#pragma once // ggml-backend internal header #include "ggml-backend.h" #ifdef __cplusplus extern "C" { #endif // // Backend buffer type // struct ggml_backend_buffer_type_i { const char * (*get_name) (ggml_backend_buffer_type_t buft); // allocate a buffer of this type ggml_backend_buffer_t (*alloc_buffer) (ggml_backend_buffer_type_t buft, size_t size); // tensor alignment size_t (*get_alignment) (ggml_backend_buffer_type_t buft); // (optional) max buffer size that can be allocated (defaults to SIZE_MAX) size_t (*get_max_size) (ggml_backend_buffer_type_t buft); // (optional) data size needed to allocate the tensor, including padding (defaults to ggml_nbytes) size_t (*get_alloc_size)(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor); // (optional) check if tensor data is in host memory (defaults to false) bool (*is_host) (ggml_backend_buffer_type_t buft); }; struct ggml_backend_buffer_type { struct ggml_backend_buffer_type_i iface; ggml_backend_dev_t device; void * context; }; // // Backend buffer // struct ggml_backend_buffer_i { const char * (*get_name) (ggml_backend_buffer_t buffer); // (optional) free the buffer void (*free_buffer) (ggml_backend_buffer_t buffer); // base address of the buffer void * (*get_base) (ggml_backend_buffer_t buffer); // (optional) initialize a tensor in the buffer (eg. add tensor extras) void (*init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // tensor data access void (*memset_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size); void (*set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); void (*get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); // (optional) tensor copy: dst is in the buffer, src may be in any buffer, including buffers from a different backend (return false if not supported) bool (*cpy_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst); // clear the entire buffer void (*clear) (ggml_backend_buffer_t buffer, uint8_t value); // (optional) reset any internal state due to tensor initialization, such as tensor extras void (*reset) (ggml_backend_buffer_t buffer); }; struct ggml_backend_buffer { struct ggml_backend_buffer_i iface; ggml_backend_buffer_type_t buft; void * context; size_t size; enum ggml_backend_buffer_usage usage; }; ggml_backend_buffer_t ggml_backend_buffer_init( ggml_backend_buffer_type_t buft, struct ggml_backend_buffer_i iface, void * context, size_t size); // do not use directly, use ggml_backend_tensor_copy instead bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst); // multi-buffer // buffer that contains a collection of buffers ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers); bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer); void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage); // // Backend (stream) // struct ggml_backend_i { const char * (*get_name)(ggml_backend_t backend); void (*free)(ggml_backend_t backend); // buffer allocation ggml_backend_buffer_type_t (*get_default_buffer_type)(ggml_backend_t backend); // (optional) asynchronous tensor data access void (*set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); void (*get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); bool (*cpy_tensor_async)(ggml_backend_t backend_src, ggml_backend_t backend_dst, const struct ggml_tensor * src, struct ggml_tensor * dst); // (optional) complete all pending operations void (*synchronize)(ggml_backend_t backend); // (optional) compute graph with a plan (not used currently) ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, const struct ggml_cgraph * cgraph); void (*graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan); // update the plan with a new graph - this should be faster than creating a new plan when the graph has the same topology void (*graph_plan_update) (ggml_backend_t backend, ggml_backend_graph_plan_t plan, const struct ggml_cgraph * cgraph); // compute the graph with the plan enum ggml_status (*graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan); // compute graph (always async if supported by the backend) enum ggml_status (*graph_compute) (ggml_backend_t backend, struct ggml_cgraph * cgraph); // IMPORTANT: these functions have been moved to the device interface and will be removed from the backend interface // new backends should implement the device interface instead // These functions are being moved to the device interface // check if the backend can compute an operation bool (*supports_op) (ggml_backend_t backend, const struct ggml_tensor * op); // check if the backend can use tensors allocated in a buffer type bool (*supports_buft)(ggml_backend_t backend, ggml_backend_buffer_type_t buft); // check if the backend wants to run an operation, even if the weights are allocated in a CPU buffer // these should be expensive operations with large batch sizes that may benefit from running on this backend // even if the weight has to be copied from the CPU temporarily bool (*offload_op) (ggml_backend_t backend, const struct ggml_tensor * op); // (optional) event synchronization // record an event on this stream void (*event_record)(ggml_backend_t backend, ggml_backend_event_t event); // wait for an event on on a different stream void (*event_wait) (ggml_backend_t backend, ggml_backend_event_t event); }; struct ggml_backend { ggml_guid_t guid; struct ggml_backend_i iface; ggml_backend_dev_t device; void * context; }; struct ggml_backend_event { struct ggml_backend_device * device; void * context; }; // // Backend device // // Note: if additional properties are needed, we should add a struct with all of them // the current functions to obtain the properties can remain, since they are more convenient for often used properties struct ggml_backend_device_i { // device name: short identifier for this device, such as "CPU" or "CUDA0" const char * (*get_name)(ggml_backend_dev_t dev); // device description: short informative description of the device, could be the model name const char * (*get_description)(ggml_backend_dev_t dev); // device memory in bytes void (*get_memory)(ggml_backend_dev_t dev, size_t * free, size_t * total); // device type enum ggml_backend_dev_type (*get_type)(ggml_backend_dev_t dev); // device properties void (*get_props)(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props); // backend (stream) initialization ggml_backend_t (*init_backend)(ggml_backend_dev_t dev, const char * params); // preferred buffer type ggml_backend_buffer_type_t (*get_buffer_type)(ggml_backend_dev_t dev); // (optional) host buffer type (in system memory, typically this is a pinned memory buffer for faster transfers between host and device) ggml_backend_buffer_type_t (*get_host_buffer_type)(ggml_backend_dev_t dev); // (optional) buffer from pointer: create a buffer from a host pointer (useful for memory mapped models and importing data from other libraries) ggml_backend_buffer_t (*buffer_from_host_ptr)(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size); // check if the backend can compute an operation bool (*supports_op)(ggml_backend_dev_t dev, const struct ggml_tensor * op); // check if the backend can use tensors allocated in a buffer type bool (*supports_buft)(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft); // check if the backend wants to run an operation, even if the weights are allocated in a CPU buffer // these should be expensive operations with large batch sizes that may benefit from running on this backend // even if the weight has to be copied from the CPU temporarily bool (*offload_op)(ggml_backend_dev_t dev, const struct ggml_tensor * op); // (optional) event synchronization ggml_backend_event_t (*event_new) (ggml_backend_dev_t dev); void (*event_free) (ggml_backend_dev_t dev, ggml_backend_event_t event); void (*event_synchronize) (ggml_backend_dev_t dev, ggml_backend_event_t event); }; struct ggml_backend_device { struct ggml_backend_device_i iface; ggml_backend_reg_t reg; void * context; }; // // Backend (reg) // struct ggml_backend_reg_i { const char * (*get_name)(ggml_backend_reg_t reg); // enumerate available devices size_t (*get_device_count)(ggml_backend_reg_t reg); ggml_backend_dev_t (*get_device)(ggml_backend_reg_t reg, size_t index); // (optional) get a pointer to a function in the backend // backends can add custom functions that are not part of the standard ggml-backend interface void * (*get_proc_address)(ggml_backend_reg_t reg, const char * name); }; struct ggml_backend_reg { // int api_version; // TODO: for dynamic loading struct ggml_backend_reg_i iface; void * context; }; // Internal backend registry API void ggml_backend_register(ggml_backend_reg_t reg); void ggml_backend_device_register(ggml_backend_dev_t device); // TODO: backends can be loaded as a dynamic library, in which case it needs to export this function // typedef ggml_backend_register_t * (*ggml_backend_init)(void); #ifdef __cplusplus } #endif