg/16; // 0 or 1 const int it = tiisg%16; // 0...15 const int ib = it/2; const int il = it%2; shmem_f32[tiisg] = kvalues_iq4nl_f[tiisg%16]; threadgroup_barrier(mem_flags::mem_threadgroup); float4 yl[4]; float sumf[2]={0.f}, all_sum; device const float * yb = y + ix * QK_K + ib * 32 + il * 8; uint32_t aux32[2]; thread const uint8_t * q8 = (thread const uint8_t *)aux32; float4 qf1, qf2; for (int ibl = ix; ibl < nb; ibl += 2) { device const float4 * y4 = (device const float4 *)yb; yl[0] = y4[0]; yl[1] = y4[4]; yl[2] = y4[1]; yl[3] = y4[5]; for (int row = 0; row < 2; ++row) { device const block_iq4_xs & xb = x[row*nb + ibl]; device const uint32_t * q4 = (device const uint32_t *)(xb.qs + 16*ib + 8*il); float4 acc1 = {0.f}, acc2 = {0.f}; aux32[0] = (q4[0] ) & 0x0f0f0f0f; aux32[1] = (q4[0] >> 4) & 0x0f0f0f0f; qf1 = {shmem_f32[q8[0]], shmem_f32[q8[1]], shmem_f32[q8[2]], shmem_f32[q8[3]]}; qf2 = {shmem_f32[q8[4]], shmem_f32[q8[5]], shmem_f32[q8[6]], shmem_f32[q8[7]]}; acc1 += yl[0] * qf1; acc2 += yl[1] * qf2; aux32[0] = (q4[1] ) & 0x0f0f0f0f; aux32[1] = (q4[1] >> 4) & 0x0f0f0f0f; qf1 = {shmem_f32[q8[0]], shmem_f32[q8[1]], shmem_f32[q8[2]], shmem_f32[q8[3]]}; qf2 = {shmem_f32[q8[4]], shmem_f32[q8[5]], shmem_f32[q8[6]], shmem_f32[q8[7]]}; acc1 += yl[2] * qf1; acc2 += yl[3] * qf2; acc1 += acc2; const int ls = (((xb.scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((xb.scales_h >> 2*ib) & 3) << 4)) - 32; sumf[row] += (float)xb.d * ls * (acc1[0] + acc1[1] + acc1[2] + acc1[3]); } yb += 2 * QK_K; } device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0; for (int row = 0; row < 2; ++row) { all_sum = simd_sum(sumf[row]); if (tiisg == 0) { dst_f32[first_row + row] = all_sum; } } } [[host_name("kernel_mul_mv_iq1_s_f32")]] kernel void kernel_mul_mv_iq1_s_f32( constant ggml_metal_kargs_mul_mv & args, device const char * src0, device const char * src1, device char * dst, uint3 tgpig[[threadgroup_position_in_grid]], ushort tiisg[[thread_index_in_simdgroup]], ushort sgitg[[simdgroup_index_in_threadgroup]]) { kernel_mul_mv_iq1_s_f32_impl(args, src0, src1, dst, nullptr, tgpig, tiisg, sgitg); } [[host_name("kernel_mul_mv_iq1_m_f32")]] kernel void kernel_mul_mv_iq1_m_f32( constant ggml_metal_kargs_mul_mv & args, device const char * src0, device const char * src1, device char * dst, uint3 tgpig[[threadgroup_position_in_grid]], ushort tiisg[[thread_index_in_simdgroup]], ushort sgitg[[simdgroup_index_in_threadgroup]]) { kernel_mul_mv_iq1_m_f32_impl(args, src0, src1, dst, nullptr, tgpig, tiisg, sgitg); } [[host_name("kernel_mul_mv_iq4_nl_f32")]] kernel void kernel_mul_mv_iq4_nl_f32( constant ggml_metal_kargs_mul_mv & args, device const char * src0, device const char * src1, device char * dst, threadgroup char * shmem [[threadgroup(0)]], uint3 tgpig[[threadgroup_position_in_grid]], ushort tiisg[[thread_index_in_simdgroup]], ushort sgitg[[simdgroup_index_in_threadgroup]]) { kernel_mul_mv_iq4_nl_f32_impl(args, src0, src1, dst, shmem, tgpig, tiisg, sgitg); } [[host_name("kernel_mul_mv_iq4_xs_f32")]] kernel void kernel_mul_mv_iq4_xs_f32( constant ggml_metal_kargs_mul_mv & args, device const char * src0, device const char * src1, device char * dst, threadgroup char * shmem [[threadgroup(0)]], uint3 tgpig[[threadgroup_position_in_grid]], ushort tiisg[[thread_index_in_simdgroup]], ushort sgitg[[simdgroup_index_in_threadgroup]]) { kernel_mul_mv_iq4_xs_f32_impl(args, src0, src1, dst, shmem, tgpig, tiisg, sgitg); } template kernel void kernel_get_rows_q( device const void * src0, device const void * src1, device float * dst, constant int64_t & ne00, constant uint64_t & nb01, constant uint64_t & nb02, constant int64_t & ne10, constant uint64_t & nb10, constant uint64_t & nb11, constant uint64_t & nb1, constant uint64_t & nb2, uint3 tgpig[[threadgroup_position_in_grid]], uint tiitg[[thread_index_in_threadgroup]], uint3 tptg [[threads_per_threadgroup]]) { const int64_t i10 = tgpig.x; const int64_t i11 = tgpig.y; const int64_t r = ((const device int32_t *) ((const device char *) src1 + i11*nb11 + i10*nb10))[0]; const int64_t i02 = i11; for (int64_t ind = tiitg; ind < ne00/16; ind += tptg.x) { float4x4 temp; dequantize_func(((device const block_q *) ((const device char *) src0 + r*nb01 + i02*nb02)) + ind/nl, ind%nl, temp); *(((device float4x4 *) ((device char *) dst + i11*nb2 + i10*nb1)) + ind) = temp; } } template kernel void kernel_get_rows_f( device const void * src0, device const void * src1, device float * dst, constant int64_t & ne00, constant uint64_t & nb01, constant uint64_t & nb02, constant int64_t & ne10, constant uint64_t & nb10, constant uint64_t & nb11, constant uint64_t & nb1, constant uint64_t & nb2, uint3 tgpig[[threadgroup_position_in_grid]], uint tiitg[[thread_index_in_threadgroup]], uint3 tptg [[threads_per_threadgroup]]) { const int64_t i10 = tgpig.x; const int64_t i11 = tgpig.y; const int64_t r = ((const device int32_t *) ((const device char *) src1 + i11*nb11 + i10*nb10))[0]; const int64_t i02 = i11; for (int ind = tiitg; ind < ne00; ind += tptg.x) { (( device float *) (( device char *) dst + i11*nb2 + i10*nb1))[ind] = ((const device T *) ((const device char *) src0 + i02*nb02 + r*nb01))[ind]; } } kernel void kernel_get_rows_i32( device const void * src0, device const void * src1, device int32_t * dst, constant int64_t & ne00, constant uint64_t & nb01, constant uint64_t & nb02, constant int64_t & ne10, constant uint64_t & nb10, constant uint64_t & nb11, constant uint64_t & nb1, constant uint64_t & nb2, uint3 tgpig[[threadgroup_position_in_grid]], uint tiitg[[thread_index_in_threadgroup]], uint3 tptg [[threads_per_threadgroup]]) { const int64_t i10 = tgpig.x; const int64_t i11 = tgpig.y; const int64_t r = ((const device int32_t *) ((const device char *) src1 + i11*nb11 + i10*nb10))[0]; const int64_t i02 = i11; for (int ind = tiitg; ind < ne00; ind += tptg.x) { (( device int32_t *) (( device char *) dst + i11*nb2 + i10*nb1))[ind] = ((const device int32_t *) ((const device char *) src0 + i02*nb02 + r*nb01))[ind]; } } #define BLOCK_SIZE_M 64 // 8 simdgroup matrices from matrix A #define BLOCK_SIZE_N 32 // 4 simdgroup matrices from matrix B #define BLOCK_SIZE_K 32 #define THREAD_MAT_M 4 // each thread take 4 simdgroup matrices from matrix A #define THREAD_MAT_N 2 // each thread take 2 simdgroup matrices from matrix B #define THREAD_PER_BLOCK 128 #define THREAD_PER_ROW 2 // 2 thread for each row in matrix A to load numbers #define THREAD_PER_COL 4 // 4 thread for each row in matrix B to load numbers #define SG_MAT_SIZE 64 // simdgroup matrix is of shape 8x8 #define SG_MAT_ROW 8 // each block_q contains 16*nl weights template kernel void kernel_mul_mm( constant ggml_metal_kargs_mul_mm & args, device const char * src0, device const char * src1, device char * dst, threadgroup char * shmem [[threadgroup(0)]], uint3 tgpig[[threadgroup_position_in_grid]], ushort tiitg[[thread_index_in_threadgroup]], ushort sgitg[[simdgroup_index_in_threadgroup]]) { threadgroup T * sa = (threadgroup T *)(shmem); threadgroup float * sb = (threadgroup float *)(shmem + 4096); const int r0 = tgpig.y; const int r1 = tgpig.x; const int im = tgpig.z; // if this block is of 64x32 shape or smaller short n_rows = (args.ne0 - r0*BLOCK_SIZE_M < BLOCK_SIZE_M) ? (args.ne0 - r0*BLOCK_SIZE_M) : BLOCK_SIZE_M; short n_cols = (args.ne1 - r1*BLOCK_SIZE_N < BLOCK_SIZE_N) ? (args.ne1 - r1*BLOCK_SIZE_N) : BLOCK_SIZE_N; // a thread shouldn't load data outside of the matrix short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1; short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1; simdgroup_T8x8 ma[4]; simdgroup_float8x8 mb[2]; simdgroup_float8x8 mc[8]; for (short i = 0; i < 8; i++){ mc[i] = make_filled_simdgroup_matrix(0.f); } short il = (tiitg % THREAD_PER_ROW); const int i12 = im%args.ne12; const int i13 = im/args.ne12; uint64_t offset0 = (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03; short offset1 = il/nl; device const block_q * x = (device const block_q *)(src0 + (r0*BLOCK_SIZE_M + thread_row)*args.nb01 + offset0) + offset1; device const float * y = (device const float *)(src1 + args.nb13*i13 + args.nb12*i12 + args.nb11*(r1 * BLOCK_SIZE_N + thread_col) + args.nb10*(BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL))); for (int loop_k = 0; loop_k < args.ne00; loop_k += BLOCK_SIZE_K) { // load data and store to threadgroup memory T4x4 temp_a; dequantize_func(x, il, temp_a); threadgroup_barrier(mem_flags::mem_threadgroup); #pragma unroll(16) for (short i = 0; i < 16; i++) { *(sa + SG_MAT_SIZE * ((tiitg/THREAD_PER_ROW/8) \ + (tiitg%THREAD_PER_ROW)*16 + (i/8)*8) \ + (tiitg/THREAD_PER_ROW)%8 + (i&7)*8) = temp_a[i/4][i%4]; } *(threadgroup float2x4 *)(sb + (tiitg % THREAD_PER_COL)*8*32 + 8*(tiitg/THREAD_PER_COL)) = *((device float2x4 *) y); il = (il + 2 < nl) ? il + 2 : il % 2; x = (il < 2) ? x + (2+nl-1)/nl : x; y += BLOCK_SIZE_K; threadgroup_barrier(mem_flags::mem_threadgroup); // load matrices from threadgroup memory and conduct outer products threadgroup T * lsma = (sa + THREAD_MAT_M*SG_MAT_SIZE*(sgitg%2)); threadgroup float * lsmb = (sb + THREAD_MAT_N*SG_MAT_SIZE*(sgitg/2)); #pragma unroll(4) for (short ik = 0; ik < BLOCK_SIZE_K / 8; ik++) { #pragma unroll(4) for (short i = 0; i < 4; i++) { simdgroup_load(ma[i], lsma + SG_MAT_SIZE * i); } simdgroup_barrier(mem_flags::mem_none); #pragma unroll(2) for (short i = 0; i < 2; i++) { simdgroup_load(mb[i], lsmb + SG_MAT_SIZE * i); } lsma += BLOCK_SIZE_M/SG_MAT_ROW * SG_MAT_SIZE; lsmb += BLOCK_SIZE_N/SG_MAT_ROW * SG_MAT_SIZE; #pragma unroll(8) for (short i = 0; i < 8; i++){ simdgroup_multiply_accumulate(mc[i], mb[i/4], ma[i%4], mc[i]); } } } if ((r0 + 1) * BLOCK_SIZE_M <= args.ne0 && (r1 + 1) * BLOCK_SIZE_N <= args.ne1) { device float * C = (device float *) dst + (BLOCK_SIZE_M * r0 + 32 * (sgitg & 1)) + \ (BLOCK_SIZE_N * r1 + 16 * (sgitg >> 1)) * args.ne0 + im*args.ne1*args.ne0; for (short i = 0; i < 8; i++) { simdgroup_store(mc[i], C + 8 * (i%4) + 8 * args.ne0 * (i/4), args.ne0); } } else { // block is smaller than 64x32, we should avoid writing data outside of the matrix threadgroup_barrier(mem_flags::mem_threadgroup); threadgroup float * temp_str = ((threadgroup float *) shmem) \ + 32 * (sgitg&1) + (16 * (sgitg>>1))*BLOCK_SIZE_M; for (short i = 0; i < 8; i++) { simdgroup_store(mc[i], temp_str + 8*(i%4) + 8*BLOCK_SIZE_M*(i/4), BLOCK_SIZE_M); } threadgroup_barrier(mem_flags::mem_threadgroup); if (sgitg == 0) { for (int j = tiitg; j < n_cols; j += BLOCK_SIZE_N) { device float * D = (device float *) dst + (r0*BLOCK_SIZE_M) + (r1*BLOCK_SIZE_N + j)*args.ne0 + im*args.ne1*args.ne0; device float4 * D4 = (device float4 *) D; threadgroup float * C = temp_str + (j*BLOCK_SIZE_M); threadgroup float4 * C4 = (threadgroup float4 *) C; int i = 0; for (; i < n_rows/4; i++) { *(D4 + i) = *(C4 + i); } i *= 4; for (; i < n_rows; i++) { *(D + i) = *(C + i); } } } } } // same as kernel_mul_mm_impl, but src1 and dst are accessed via indices stored in rowids // TODO: this kernel needs to be reimplemented from scratch for better performance template void kernel_mul_mm_id_impl( int32_t ne00, int32_t ne02, uint64_t nb01, uint64_t nb02, int32_t ne11, int32_t ne12, uint64_t nb10, uint64_t nb11, uint64_t nb12, int32_t ne0, int32_t ne1, int64_t ne0ne1, device const char * src0, device const char * src1, threadgroup ushort2 * rowids, device char * dst, threadgroup char * shmem, uint3 tgpig[[threadgroup_position_in_grid]], ushort tiitg[[thread_index_in_threadgroup]], ushort sgitg[[simdgroup_index_in_threadgroup]]) { threadgroup half * sa = (threadgroup half *)(shmem); threadgroup float * sb = (threadgroup float *)(shmem + 4096); const int r0 = tgpig.y; const int r1 = tgpig.x; if (r1*BLOCK_SIZE_N >= ne1) return; // if this block is of 64x32 shape or smaller short n_rows = (ne0 - r0 * BLOCK_SIZE_M < BLOCK_SIZE_M) ? (ne0 - r0 * BLOCK_SIZE_M) : BLOCK_SIZE_M; short n_cols = (ne1 - r1 * BLOCK_SIZE_N < BLOCK_SIZE_N) ? (ne1 - r1 * BLOCK_SIZE_N) : BLOCK_SIZE_N; // a thread shouldn't load data outside of the matrix short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1; short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1; simdgroup_half8x8 ma[4]; simdgroup_float8x8 mb[2]; simdgroup_float8x8 mc[8]; for (int i = 0; i < 8; i++){ mc[i] = make_filled_simdgroup_matrix(0.f); } short il = (tiitg % THREAD_PER_ROW); ushort offset1 = il/nl; threadgroup const auto & id = rowids[r1 * BLOCK_SIZE_N + thread_col]; device const block_q * x = (device const block_q *)(src0 + (r0 * BLOCK_SIZE_M + thread_row) * nb01) + offset1; device const float * y = (device const float *)(src1 + nb12 * id[1] + nb11 * (id[0] % ne11) + nb10 * (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL))); for (int loop_k = 0; loop_k < ne00; loop_k += BLOCK_SIZE_K) { // load data and store to threadgroup memory half4x4 temp_a; dequantize_func(x, il, temp_a); threadgroup_barrier(mem_flags::mem_threadgroup); for (int i = 0; i < 16; i++) { *(sa + SG_MAT_SIZE * ((tiitg / THREAD_PER_ROW / 8) \ + (tiitg % THREAD_PER_ROW) * 16 + (i / 8) * 8) \ + (tiitg / THREAD_PER_ROW) % 8 + (i & 7) * 8) = temp_a[i/4][i%4]; } *(threadgroup float2x4 *)(sb + (tiitg % THREAD_PER_COL) * 8 * 32 + 8 * (tiitg / THREAD_PER_COL)) = *((device float2x4 *)y); il = (il + 2 < nl) ? il + 2 : il % 2; x = (il < 2) ? x + (2+nl-1)/nl : x; y += BLOCK_SIZE_K; threadgroup_barrier(mem_flags::mem_threadgroup); // load matrices from threadgroup memory and conduct outer products threadgroup half * lsma = (sa + THREAD_MAT_M * SG_MAT_SIZE * (sgitg % 2)); threadgroup float * lsmb = (sb + THREAD_MAT_N * SG_MAT_SIZE * (sgitg / 2)); #pragma unroll(BLOCK_SIZE_K/8) for (int ik = 0; ik < BLOCK_SIZE_K / 8; ik++) { #pragma unroll(4) for (int i = 0; i < 4; i++) { simdgroup_load(ma[i], lsma + SG_MAT_SIZE * i); } simdgroup_barrier(mem_flags::mem_none); #pragma unroll(2) for (int i = 0; i < 2; i++) { simdgroup_load(mb[i], lsmb + SG_MAT_SIZE * i); } lsma += BLOCK_SIZE_M / SG_MAT_ROW * SG_MAT_SIZE; lsmb += BLOCK_SIZE_N / SG_MAT_ROW * SG_MAT_SIZE; #pragma unroll(8) for (int i = 0; i < 8; i++){ simdgroup_multiply_accumulate(mc[i], mb[i/4], ma[i%4], mc[i]); } } } { threadgroup_barrier(mem_flags::mem_threadgroup); threadgroup float * temp_str = ((threadgroup float *) shmem) \ + 32 * (sgitg&1) + (16 * (sgitg>>1)) * BLOCK_SIZE_M; for (int i = 0; i < 8; i++) { simdgroup_store(mc[i], temp_str + 8 * (i%4) + 8 * BLOCK_SIZE_M * (i/4), BLOCK_SIZE_M); } threadgroup_barrier(mem_flags::mem_threadgroup); if (sgitg == 0) { for (int j = tiitg; j < n_cols; j += BLOCK_SIZE_N) { threadgroup const auto & jid = rowids[r1 * BLOCK_SIZE_N + j]; int64_t joff = jid[0]*ne0 + jid[1]*ne0ne1; device float * D = (device float *) dst + (r0*BLOCK_SIZE_M) + joff; device float4 * D4 = (device float4 *) D; threadgroup float * C = temp_str + (j*BLOCK_SIZE_M); threadgroup float4 * C4 = (threadgroup float4 *) C; int i = 0; for (; i < n_rows/4; i++) { *(D4 + i) = *(C4 + i); } i *= 4; for (; i < n_rows; i++) { *(D + i) = *(C + i); } } } } } template kernel void kernel_mul_mm_id( constant ggml_metal_kargs_mul_mm_id & args, device const char * src0s, device const char * src1, device char * dst, device const char * ids, threadgroup char * shmem [[threadgroup(0)]], uint3 tgpig[[threadgroup_position_in_grid]], ushort tiitg[[thread_index_in_threadgroup]], ushort sgitg[[simdgroup_index_in_threadgroup]]) { const int32_t i02 = tgpig.z; tgpig.z = 0; device const char * src0 = src0s + i02*args.nb02; // row indices threadgroup ushort2 * rowids = (threadgroup ushort2 *)(shmem + 8192); // TODO: parallelize this loop int32_t _ne1 = 0; for (ushort ii1 = 0; ii1 < args.nei1; ii1++) { for (ushort ii0 = 0; ii0 < args.nei0; ii0++) { int32_t id = ((device int32_t *) (ids + ii1*args.nbi1))[ii0]; if (id == i02) { if (tiitg == 0) { rowids[_ne1] = ushort2(ii0, ii1); } _ne1++; } } } threadgroup_barrier(mem_flags::mem_threadgroup); kernel_mul_mm_id_impl( args.ne00, args.ne02, args.nb01, args.nb02, args.ne11, args.ne12, args.nb10, args.nb11, args.nb12, args.ne0, _ne1, (int64_t)args.ne0*args.ne1, src0, src1, rowids, dst, shmem, tgpig, tiitg, sgitg); } #define QK_NL 16 // // get rows // typedef decltype(kernel_get_rows_f) get_rows_f_t; template [[host_name("kernel_get_rows_f32")]] kernel get_rows_f_t kernel_get_rows_f; template [[host_name("kernel_get_rows_f16")]] kernel get_rows_f_t kernel_get_rows_f; #if defined(GGML_METAL_USE_BF16) template [[host_name("kernel_get_rows_bf16")]] kernel get_rows_f_t kernel_get_rows_f; #endif typedef decltype(kernel_get_rows_q) get_rows_q_t; template [[host_name("kernel_get_rows_q4_0")]] kernel get_rows_q_t kernel_get_rows_q; template [[host_name("kernel_get_rows_q4_1")]] kernel get_rows_q_t kernel_get_rows_q; template [[host_name("kernel_get_rows_q5_0")]] kernel get_rows_q_t kernel_get_rows_q; template [[host_name("kernel_get_rows_q5_1")]] kernel get_rows_q_t kernel_get_rows_q; template [[host_name("kernel_get_rows_q8_0")]] kernel get_rows_q_t kernel_get_rows_q; template [[host_name("kernel_get_rows_q2_K")]] kernel get_rows_q_t kernel_get_rows_q; template [[host_name("kernel_get_rows_q3_K")]] kernel get_rows_q_t kernel_get_rows_q; template [[host_name("kernel_get_rows_q4_K")]] kernel get_rows_q_t kernel_get_rows_q; template [[host_name("kernel_get_rows_q5_K")]] kernel get_rows_q_t kernel_get_rows_q; template [[host_name("kernel_get_rows_q6_K")]] kernel get_rows_q_t kernel_get_rows_q; template [[host_name("kernel_get_rows_iq2_xxs")]] kernel get_rows_q_t kernel_get_rows_q; template [[host_name("kernel_get_rows_iq2_xs")]] kernel get_rows_q_t kernel_get_rows_q; template [[host_name("kernel_get_rows_iq3_xxs")]] kernel get_rows_q_t kernel_get_rows_q; template [[host_name("kernel_get_rows_iq3_s")]] kernel get_rows_q_t kernel_get_rows_q; template [[host_name("kernel_get_rows_iq2_s")]] kernel get_rows_q_t kernel_get_rows_q; template [[host_name("kernel_get_rows_iq1_s")]] kernel get_rows_q_t kernel_get_rows_q; template [[host_name("kernel_get_rows_iq1_m")]] kernel get_rows_q_t kernel_get_rows_q; template [[host_name("kernel_get_rows_iq4_nl")]] kernel get_rows_q_t kernel_get_rows_q; template [[host_name("kernel_get_rows_iq4_xs")]] kernel get_rows_q_t kernel_get_rows_q; // // matrix-matrix multiplication // typedef decltype(kernel_mul_mm) mat_mm_t; template [[host_name("kernel_mul_mm_f32_f32")]] kernel mat_mm_t kernel_mul_mm; template [[host_name("kernel_mul_mm_f16_f32")]] kernel mat_mm_t kernel_mul_mm; #if defined(GGML_METAL_USE_BF16) template [[host_name("kernel_mul_mm_bf16_f32")]] kernel mat_mm_t kernel_mul_mm; #endif template [[host_name("kernel_mul_mm_q4_0_f32")]] kernel mat_mm_t kernel_mul_mm; template [[host_name("kernel_mul_mm_q4_1_f32")]] kernel mat_mm_t kernel_mul_mm; template [[host_name("kernel_mul_mm_q5_0_f32")]] kernel mat_mm_t kernel_mul_mm; template [[host_name("kernel_mul_mm_q5_1_f32")]] kernel mat_mm_t kernel_mul_mm; template [[host_name("kernel_mul_mm_q8_0_f32")]] kernel mat_mm_t kernel_mul_mm; template [[host_name("kernel_mul_mm_q2_K_f32")]] kernel mat_mm_t kernel_mul_mm; template [[host_name("kernel_mul_mm_q3_K_f32")]] kernel mat_mm_t kernel_mul_mm; template [[host_name("kernel_mul_mm_q4_K_f32")]] kernel mat_mm_t kernel_mul_mm; template [[host_name("kernel_mul_mm_q5_K_f32")]] kernel mat_mm_t kernel_mul_mm; template [[host_name("kernel_mul_mm_q6_K_f32")]] kernel mat_mm_t kernel_mul_mm; template [[host_name("kernel_mul_mm_iq2_xxs_f32")]] kernel mat_mm_t kernel_mul_mm; template [[host_name("kernel_mul_mm_iq2_xs_f32")]] kernel mat_mm_t kernel_mul_mm; template [[host_name("kernel_mul_mm_iq3_xxs_f32")]] kernel mat_mm_t kernel_mul_mm; template [[host_name("kernel_mul_mm_iq3_s_f32")]] kernel mat_mm_t kernel_mul_mm; template [[host_name("kernel_mul_mm_iq2_s_f32")]] kernel mat_mm_t kernel_mul_mm; template [[host_name("kernel_mul_mm_iq1_s_f32")]] kernel mat_mm_t kernel_mul_mm; template [[host_name("kernel_mul_mm_iq1_m_f32")]] kernel mat_mm_t kernel_mul_mm; template [[host_name("kernel_mul_mm_iq4_nl_f32")]] kernel mat_mm_t kernel_mul_mm; template [[host_name("kernel_mul_mm_iq4_xs_f32")]] kernel mat_mm_t kernel_mul_mm; // // indirect matrix-matrix multiplication // typedef decltype(kernel_mul_mm_id) mat_mm_id_t; template [[host_name("kernel_mul_mm_id_f32_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; template [[host_name("kernel_mul_mm_id_f16_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; #if defined(GGML_METAL_USE_BF16) template [[host_name("kernel_mul_mm_id_bf16_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; #endif template [[host_name("kernel_mul_mm_id_q4_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; template [[host_name("kernel_mul_mm_id_q4_1_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; template [[host_name("kernel_mul_mm_id_q5_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; template [[host_name("kernel_mul_mm_id_q5_1_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; template [[host_name("kernel_mul_mm_id_q8_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; template [[host_name("kernel_mul_mm_id_q2_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; template [[host_name("kernel_mul_mm_id_q3_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; template [[host_name("kernel_mul_mm_id_q4_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; template [[host_name("kernel_mul_mm_id_q5_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; template [[host_name("kernel_mul_mm_id_q6_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; template [[host_name("kernel_mul_mm_id_iq2_xxs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; template [[host_name("kernel_mul_mm_id_iq2_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; template [[host_name("kernel_mul_mm_id_iq3_xxs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; template [[host_name("kernel_mul_mm_id_iq3_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; template [[host_name("kernel_mul_mm_id_iq2_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; template [[host_name("kernel_mul_mm_id_iq1_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; template [[host_name("kernel_mul_mm_id_iq1_m_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; template [[host_name("kernel_mul_mm_id_iq4_nl_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; template [[host_name("kernel_mul_mm_id_iq4_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; // // matrix-vector multiplication // typedef void (kernel_mul_mv_impl_t)( ggml_metal_kargs_mul_mv args, device const char * src0, device const char * src1, device char * dst, uint3 tgpig, ushort tiisg); typedef void (kernel_mul_mv2_impl_t)( ggml_metal_kargs_mul_mv args, device const char * src0, device const char * src1, device char * dst, threadgroup char * shmem, uint3 tgpig, ushort tiisg, ushort sgitg); template void mmv_fn( ggml_metal_kargs_mul_mv args, device const char * src0, device const char * src1, device char * dst, threadgroup char * shmem, uint3 tgpig, ushort tiitg, ushort tiisg, ushort sgitg) { impl_fn(args, src0, src1, dst, tgpig, tiisg); } template void mmv_fn( ggml_metal_kargs_mul_mv args, device const char * src0, device const char * src1, device char * dst, threadgroup char * shmem, uint3 tgpig, ushort tiitg, ushort tiisg, ushort sgitg) { impl_fn(args, src0, src1, dst, shmem, tgpig, tiisg, sgitg); } typedef decltype(mmv_fn>) mul_mv_impl_fn_t; template kernel void kernel_mul_mv_id( constant ggml_metal_kargs_mul_mv_id & args, device const char * src0s, device const char * src1, device char * dst, device const char * ids, threadgroup char * shmem [[threadgroup(0)]], uint3 tgpig[[threadgroup_position_in_grid]], ushort tiitg[[thread_index_in_threadgroup]], ushort tiisg[[thread_index_in_simdgroup]], ushort sgitg[[simdgroup_index_in_threadgroup]]) { const int iid1 = tgpig.z/args.nei0; const int idx = tgpig.z%args.nei0; tgpig.z = 0; const int32_t i02 = ((device const int32_t *) (ids + iid1*args.nbi1))[idx]; const int64_t i11 = idx % args.ne11; const int64_t i12 = iid1; const int64_t i1 = idx; const int64_t i2 = i12; device const char * src0_cur = src0s + i02*args.nb02; device const char * src1_cur = src1 + i11*args.nb11 + i12*args.nb12; device char * dst_cur = dst + (i1*args.ne0 + i2*args.ne1*args.ne0)*sizeof(float); ggml_metal_kargs_mul_mv args0 = { /*.ne00 =*/ args.ne00, /*.ne01 =*/ args.ne01, /*.ne02 =*/ 1, // args.ne02, /*.nb00 =*/ args.nb00, /*.nb01 =*/ args.nb01, /*.nb02 =*/ args.nb02, /*.nb03 =*/ args.nb02, // args.ne02 == 1 /*.ne10 =*/ args.ne10, /*.ne11 =*/ 1, // args.ne11, /*.ne12 =*/ 1, // args.ne12, /*.nb10 =*/ args.nb10, /*.nb11 =*/ args.nb11, /*.nb12 =*/ args.nb12, /*.nb13 =*/ args.nb12, // ne12 == 1 /*.ne0 =*/ args.ne0, /*.ne1 =*/ 1, // args.ne1, /*.r2 =*/ 1, /*.r3 =*/ 1, }; impl_fn( args0, /* src0 */ src0_cur, /* src1 */ src1_cur, /* dst */ dst_cur, shmem, tgpig, tiitg, tiisg, sgitg); } typedef decltype(kernel_mul_mv_id>>) kernel_mul_mv_id_t; template [[host_name("kernel_mul_mv_id_f32_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>>; template [[host_name("kernel_mul_mv_id_f16_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>>; #if defined(GGML_METAL_USE_BF16) template [[host_name("kernel_mul_mv_id_bf16_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>>; #endif template [[host_name("kernel_mul_mv_id_q8_0_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; template [[host_name("kernel_mul_mv_id_q4_0_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>>; template [[host_name("kernel_mul_mv_id_q4_1_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>>; template [[host_name("kernel_mul_mv_id_q5_0_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>>; template [[host_name("kernel_mul_mv_id_q5_1_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>>; template [[host_name("kernel_mul_mv_id_q2_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; template [[host_name("kernel_mul_mv_id_q3_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; template [[host_name("kernel_mul_mv_id_q4_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; template [[host_name("kernel_mul_mv_id_q5_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; template [[host_name("kernel_mul_mv_id_q6_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; template [[host_name("kernel_mul_mv_id_iq1_s_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; template [[host_name("kernel_mul_mv_id_iq1_m_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; template [[host_name("kernel_mul_mv_id_iq2_xxs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; template [[host_name("kernel_mul_mv_id_iq2_xs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; template [[host_name("kernel_mul_mv_id_iq3_xxs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; template [[host_name("kernel_mul_mv_id_iq3_s_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; template [[host_name("kernel_mul_mv_id_iq2_s_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; template [[host_name("kernel_mul_mv_id_iq4_nl_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; template [[host_name("kernel_mul_mv_id_iq4_xs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; kernel void kernel_pool_2d_max_f32( device const float * src0, device float * dst, constant int32_t & k0, constant int32_t & k1, constant int32_t & s0, constant int32_t & s1, constant int32_t & p0, constant int32_t & p1, constant int64_t & IH, constant int64_t & IW, constant int64_t & OH, constant int64_t & OW, constant int64_t & parallel_elements, uint gid[[thread_position_in_grid]]) { if (gid >= parallel_elements) { return; } const int idx = gid; const int I_HW = IH * IW; const int O_HW = OH * OW; const int nc = idx / O_HW; const int cur_oh = idx % O_HW / OW; const int cur_ow = idx % O_HW % OW; device const float * i_ptr = src0 + nc * I_HW; device float * o_ptr = dst + nc * O_HW; const int start_h = cur_oh * s1 - p1; const int bh = MAX(0, start_h); const int eh = MIN(IH, start_h + k1); const int start_w = cur_ow * s0 - p0; const int bw = MAX(0, start_w); const int ew = MIN(IW, start_w + k0); float res = -INFINITY; for (int i = bh; i < eh; i += 1) { for (int j = bw; j < ew; j += 1) { res = MAX(res, i_ptr[i * IW + j]); } } o_ptr[cur_oh * OW + cur_ow] = res; } kernel void kernel_pool_2d_avg_f32( device const float * src0, device float * dst, constant int32_t & k0, constant int32_t & k1, constant int32_t & s0, constant int32_t & s1, constant int32_t & p0, constant int32_t & p1, constant int64_t & IH, constant int64_t & IW, constant int64_t & OH, constant int64_t & OW, constant int64_t & parallel_elements, uint gid[[thread_position_in_grid]]) { if (gid >= parallel_elements) { return; } const int idx = gid; const int I_HW = IH * IW; const int O_HW = OH * OW; const int nc = idx / O_HW; const int cur_oh = idx % O_HW / OW; const int cur_ow = idx % O_HW % OW; device const float * i_ptr = src0 + nc * I_HW; device float * o_ptr = dst + nc * O_HW; const int start_h = cur_oh * s1 - p1; const int bh = MAX(0, start_h); const int eh = MIN(IH, start_h + k1); const int start_w = cur_ow * s0 - p0; const int bw = MAX(0, start_w); const int ew = MIN(IW, start_w + k0); // const float scale = 1. / ((eh - bh) * (ew - bw)); const float scale = 1. / (k0 * k1); float res = 0; for (int i = bh; i < eh; i += 1) { for (int j = bw; j < ew; j += 1) { float cur = i_ptr[i * IW + j]; res += cur * scale; } } o_ptr[cur_oh * OW + cur_ow] = res; }