// This file defines tests for various GGML ops and backends. // For the forward pass it asserts that the results of multiple backends computing the same GGML ops are consistent. // For the backward pass it asserts that the gradients from backpropagation are consistent // with the gradients obtained via the method of finite differences ("grad" mode, this is optional). // It is also possible to check the performance ("perf" mode). // // this file has three sections: Section 1 does general setup, section 2 defines the GGML ops to be tested, // and section 3 defines which tests to run. // Quick start for adding a new GGML op: Go to section 2 and create a struct that inherits from test_case, // then go to section 3 and add an instantiation of your struct. // ############################## // ## Section 1: General Setup ## // ############################## #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) { size_t nels = ggml_nelements(tensor); std::vector data(nels); { // parallel initialization static const size_t n_threads = std::thread::hardware_concurrency(); // static RNG initialization (revisit if n_threads stops being constant) static std::vector generators = []() { std::random_device rd; std::vector vec; vec.reserve(n_threads); //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); } return vec; }(); auto init_thread = [&](size_t ith, size_t start, size_t end) { std::uniform_real_distribution distribution(min, max); auto & gen = generators[ith]; for (size_t i = start; i < end; i++) { data[i] = distribution(gen); } }; std::vector> tasks; tasks.reserve(n_threads); for (size_t i = 0; i < n_threads; i++) { size_t start = i*nels/n_threads; size_t end = (i+1)*nels/n_threads; tasks.push_back(std::async(std::launch::async, init_thread, i, start, end)); } for (auto & t : tasks) { t.get(); } } if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) { ggml_backend_tensor_set(tensor, data.data(), 0, nels * sizeof(float)); } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) { GGML_ASSERT(nels % ggml_blck_size(tensor->type) == 0); // dummy importance matrix std::vector imatrix(tensor->ne[0], 1.0f); const float * im = imatrix.data(); if (!ggml_quantize_requires_imatrix(tensor->type)) { // when the imatrix is optional, we want to test both quantization with and without imatrix // use one of the random numbers to decide if (data[0] > 0.5f*(min + max)) { im = nullptr; } } std::vector dataq(ggml_row_size(tensor->type, nels)); { // parallel quantization by block size_t blck_size = ggml_blck_size(tensor->type); size_t n_blocks = nels / blck_size; auto quantize_thread = [&](size_t start, size_t end) { ggml_quantize_chunk(tensor->type, data.data(), dataq.data(), start * blck_size, end - start, blck_size, im); }; const size_t min_blocks_per_thread = 1; const size_t n_threads = std::min(std::thread::hardware_concurrency()/2, std::max(1, n_blocks / min_blocks_per_thread)); std::vector> tasks; tasks.reserve(n_threads); for (size_t i = 0; i < n_threads; i++) { size_t start = i*n_blocks/n_threads; size_t end = (i+1)*n_blocks/n_threads; tasks.push_back(std::async(std::launch::async, quantize_thread, start, end)); } for (auto & t : tasks) { t.get(); } } ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size()); } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) { // This is going to create some weird integers though. ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor)); } else { GGML_ABORT("fatal error"); } } static std::vector tensor_to_float(const ggml_tensor * t) { std::vector tv; tv.reserve(ggml_nelements(t)); std::vector buf(ggml_nbytes(t)); ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t)); ggml_type_traits_t tt = ggml_internal_get_type_traits(t->type); size_t bs = ggml_blck_size(t->type); std::vector vq(ggml_blck_size(t->type)); bool quantized = ggml_is_quantized(t->type); // access elements by index to avoid gaps in views for (int64_t i3 = 0; i3 < t->ne[3]; i3++) { for (int64_t i2 = 0; i2 < t->ne[2]; i2++) { for (int64_t i1 = 0; i1 < t->ne[1]; i1++) { for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) { size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0]; if (t->type == GGML_TYPE_F16) { tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i])); } else if (t->type == GGML_TYPE_BF16) { tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i])); } else if (t->type == GGML_TYPE_F32) { tv.push_back(*(float *) &buf[i]); } else if (t->type == GGML_TYPE_I32) { tv.push_back((float)*(int32_t *) &buf[i]); } else if (t->type == GGML_TYPE_I16) { tv.push_back((float)*(int16_t *) &buf[i]); } else if (t->type == GGML_TYPE_I8) { tv.push_back((float)*(int8_t *) &buf[i]); } else if (quantized) { tt.to_float(&buf[i], vq.data(), bs); tv.insert(tv.end(), vq.begin(), vq.end()); } else { GGML_ABORT("fatal error"); } } } } } return tv; } // normalized mean squared error = mse(a, b) / mse(a, 0) static double nmse(const float * a, const float * b, size_t n) { double mse_a_b = 0.0; double mse_a_0 = 0.0; for (size_t i = 0; i < n; i++) { float a_i = a[i]; float b_i = b[i]; mse_a_b += (a_i - b_i) * (a_i - b_i); mse_a_0 += a_i * a_i; } return mse_a_b / mse_a_0; } // maximum absolute asymmetry between a and b // asymmetry: (a - b) / (a + b) // This is more stable than relative error if one of the values fluctuates towards zero. // n: number of values to compare. // expected_vals: optional vector of expected values for a. If expected_vals is not empty, filter out all comparisons where // a does not match any of the expected values. Needed for noncontinuous gradients where the numerical calculation can fail. static double mean_abs_asymm(const float * a, const float * b, const size_t n, const std::vector & expected_vals) { double sum = 0.0f; size_t nvalid = 0; for (size_t i = 0; i < n; i++) { if (!expected_vals.empty()) { bool matches_any = false; for (const float & ev : expected_vals) { if (fabsf(a[i] - ev) < 1e-3f) { matches_any = true; break; } } if (!matches_any) { continue; } } const float asymm = (a[i] - b[i]) / (a[i] + b[i]); sum += fabsf(asymm); nvalid++; } return sum/nvalid; } // utils for printing the variables of the test cases template static std::string var_to_str(const T & x) { return std::to_string(x); } template static std::string var_to_str(const T (&x)[N]) { std::string s = "["; for (size_t i = 0; i < N; i++) { if (i > 0) { s += ","; } s += var_to_str(x[i]); } s += "]"; return s; } template static std::string var_to_str(const std::array & x) { std::string s = "["; for (size_t i = 0; i < N; i++) { if (i > 0) { s += ","; } s += var_to_str(x[i]); } s += "]"; return s; } static std::string var_to_str(ggml_type type) { return ggml_type_name(type); } static std::string var_to_str(ggml_op_pool pool) { switch (pool) { case GGML_OP_POOL_AVG: return "avg"; case GGML_OP_POOL_MAX: return "max"; default: return std::to_string(pool); } } #define VAR_TO_STR(x) (#x "=" + var_to_str(x)) #define VARS_TO_STR1(a) VAR_TO_STR(a) #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b) #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c) #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d) #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e) #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f) #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g) #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h) #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i) #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j) #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k) #define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l) #ifdef GGML_USE_SYCL static bool inline _isinf(float f) { return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000; } #else static bool inline _isinf(float f) { return std::isinf(f); } #endif // accept FLT_MAX as infinity static bool isinf_or_max(float f) { return _isinf(f) || f == FLT_MAX || f == -FLT_MAX; } static bool ggml_is_view_op(enum ggml_op op) { return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE; } enum test_mode { MODE_TEST, MODE_PERF, MODE_GRAD, }; struct test_case { virtual ~test_case() {} virtual std::string op_desc(ggml_tensor * t) { return ggml_op_desc(t); } virtual std::string vars() { return ""; } virtual ggml_tensor * build_graph(ggml_context * ctx) = 0; virtual double max_nmse_err() { return 1e-7; } virtual double max_maa_err() { return 1e-4; } virtual float grad_eps() { return 1e-1f; } // If false, estimate gradient with 2 points, neglects 3rd order derivative and higher. // If true, estimate gradient with 4 points, neglects 5th order derivative and higher. virtual bool grad_precise() { return false; } // Skip gradient checks if total number of gradients to be checked is larger than this (to speed up the tests). virtual int64_t grad_nmax() { return 10000; } // No effect if empty. // If not empty, skip all gradient checks where the numerical result does not match any of the values. // Needed for dealing with noncontinuous gradients (e.g. ReLU) where estimation using finite differences is unreliable. virtual std::vector grad_expect() { return {}; } virtual void initialize_tensors(ggml_context * ctx) { for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) { init_tensor_uniform(t); } } virtual size_t op_size(ggml_tensor * t) { size_t size = ggml_nbytes(t); // add source tensors for (int i = 0; i < GGML_MAX_SRC; i++) { if (t->src[i] != NULL) { size += ggml_nbytes(t->src[i]); } } return size; } virtual uint64_t op_flops(ggml_tensor * t) { GGML_UNUSED(t); return 0; } ggml_cgraph * gf = nullptr; ggml_cgraph * gb = nullptr; static const int sentinel_size = 1024; test_mode mode; std::vector sentinels; void add_sentinel(ggml_context * ctx) { if (mode == MODE_PERF || mode == MODE_GRAD) { return; } ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size); ggml_format_name(sentinel, "sent_%zu", sentinels.size()); sentinels.push_back(sentinel); } // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) { ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne); add_sentinel(ctx); return t; } ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) { ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0); add_sentinel(ctx); return t; } ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) { ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1); add_sentinel(ctx); return t; } ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) { ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2); add_sentinel(ctx); return t; } ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) { ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3); add_sentinel(ctx); return t; } bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_name) { mode = MODE_TEST; ggml_init_params params = { /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(), /* .mem_base = */ NULL, /* .no_alloc = */ true, }; ggml_context * ctx = ggml_init(params); GGML_ASSERT(ctx); gf = ggml_new_graph(ctx); // pre-graph sentinel add_sentinel(ctx); ggml_tensor * out = build_graph(ctx); if (op_name != nullptr && op_desc(out) != op_name) { //printf(" %s: skipping\n", op_desc(out).c_str()); ggml_free(ctx); return true; } printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str()); fflush(stdout); // check if the backends support the ops bool supported = true; for (ggml_backend_t backend : {backend1, backend2}) { for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { if (!ggml_backend_supports_op(backend, t)) { printf("not supported [%s] ", ggml_backend_name(backend)); supported = false; break; } } } if (!supported) { printf("\n"); ggml_free(ctx); return true; } // post-graph sentinel add_sentinel(ctx); // allocate ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1); if (buf == NULL) { printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1)); ggml_free(ctx); return false; } // build graph ggml_build_forward_expand(gf, out); // add sentinels as graph nodes so that they are checked in the callback for (ggml_tensor * sentinel : sentinels) { ggml_graph_add_node(gf, sentinel); } // randomize tensors initialize_tensors(ctx); // compare struct callback_userdata { bool ok; double max_err; ggml_backend_t backend1; ggml_backend_t backend2; }; callback_userdata ud { true, max_nmse_err(), backend1, backend2 }; auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool { callback_userdata * ud = (callback_userdata *) user_data; const char * bn1 = ggml_backend_name(ud->backend1); const char * bn2 = ggml_backend_name(ud->backend2); if (t1->op == GGML_OP_NONE) { // sentinels must be unchanged std::vector t1_data(ggml_nbytes(t1)); std::vector t2_data(ggml_nbytes(t2)); ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1)); ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2)); if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) { printf("sentinel mismatch: %s ", t1->name); ud->ok = false; return true; } } std::vector f1 = tensor_to_float(t1); std::vector f2 = tensor_to_float(t2); for (size_t i = 0; i < f1.size(); i++) { // check for nans if (std::isnan(f1[i]) || std::isnan(f2[i])) { printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]); ud->ok = false; return true; } // check for infs: both must be inf of the same sign, or both must be finite if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) { if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) { if (std::signbit(f1[i]) != std::signbit(f2[i])) { printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]); ud->ok = false; return true; } } else { printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]); ud->ok = false; return true; } } } double err = nmse(f1.data(), f2.data(), f1.size()); if (err > ud->max_err) { printf("[%s] NMSE = %.9f > %.9f ", ggml_op_desc(t1), err, ud->max_err); //for (int i = 0; i < (int) f1.size(); i++) { // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]); //} //printf("\n"); //exit(1); ud->ok = false; } return true; GGML_UNUSED(index); }; const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud); if (!cmp_ok) { printf("compare failed "); } ggml_backend_buffer_free(buf); ggml_free(ctx); if (ud.ok && cmp_ok) { printf("\033[1;32mOK\033[0m\n"); return true; } printf("\033[1;31mFAIL\033[0m\n"); return false; } bool eval_perf(ggml_backend_t backend, const char * op_name) { mode = MODE_PERF; static const size_t graph_nodes = 8192; ggml_init_params params = { /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false), /* .mem_base = */ NULL, /* .no_alloc = */ true, }; ggml_context * ctx = ggml_init(params); GGML_ASSERT(ctx); ggml_tensor * out = build_graph(ctx); if (op_name != nullptr && op_desc(out) != op_name) { //printf(" %s: skipping\n", op_desc(out).c_str()); ggml_free(ctx); return true; } int len = printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str()); fflush(stdout); // check if backends support op if (!ggml_backend_supports_op(backend, out)) { printf("not supported\n"); ggml_free(ctx); return true; } // align while also leaving some margin for variations in parameters int align = 8; int last = (len + align - 1) / align * align; if (last - len < 5) { last += align; } printf("%*s", last - len, ""); // allocate ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend); if (buf == NULL) { printf("failed to allocate tensors\n"); ggml_free(ctx); return false; } // randomize tensors initialize_tensors(ctx); // build graph ggml_cgraph * gf = ggml_new_graph_custom(ctx, graph_nodes, false); ggml_build_forward_expand(gf, out); // warmup run ggml_backend_graph_compute(backend, gf); // determine number of runs int n_runs; if (op_flops(out) > 0) { // based on flops const uint64_t GFLOP = 1000 * 1000 * 1000; const uint64_t target_flops_cpu = 8ULL * GFLOP; const uint64_t target_flops_gpu = 100ULL * GFLOP; uint64_t target_flops = ggml_backend_is_cpu(backend) ? target_flops_cpu : target_flops_gpu; n_runs = std::min(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_flops / op_flops(out)) + 1; } else { // based on memory size const size_t GB = 1ULL << 30; const size_t target_size_cpu = 8 * GB; const size_t target_size_gpu = 32 * GB; size_t target_size = ggml_backend_is_cpu(backend) ? target_size_cpu : target_size_gpu; n_runs = std::min(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1; } // duplicate the op for (int i = 1; i < n_runs; i++) { ggml_graph_add_node(gf, out); } // calculate memory size_t mem = n_runs * op_size(out); auto tensor_op_size = [](ggml_tensor * t) { size_t size = ggml_nbytes(t); // add source tensors for (int i = 0; i < GGML_MAX_SRC; i++) { if (t->src[i] != NULL) { size += ggml_nbytes(t->src[i]); } } return size; }; for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) { if (ggml_is_view_op(ggml_graph_node(gf, i)->op) || ggml_graph_node(gf, i) == out) { continue; } mem += tensor_op_size(ggml_graph_node(gf, i)); } // run ggml_backend_synchronize(backend); int64_t total_time_us = 0; int total_runs = 0; do { int64_t start_time = ggml_time_us(); ggml_backend_graph_compute(backend, gf); ggml_backend_synchronize(backend); int64_t end_time = ggml_time_us(); total_time_us += end_time - start_time; total_runs += n_runs; } while (total_time_us < 1000*1000); // run for at least 1 second printf(" %8d runs - %8.2f us/run - ", total_runs, (double)total_time_us / total_runs); if (op_flops(out) > 0) { double flops_per_sec = (op_flops(out) * total_runs) / (total_time_us / 1e6); auto format_flops = [](double flops) -> std::string { char buf[256]; if (flops >= 1e12) { snprintf(buf, sizeof(buf), "%6.2f TFLOP", flops / 1e12); } else if (flops >= 1e9) { snprintf(buf, sizeof(buf), "%6.2f GFLOP", flops / 1e9); } else if (flops >= 1e6) { snprintf(buf, sizeof(buf), "%6.2f MFLOP", flops / 1e6); } else { snprintf(buf, sizeof(buf), "%6.2f KFLOP", flops / 1e3); } return buf; }; printf("%s/run - \033[1;34m%sS\033[0m", format_flops(op_flops(out)).c_str(), format_flops(flops_per_sec).c_str()); } else { printf("%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m", op_size(out) / 1024, mem / (total_time_us / 1e6) / 1024.0 / 1024.0 / 1024.0); } printf("\n"); ggml_backend_buffer_free(buf); ggml_free(ctx); return true; } bool eval_grad(ggml_backend_t backend, const char * op_name) { mode = MODE_GRAD; const std::vector expect = grad_expect(); ggml_init_params params = { /* .mem_size = */ ggml_tensor_overhead()*128 + 2*ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, true), /* .mem_base = */ NULL, /* .no_alloc = */ true, }; ggml_context * ctx = ggml_init(params); GGML_ASSERT(ctx); gf = ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, true); gb = ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, true); ggml_tensor * out = build_graph(ctx); if ((op_name != nullptr && op_desc(out) != op_name) || out->op == GGML_OP_OPT_STEP_ADAMW) { //printf(" %s: skipping\n", op_desc(out).c_str()); ggml_free(ctx); return true; } printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str()); fflush(stdout); if (out->type != GGML_TYPE_F32) { ggml_free(ctx); printf("not supported [%s->type != FP32]\n", out->name); return true; } // check if the backend supports the ops bool supported = true; bool any_params = false; for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { if (!ggml_backend_supports_op(backend, t)) { printf("not supported [%s] ", ggml_backend_name(backend)); supported = false; break; } if ((t->flags & GGML_TENSOR_FLAG_PARAM)) { any_params = true; if (t->type != GGML_TYPE_F32) { printf("not supported [%s->type != FP32] ", t->name); supported = false; break; } } } if (!any_params) { printf("not supported [%s] \n", op_name); supported = false; } if (!supported) { printf("\n"); ggml_free(ctx); return true; } int64_t ngrads = 0; for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { if (t->flags & GGML_TENSOR_FLAG_PARAM) { ngrads += ggml_nelements(t); } } if (ngrads > grad_nmax()) { printf("skipping large tensors for speed \n"); ggml_free(ctx); return true; } if (!ggml_is_scalar(out)) { out = ggml_sum(ctx, out); ggml_set_name(out, "sum_of_out"); } ggml_set_loss(out); ggml_build_forward_expand(gf, out); ggml_graph_cpy(gf, gb); ggml_build_backward_expand(ctx, gf, gb, false); if (expect.size() != 1 || expect[0] != 0.0f) { GGML_ASSERT(ggml_graph_n_nodes(gb) > ggml_graph_n_nodes(gf)); for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || t->grad->op != GGML_OP_NONE); } } // TODO: refactor so that this check is only needed once for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { if (!ggml_backend_supports_op(backend, t)) { printf("not supported [%s] ", ggml_backend_name(backend)); supported = false; break; } if ((t->flags & GGML_TENSOR_FLAG_PARAM) && t->type != GGML_TYPE_F32) { printf("not supported [%s->type != FP32] ", t->name); supported = false; break; } } if (!supported) { printf("\n"); ggml_free(ctx); return true; } // allocate ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend); if (buf == NULL) { printf("failed to allocate tensors [%s] ", ggml_backend_name(backend)); ggml_free(ctx); return false; } initialize_tensors(ctx); // Randomizes all tensors (including gradients). ggml_graph_reset(gb); // Sets gradients to 1 if loss, 0 otherwise. ggml_backend_graph_compute(backend, gf); ggml_backend_graph_compute(backend, gb); bool ok = true; for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) { if (!(t->flags & GGML_TENSOR_FLAG_PARAM)) { continue; } const char * bn = ggml_backend_name(backend); const int64_t ne = ggml_nelements(t); std::vector ga = tensor_to_float(t->grad); for (int64_t i = 0; i < ne; ++i) { // gradient algebraic // check for nans if (!std::isfinite(ga[i])) { printf("[%s] nonfinite gradient at index %" PRId64 " (%s=%f) ", ggml_op_desc(t), i, bn, ga[i]); ok = false; break; } } if (!ok) { break; } std::vector gn(ne); // gradient numeric GGML_ASSERT(ga.size() == gn.size()); std::vector x0 = tensor_to_float(t); // original t data GGML_ASSERT(ggml_is_scalar(out)); GGML_ASSERT(out->type == GGML_TYPE_F32); const float eps = grad_eps(); for (int64_t i = 0; i < ne; ++i) { const float xiu = x0[i] + 1.0f*eps; // x, index i, up const float xiuh = x0[i] + 0.5f*eps; // x, index i, up half const float xidh = x0[i] - 0.5f*eps; // x, index i, down half const float xid = x0[i] - 1.0f*eps; // x, index i, down float fu, fuh, fdh, fd; // output values for xiu, xiuh, xid, xidh ggml_backend_tensor_set(t, &xiu, i*sizeof(float), sizeof(float)); ggml_backend_graph_compute(backend, gf); ggml_backend_tensor_get(out, &fu, 0, ggml_nbytes(out)); ggml_backend_tensor_set(t, &xid, i*sizeof(float), sizeof(float)); ggml_backend_graph_compute(backend, gf); ggml_backend_tensor_get(out, &fd, 0, ggml_nbytes(out)); if (grad_precise()) { ggml_backend_tensor_set(t, &xiuh, i*sizeof(float), sizeof(float)); ggml_backend_graph_compute(backend, gf); ggml_backend_tensor_get(out, &fuh, 0, ggml_nbytes(out)); ggml_backend_tensor_set(t, &xidh, i*sizeof(float), sizeof(float)); ggml_backend_graph_compute(backend, gf); ggml_backend_tensor_get(out, &fdh, 0, ggml_nbytes(out)); gn[i] = (8.0*(double)fuh + (double)fd - (8.0*(double)fdh + (double)fu)) / (6.0*(double)eps); } else { gn[i] = (fu - fd) / (2.0f*eps); } ggml_backend_tensor_set(t, x0.data(), 0, ggml_nbytes(t)); } const double err = mean_abs_asymm(gn.data(), ga.data(), gn.size(), expect); if (err > max_maa_err()) { printf("[%s] MAA = %.9f > %.9f ", ggml_op_desc(t), err, max_maa_err()); ok = false; break; } if (!ok) { break; } } if (!ok) { printf("compare failed "); } ggml_backend_buffer_free(buf); ggml_free(ctx); if (ok) { printf("\033[1;32mOK\033[0m\n"); return true; } printf("\033[1;31mFAIL\033[0m\n"); return false; } }; // ################################### // ## Section 2: GGML Op Defintions ## // ################################### // The following is an example showing the bare minimum for creating a test for a GGML op. // GGML_OP_EXAMPLE struct test_example : public test_case { // Always define these 2 or variants thereof: const ggml_type type; // The type of the input tensors. const std::array ne; // The shape of the input tensors. // For some ops it's necessary to define multiple types or shapes for the inputs. // Or they may need additional parameters. // Put all parameters needed to fully define the test into one of the VARS_TO_STR macros. // In most cases these are just the properties of the struct that you defined above. // This is needed for info prints. std::string vars() override { return VARS_TO_STR2(type, ne); } // Define a constructor for the struct. // In most cases it will be sufficient to have the same arguments as the struct has properties // and just use initializer lists. test_example(ggml_type type = GGML_TYPE_F32, std::array ne = {10, 5, 4, 3}) : type(type), ne(ne) {} // Define how a simple GGML compute graph can be constructed for the new GGML op. ggml_tensor * build_graph(ggml_context * ctx) override { // Step 1: create input tensors that don't depend on any other tensors: ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_set_name(a, "a"); // Setting names is optional but it's useful for debugging. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_set_name(b, "b"); // Step 2: use the op that you want to test in the GGML compute graph. ggml_tensor * out = ggml_add(ctx, a, b); // For this example we're just doing a simple addition. ggml_set_name(out, "out"); // Step 3: return the output tensor. return out; } // In order to also check the gradients for your op, add calls like ggml_set_param(ctx, a) // immediately after you create the tensors. // This is optional and only makes sense if a backward pass has actually been implemented for the new op. }; // GGML_OP_UNARY struct test_unary : public test_case { const ggml_unary_op op; const ggml_type type; const std::array ne_a; int v; // view (1 : non-contiguous a) std::string vars() override { return VARS_TO_STR3(type, ne_a, v); } test_unary(ggml_unary_op op, ggml_type type = GGML_TYPE_F32, std::array ne_a = {128, 2, 2, 2}, int v = 0) : op(op), type(type), ne_a(ne_a), v(v) {} ggml_tensor * build_graph(ggml_context * ctx) override { const bool grad_supported = op == GGML_UNARY_OP_ABS || op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_NEG || op == GGML_UNARY_OP_STEP || op == GGML_UNARY_OP_RELU || op == GGML_UNARY_OP_SILU; ggml_tensor * a; if (v & 1) { auto ne = ne_a; ne[0] *= 3; a = ggml_new_tensor(ctx, type, 4, ne.data()); if (grad_supported) { ggml_set_param(ctx, a); } ggml_set_name(a, "a"); a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0); ggml_set_name(a, "view_of_a"); } else { a = ggml_new_tensor(ctx, type, 4, ne_a.data()); if (grad_supported) { ggml_set_param(ctx, a); } ggml_set_name(a, "a"); } ggml_tensor * out = ggml_unary(ctx, a, op); ggml_set_name(out, "out"); return out; } void initialize_tensors(ggml_context * ctx) override { for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { // test extended range of values to check for NaNs in GELU init_tensor_uniform(t, -150.f, 150.f); } } float grad_eps() override { return 15.0f; } std::vector grad_expect() override { if (op == GGML_UNARY_OP_ABS) { return {-1.0f, 1.0f}; } if (op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_STEP) { return {0.0f}; } if (op == GGML_UNARY_OP_RELU) { return {0.0f, 1.0f}; } return {}; } }; // GGML_OP_GET_ROWS struct test_get_rows : public test_case { const ggml_type type; const int n; // cols const int m; // rows const int r; // rows to get const int b; // batch size const bool v; // view (non-contiguous src1) std::string vars() override { return VARS_TO_STR6(type, n, m, r, b, v); } test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false) : type(type), n(n), m(m), r(r), b(b), v(v) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * in = ggml_new_tensor_3d(ctx, type, n, m, b); ggml_set_name(in, "in"); ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b); ggml_set_name(rows, "rows"); if (v) { rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0); ggml_set_name(rows, "view_of_rows"); } const bool grad_supported = ggml_is_matrix(in) && ggml_is_vector(rows); if (grad_supported) { ggml_set_param(ctx, in); // rows is a constant input -> no gradients } ggml_tensor * out = ggml_get_rows(ctx, in, rows); ggml_set_name(out, "out"); return out; } void initialize_tensors(ggml_context * ctx) override { for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { if (t->type == GGML_TYPE_I32) { if (ggml_is_view_op(t->op)) { continue; } // rows std::vector data(r*b); for (int i = 0; i < r*b; i++) { data[i] = rand() % m; } ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int)); } else { init_tensor_uniform(t); } } } }; // GGML_OP_REPEAT struct test_repeat : public test_case { const ggml_type type; const std::array ne; const std::array nr; std::string vars() override { return VARS_TO_STR3(type, ne, nr); } size_t op_size(ggml_tensor * t) override { return ggml_nbytes(t) * 2; } test_repeat(ggml_type type = GGML_TYPE_F32, std::array ne = {10, 5, 4, 3}, std::array nr = {2, 2, 2, 2}) : type(type), ne(ne), nr(nr) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]); ggml_set_name(target, "target"); ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_set_param(ctx, src); ggml_set_name(src, "src"); ggml_tensor * out = ggml_repeat(ctx, src, target); ggml_set_name(out, "out"); return out; } }; // GGML_OP_DUP struct test_dup : public test_case { const ggml_type type; const std::array ne; const std::array permute; bool _use_permute; std::string vars() override { std::string v = VARS_TO_STR2(type, ne); if (_use_permute) v += "," + VAR_TO_STR(permute); return v; } test_dup(ggml_type type = GGML_TYPE_F32, std::array ne = {10, 10, 20, 1}, std::array permute = {0, 0, 0, 0}) : type(type), ne(ne), permute(permute), _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_set_param(ctx, src); ggml_set_name(src, "src"); if (_use_permute) { src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]); ggml_set_name(src, "src_permuted"); } ggml_tensor * out = ggml_dup(ctx, src); ggml_set_name(out, "out"); return out; } }; // GGML_OP_SET struct test_set : public test_case { const ggml_type type_src; const ggml_type type_dst; const std::array ne; const int dim; std::string vars() override { return VARS_TO_STR4(type_src, type_dst, ne, dim); } size_t op_size(ggml_tensor * t) override { return ggml_nbytes(t) + ggml_nbytes(t->src[0]); } test_set(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32, std::array ne = {6, 5, 4, 3}, int dim = 1) : type_src(type_src), type_dst(type_dst), ne(ne), dim(dim) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data()); ggml_set_param(ctx, src); ggml_set_name(src, "src"); auto ne_dst = ne; for (int i = 0; i < dim; ++i) { ne_dst[i] *= 2; } ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data()); ggml_set_param(ctx, dst); ggml_set_name(dst, "dst"); size_t offset = 0; for (int i = 0; i < dim; ++i) { offset += ((ne_dst[i] - ne[i])/2)*dst->nb[i]; } ggml_tensor * out = ggml_set(ctx, dst, src, // The backward pass requires setting a contiguous region: src->nb[1], src->nb[2], src->nb[3], offset); ggml_set_name(out, "out"); return out; } }; // GGML_OP_CPY struct test_cpy : public test_case { const ggml_type type_src; const ggml_type type_dst; const std::array ne; const std::array permute; bool _src_use_permute; std::string vars() override { return VARS_TO_STR4(type_src, type_dst, ne, permute); } double max_nmse_err() override { return 1e-6; } size_t op_size(ggml_tensor * t) override { return ggml_nbytes(t) + ggml_nbytes(t->src[0]); } test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32, std::array ne = {10, 10, 10, 1}, std::array permute = {0, 0, 0, 0}) : type_src(type_src), type_dst(type_dst), ne(ne), permute(permute), _src_use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data()); ggml_set_param(ctx, src); ggml_set_name(src, "src"); if (_src_use_permute) { src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]); ggml_set_name(src, "src_permuted"); } ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, src->ne); ggml_set_name(dst, "dst"); ggml_tensor * out = ggml_cpy(ctx, src, dst); ggml_set_name(out, "out"); return out; } }; // GGML_OP_CONT struct test_cont : public test_case { const ggml_type type; const std::array ne; std::string vars() override { return VARS_TO_STR2(type, ne); } test_cont(ggml_type type = GGML_TYPE_F32, std::array ne = {10, 10, 10, 1}) : type(type), ne(ne) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_set_param(ctx, src); ggml_set_name(src, "src"); src = ggml_transpose(ctx, src); ggml_set_name(src, "src_transposed"); ggml_tensor * out = ggml_cont(ctx, src); ggml_set_name(out, "out"); return out; } }; // GGML_OP_ADD // GGML_OP_MUL // GGML_OP_DIV struct test_bin_bcast : public test_case { using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *); op_t op; const ggml_type type; const std::array ne; const std::array nr; std::string vars() override { return VARS_TO_STR3(type, ne, nr); } size_t op_size(ggml_tensor * t) override { return ggml_nbytes(t) * 3; } test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32, std::array ne = {10, 10, 1, 1}, std::array nr = {1, 2, 1, 1}) : op(op), type(type), ne(ne), nr(nr) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]); ggml_set_name(a, "a"); ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_set_name(b, "b"); // The backward pass supports broadcasting only for GGML_ADD: const bool grad_supported = op == ggml_add || ggml_are_same_shape(a, b); if (grad_supported) { ggml_set_param(ctx, a); ggml_set_param(ctx, b); } ggml_tensor * out = op(ctx, a, b); ggml_set_name(out, "out"); return out; } void initialize_tensors(ggml_context * ctx) override { for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { if (op == ggml_mul || op == ggml_div) { // MUL and DIV have numerical issues around zero: init_tensor_uniform(t, 0.9f, 1.1f); } else { init_tensor_uniform(t); } } } float grad_eps() override { return 0.1f * (op == ggml_mul ? ne[0]*ne[1]*ne[2]*ne[3] : 1); } bool grad_precise() override { return op == ggml_div; } double max_maa_err() override { return op == ggml_add ? 1e-4 : 1e-3; } }; // GGML_OP_ADD1 struct test_add1 : public test_case { const ggml_type type; const std::array ne; std::string vars() override { return VARS_TO_STR2(type, ne); } test_add1(ggml_type type = GGML_TYPE_F32, std::array ne = {10, 5, 4, 3}) : type(type), ne(ne) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_set_param(ctx, a); ggml_set_name(a, "a"); ggml_tensor * b = ggml_new_tensor_1d(ctx, type, 1); // ggml_set_param(ctx, b); // TODO: implement ggml_set_name(b, "b"); ggml_tensor * out = ggml_add1(ctx, a, b); ggml_set_name(out, "out"); return out; } float grad_eps() override { return 0.1f * ne[0]*ne[1]*ne[2]*ne[3]; } }; // GGML_OP_SCALE struct test_scale : public test_case { const ggml_type type; const std::array ne; float scale; std::string vars() override { return VARS_TO_STR3(type, ne, scale); } test_scale(ggml_type type = GGML_TYPE_F32, std::array ne = {10, 10, 10, 10}, float scale = 2.0f) : type(type), ne(ne), scale(scale) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_set_param(ctx, a); ggml_set_name(a, "a"); ggml_tensor * out = ggml_scale(ctx, a, scale); ggml_set_name(out, "out"); return out; } }; // GGML_OP_NORM struct test_norm : public test_case { const ggml_type type; const std::array ne; float eps; std::string vars() override { return VARS_TO_STR3(type, ne, eps); } test_norm(ggml_type type = GGML_TYPE_F32, std::array ne = {64, 5, 4, 3}, float eps = 1e-6f) : type(type), ne(ne), eps(eps) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_set_name(a, "a"); ggml_tensor * out = ggml_norm(ctx, a, eps); ggml_set_name(out, "out"); return out; } }; // GGML_OP_RMS_NORM struct test_rms_norm : public test_case { const ggml_type type; const std::array ne; float eps; std::string vars() override { return VARS_TO_STR3(type, ne, eps); } test_rms_norm(ggml_type type = GGML_TYPE_F32, std::array ne = {64, 5, 4, 3}, float eps = 1e-6f) : type(type), ne(ne), eps(eps) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_set_param(ctx, a); ggml_set_name(a, "a"); ggml_tensor * out = ggml_rms_norm(ctx, a, eps); ggml_set_name(out, "out"); return out; } bool grad_precise() override { return true; } }; // GGML_OP_SSM_CONV struct test_ssm_conv : public test_case { const ggml_type type; const std::array ne_a; const std::array ne_b; std::string vars() override { return VARS_TO_STR3(type, ne_a, ne_b); } test_ssm_conv(ggml_type type = GGML_TYPE_F32, std::array ne_a = {10, 10, 10, 1}, std::array ne_b = {3, 3, 1, 1}) : type(type), ne_a(ne_a), ne_b(ne_b) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data()); ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data()); ggml_tensor * out = ggml_ssm_conv(ctx, a, b); return out; } }; // GGML_OP_SSM_SCAN struct test_ssm_scan : public test_case { const ggml_type type; const int64_t d_state; const int64_t d_inner; const int64_t n_seq_tokens; const int64_t n_seqs; std::string vars() override { return VARS_TO_STR5(type, d_state, d_inner, n_seq_tokens, n_seqs); } test_ssm_scan(ggml_type type = GGML_TYPE_F32, int64_t d_state = 32, int64_t d_inner = 32, int64_t n_seq_tokens = 32, int64_t n_seqs = 32) : type(type), d_state(d_state), d_inner(d_inner), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * s = ggml_new_tensor(ctx, type, 4, std::vector{ d_state, d_inner, n_seqs, 1 }.data()); ggml_tensor * x = ggml_new_tensor(ctx, type, 4, std::vector{ d_inner, n_seq_tokens, n_seqs, 1 }.data()); ggml_tensor * dt = ggml_new_tensor(ctx, type, 4, std::vector{ d_inner, n_seq_tokens, n_seqs, 1 }.data()); ggml_tensor * A = ggml_new_tensor(ctx, type, 4, std::vector{ d_state, d_inner, 1 , 1 }.data()); ggml_tensor * B = ggml_new_tensor(ctx, type, 4, std::vector{ d_state, n_seq_tokens, n_seqs, 1 }.data()); ggml_tensor * C = ggml_new_tensor(ctx, type, 4, std::vector{ d_state, n_seq_tokens, n_seqs, 1 }.data()); ggml_tensor * out = ggml_ssm_scan(ctx, s, x, dt, A, B, C); return out; } }; // GGML_OP_RWKV_WKV struct test_rwkv_wkv : public test_case { const ggml_type type; const int64_t head_count; const int64_t head_size; const int64_t n_seq_tokens; const int64_t n_seqs; std::string vars() override { return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs); } test_rwkv_wkv(ggml_type type = GGML_TYPE_F32, int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32) : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {} ggml_tensor * build_graph(ggml_context * ctx) override { const int64_t n_tokens = n_seq_tokens * n_seqs; ggml_tensor * r = ggml_new_tensor(ctx, type, 4, std::vector{ 1, head_size, head_count, n_tokens }.data()); ggml_tensor * k = ggml_new_tensor(ctx, type, 4, std::vector{ head_size, 1, head_count, n_tokens }.data()); ggml_tensor * v = ggml_new_tensor(ctx, type, 4, std::vector{ 1, head_size, head_count, n_tokens }.data()); ggml_tensor * tf = ggml_new_tensor(ctx, type, 2, std::vector{ head_size, head_count }.data()); ggml_tensor * td = ggml_new_tensor(ctx, type, 4, std::vector{ 1, head_size, head_count, n_tokens }.data()); ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector{ head_size * head_size * head_count, n_seqs }.data()); ggml_tensor * out = ggml_rwkv_wkv(ctx, k, v, r, tf, td, s); return out; } }; // GGML_OP_MUL_MAT struct test_mul_mat : public test_case { const ggml_type type_a; const ggml_type type_b; const int64_t m; const int64_t n; const int64_t k; const std::array bs; // dims 3 and 4 const std::array nr; // repeat in dims 3 and 4 std::string vars() override { return VARS_TO_STR7(type_a, type_b, m, n, k, bs, nr); } double max_nmse_err() override { return 5e-4; } uint64_t op_flops(ggml_tensor * t) override { GGML_UNUSED(t); return 2 * m * n * k * bs[0] * nr[0] * bs[1] * nr[1]; } test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32, int64_t m = 32, int64_t n = 32, int64_t k = 32, std::array bs = {10, 10}, std::array nr = {2, 2}) : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr) {} ggml_tensor * build_graph(ggml_context * ctx) override { // C^T = A * B^T: (k, m) * (k, n) => (m, n) ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0] , bs[1]); ggml_tensor * b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]); ggml_set_param(ctx, a); ggml_set_param(ctx, b); ggml_set_name(a, "a"); ggml_set_name(b, "b"); ggml_tensor * out = ggml_mul_mat(ctx, a, b); ggml_set_name(out, "out"); return out; } }; // GGML_OP_MUL_MAT_ID struct test_mul_mat_id : public test_case { const ggml_type type_a; const ggml_type type_b; const int n_mats; const int n_used; const bool b; // brodcast b matrix const int64_t m; const int64_t n; const int64_t k; std::string vars() override { return VARS_TO_STR8(type_a, type_b, n_mats, n_used, b, m, n, k); } double max_nmse_err() override { return 5e-4; } uint64_t op_flops(ggml_tensor * t) override { GGML_UNUSED(t); return 2 * m * k * n * n_used; } test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32, int n_mats = 8, int n_used = 2, bool b = false, int64_t m = 32, int64_t n = 32, int64_t k = 32) : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b), m(m), n(n), k(k) { GGML_ASSERT(n_used <= n_mats); } ggml_tensor * build_graph(ggml_context * ctx) override { // C^T = A * B^T: (k, m) * (k, n) => (m, n) ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats); ggml_set_name(as, "as"); ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n); ggml_set_name(ids, "ids"); if (n_used != n_mats) { ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0); ggml_set_name(ids, "view_of_ids"); } ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n); ggml_set_name(b, "b"); ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids); ggml_set_name(out, "out"); return out; } void initialize_tensors(ggml_context * ctx) override { std::random_device rd; std::default_random_engine rng(rd()); for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { if (t->type == GGML_TYPE_I32) { if (ggml_is_view_op(t->op)) { continue; } // ids for (int64_t r = 0; r < ggml_nrows(t); r++) { std::vector data(t->ne[0]); for (int i = 0; i < t->ne[0]; i++) { data[i] = i % n_mats; } std::shuffle(data.begin(), data.end(), rng); ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t)); } } else { init_tensor_uniform(t); } } } }; // GGML_OP_OUT_PROD struct test_out_prod : public test_case { const ggml_type type_a; const ggml_type type_b; const int64_t m; const int64_t n; const int64_t k; const std::array bs; // dims 3 and 4 const bool trans_b; std::string vars() override { return VARS_TO_STR7(type_a, type_b, m, n, k, bs, trans_b); } double max_nmse_err() override { return 5e-4; } test_out_prod(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32, int64_t m = 32, int64_t n = 32, int64_t k = 32, std::array bs = {10, 10}, bool trans_b = false) : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), trans_b(trans_b) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, m, k, bs[0], bs[1]); ggml_set_name(a, "a"); ggml_tensor * b; if (trans_b) { b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0], bs[1]); b = ggml_transpose(ctx, b); } else { b = ggml_new_tensor_4d(ctx, type_b, n, k, bs[0], bs[1]); } ggml_set_name(b, "b"); ggml_tensor * out = ggml_out_prod(ctx, a, b); ggml_set_name(out, "out"); return out; } }; // GGML_OP_SQR struct test_sqr : public test_case { const ggml_type type; const std::array ne; std::string vars() override { return VARS_TO_STR2(type, ne); } test_sqr(ggml_type type = GGML_TYPE_F32, std::array ne = {10, 5, 4, 3}) : type(type), ne(ne) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_set_param(ctx, a); ggml_set_name(a, "a"); ggml_tensor * out = ggml_sqr(ctx, a); ggml_set_name(out, "out"); return out; } float grad_eps() override { return 0.1f * 0.25f*ne[0]*ne[1]*ne[2]*ne[3]; // 10% of expected value of sum. } }; // GGML_OP_SQRT struct test_sqrt : public test_case { const ggml_type type; const std::array ne; std::string vars() override { return VARS_TO_STR2(type, ne); } test_sqrt(ggml_type type = GGML_TYPE_F32, std::array ne = {10, 3, 3, 2}) : type(type), ne(ne) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_set_param(ctx, a); ggml_set_name(a, "a"); ggml_tensor * out = ggml_sqrt(ctx, a); ggml_set_name(out, "out"); return out; } void initialize_tensors(ggml_context * ctx) override { // fill with positive values for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { init_tensor_uniform(t, 50.0f, 100.0f); } } float grad_eps() override { return 20.0f; } bool grad_precise() override { return true; } }; // GGML_OP_LOG struct test_log : public test_case { const ggml_type type; const std::array ne; std::string vars() override { return VARS_TO_STR2(type, ne); } test_log(ggml_type type = GGML_TYPE_F32, std::array ne = {10, 5, 4, 3}) : type(type), ne(ne) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_set_param(ctx, a); ggml_set_name(a, "a"); ggml_tensor * out = ggml_log(ctx, a); ggml_set_name(out, "out"); return out; } void initialize_tensors(ggml_context * ctx) override { for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { // log(1) == 0, cluster values there to keep the sum low for better precision in the backward pass: init_tensor_uniform(t, 0.9f, 1.1f); } } bool grad_precise() override { return true; } }; // GGML_OP_SIN struct test_sin : public test_case { const ggml_type type; const std::array ne; std::string vars() override { return VARS_TO_STR2(type, ne); } test_sin(ggml_type type = GGML_TYPE_F32, std::array ne = {10, 2, 2, 2}) : type(type), ne(ne) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_set_param(ctx, a); ggml_set_name(a, "a"); ggml_tensor * out = ggml_sin(ctx, a); ggml_set_name(out, "out"); return out; } void initialize_tensors(ggml_context * ctx) override { for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi]. } } double max_maa_err() override { return 1e-3; } float grad_eps() override { return 0.2f; } bool grad_precise() override { return true; } }; // GGML_OP_COS struct test_cos : public test_case { const ggml_type type; const std::array ne; std::string vars() override { return VARS_TO_STR2(type, ne); } test_cos(ggml_type type = GGML_TYPE_F32, std::array ne = {10, 2, 2, 2}) : type(type), ne(ne) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_set_param(ctx, a); ggml_set_name(a, "a"); ggml_tensor * out = ggml_cos(ctx, a); ggml_set_name(out, "out"); return out; } void initialize_tensors(ggml_context * ctx) override { for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi]. } } double max_maa_err() override { return 1e-3; } float grad_eps() override { return 0.2f; } bool grad_precise() override { return true; } }; // GGML_OP_CLAMP struct test_clamp : public test_case { const ggml_type type; const std::array ne; float min; float max; std::string vars() override { return VARS_TO_STR4(type, ne, min, max); } test_clamp(ggml_type type = GGML_TYPE_F32, std::array ne = {10, 5, 4, 3}, float min = -0.5f, float max = 0.5f) : type(type), ne(ne), min(min), max(max) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_set_name(a, "a"); ggml_tensor * out = ggml_clamp(ctx, a, min, max); ggml_set_name(out, "out"); return out; } float grad_eps() override { return 1e-2f; } std::vector grad_expect() override { return {0.0f, 1.0f}; } }; // GGML_OP_DIAG_MASK_INF struct test_diag_mask_inf : public test_case { const ggml_type type; const std::array ne; const int n_past; std::string vars() override { return VARS_TO_STR3(type, ne, n_past); } test_diag_mask_inf(ggml_type type = GGML_TYPE_F32, std::array ne = {10, 10, 3, 2}, int n_past = 5) : type(type), ne(ne), n_past(n_past) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_set_param(ctx, a); ggml_set_name(a, "a"); ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past); ggml_set_name(out, "out"); return out; } }; // GGML_OP_SOFT_MAX struct test_soft_max : public test_case { const ggml_type type; const std::array ne; const bool mask; const float scale; const float max_bias; std::string vars() override { return VARS_TO_STR5(type, ne, mask, scale, max_bias); } // the 1024 test with bias occasionally fails: // SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL virtual double max_nmse_err() override { return 1e-6; } test_soft_max(ggml_type type = GGML_TYPE_F32, std::array ne = {10, 5, 4, 3}, bool mask = false, float scale = 1.0f, float max_bias = 0.0f) : type(type), ne(ne), mask(mask), scale(scale), max_bias(max_bias) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_set_param(ctx, a); ggml_set_name(a, "a"); ggml_tensor * mask = nullptr; if (this->mask) { mask = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ne[0], ne[1]); ggml_set_name(mask, "mask"); } ggml_tensor * out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias); ggml_set_name(out, "out"); return out; } bool grad_precise() override { return true; } }; // GGML_OP_ROPE struct test_rope : public test_case { const ggml_type type; const std::array ne_a; int n_dims; int mode; int n_ctx; // used to generate positions float fs; // freq_scale float ef; // ext_factor float af; // attn_factor bool ff; int v; // view (1 : non-contiguous a) std::string vars() override { return VARS_TO_STR10(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v); } test_rope(ggml_type type = GGML_TYPE_F32, std::array ne_a = {10, 5, 3, 1}, int n_dims = 10, int mode = 0, int n_ctx = 512, float fs = 1.0f, float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0) : type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a; if (v & 1) { auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3; a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_set_param(ctx, a); ggml_set_name(a, "a"); a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0); ggml_set_name(a, "view_of_a"); } else { a = ggml_new_tensor(ctx, type, 4, ne_a.data()); ggml_set_param(ctx, a); ggml_set_name(a, "a"); } ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]); ggml_set_name(pos, "pos"); ggml_tensor * freq = nullptr; if (ff) { freq = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2); ggml_set_name(freq, "freq"); } ggml_tensor * out = ggml_rope_ext(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f); ggml_set_name(out, "out"); return out; } void initialize_tensors(ggml_context * ctx) override { for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { if (t->type == GGML_TYPE_I32) { // pos std::vector data(ne_a[2]); for (int i = 0; i < ne_a[2]; i++) { data[i] = rand() % n_ctx; } ggml_backend_tensor_set(t, data.data(), 0, ne_a[2] * sizeof(int)); } else { if (t->ne[0] == n_dims/2) { // frequency factors in the range [0.9f, 1.1f] init_tensor_uniform(t, 0.9f, 1.1f); } else { init_tensor_uniform(t); } } } } double max_maa_err() override { return 1e-3; } bool grad_precise() override { return true; } }; // GGML_OP_POOL2D struct test_pool2d : public test_case { enum ggml_op_pool pool_type; const ggml_type type_input; const std::array ne_input; // kernel size const int k0; const int k1; // stride const int s0; const int s1; // padding const int p0; const int p1; std::string vars() override { return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1); } test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG, ggml_type type_input = GGML_TYPE_F32, std::array ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1] int k0 = 3, int k1 = 3, int s0 = 1, int s1 = 1, int p0 = 1, int p1 = 1) : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data()); ggml_set_param(ctx, input); ggml_set_name(input, "input"); ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1); ggml_set_name(out, "out"); return out; } }; // GGML_OP_CONV_TRANSPOSE_1D struct test_conv_transpose_1d : public test_case { const std::array ne_input; const std::array ne_kernel; const int s0; // stride const int p0; // padding const int d0; // dilation std::string vars() override { return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0); } test_conv_transpose_1d(std::array ne_input = {197, 32, 1, 1}, // [input_width, input_height, input_channels, 1] std::array ne_kernel = {16, 32, 32, 1}, // [kernel_width, kernel_height, input_channels, 1] int s0 = 1, int p0 = 0, int d0 = 1) : ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data()); ggml_set_name(input, "input"); ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data()); ggml_set_name(kernel, "kernel"); ggml_tensor * out = ggml_conv_transpose_1d(ctx, kernel, input, s0, p0, d0); ggml_set_name(out, "out"); return out; } }; // GGML_OP_IM2COL struct test_im2col : public test_case { const ggml_type type_input; const ggml_type type_kernel; const ggml_type dst_type; const std::array ne_input; const std::array ne_kernel; // stride const int s0; const int s1; // padding const int p0; const int p1; // dilation const int d0; const int d1; // mode const bool is_2D; std::string vars() override { return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D); } test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32, std::array ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1] std::array ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1] int s0 = 1, int s1 = 1, int p0 = 1, int p1 = 1, int d0 = 1, int d1 = 1, bool is_2D = true) : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data()); ggml_set_param(ctx, input); ggml_set_name(input, "input"); ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data()); ggml_set_name(kernel, "kernel"); ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type); ggml_set_name(out, "out"); return out; } }; // GGML_OP_CONCAT struct test_concat : public test_case { const ggml_type type; const std::array ne_a; const int64_t ne_b_d; const int dim; const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b) std::string vars() override { return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v); } test_concat(ggml_type type = GGML_TYPE_F32, std::array ne_a = {10, 5, 5, 5}, int64_t ne_b_d = 5, int dim = 2, int v = 0) : type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {} ggml_tensor * build_graph(ggml_context * ctx) override { auto ne_b = ne_a; ne_b[dim] = ne_b_d; ggml_tensor * a; if (v & 1) { auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3; a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_set_name(a, "a"); a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0); ggml_set_name(a, "view_of_a"); } else { a = ggml_new_tensor(ctx, type, 4, ne_a.data()); ggml_set_name(a, "a"); } ggml_tensor * b; if (v & 2) { auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4; b = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_set_name(b, "b"); b = ggml_view_4d(ctx, b, ne_b[0], ne_b[1], ne_b[2], ne_b[3], b->nb[1], b->nb[2], b->nb[3], 0); ggml_set_name(b, "view_of_b"); } else { b = ggml_new_tensor(ctx, type, 4, ne_b.data()); ggml_set_name(b, "b"); } ggml_tensor * out = ggml_concat(ctx, a, b, dim); ggml_set_name(out, "out"); return out; } }; // GGML_OP_ARGSORT struct test_argsort : public test_case { const ggml_type type; const std::array ne; ggml_sort_order order; std::string vars() override { return VARS_TO_STR3(type, ne, order); } test_argsort(ggml_type type = GGML_TYPE_F32, std::array ne = {16, 10, 10, 10}, ggml_sort_order order = GGML_SORT_ORDER_ASC) : type(type), ne(ne), order(order) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_set_name(a, "a"); ggml_tensor * out = ggml_argsort(ctx, a, order); ggml_set_name(out, "out"); return out; } void initialize_tensors(ggml_context * ctx) override { std::random_device rd; std::default_random_engine rng(rd()); for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { if (t->type == GGML_TYPE_I32) { // indices std::vector data(ggml_nelements(t)); for (int i = 0; i < ggml_nelements(t); i++) { data[i] = rand(); } std::shuffle(data.begin(), data.end(), rng); ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int)); } else if (t->type == GGML_TYPE_F32) { // initialize with unique values to avoid ties for (int64_t r = 0; r < ggml_nrows(t); r++) { std::vector data(t->ne[0]); for (int i = 0; i < t->ne[0]; i++) { data[i] = i; } std::shuffle(data.begin(), data.end(), rng); ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float)); } } else { GGML_ABORT("fatal error"); } } } }; // GGML_OP_SUM struct test_sum : public test_case { const ggml_type type; const std::array ne; std::string vars() override { return VARS_TO_STR2(type, ne); } test_sum(ggml_type type = GGML_TYPE_F32, std::array ne = {10, 5, 4, 3}) : type(type), ne(ne) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_set_param(ctx, a); ggml_set_name(a, "a"); ggml_tensor * out = ggml_sum(ctx, a); ggml_set_name(out, "out"); return out; } float grad_eps() override { return 0.1f * sqrtf(ne[0]*ne[1]*ne[2]*ne[3]); } }; // GGML_OP_SUM_ROWS struct test_sum_rows : public test_case { const ggml_type type; const std::array ne; std::string vars() override { return VARS_TO_STR2(type, ne); } test_sum_rows(ggml_type type = GGML_TYPE_F32, std::array ne = {10, 5, 4, 3}) : type(type), ne(ne) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_set_param(ctx, a); ggml_set_name(a, "a"); ggml_tensor * out = ggml_sum_rows(ctx, a); ggml_set_name(out, "out"); return out; } }; // GGML_OP_UPSCALE struct test_upscale : public test_case { const ggml_type type; const std::array ne; const int32_t scale_factor; const bool transpose; std::string vars() override { return VARS_TO_STR4(type, ne, scale_factor, transpose); } test_upscale(ggml_type type = GGML_TYPE_F32, std::array ne = {512, 512, 3, 1}, int32_t scale_factor = 2, bool transpose = false) : type(type), ne(ne), scale_factor(scale_factor), transpose(transpose) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_set_name(a, "a"); if (transpose) { a = ggml_transpose(ctx, a); ggml_set_name(a, "a_transposed"); } ggml_tensor * out = ggml_upscale(ctx, a, scale_factor); ggml_set_name(out, "out"); return out; } }; // GGML_OP_UPSCALE (ext) struct test_upscale_ext : public test_case { const ggml_type type; const std::array ne; const std::array ne_tgt; std::string vars() override { return VARS_TO_STR3(type, ne, ne_tgt); } test_upscale_ext(ggml_type type = GGML_TYPE_F32, std::array ne = {2, 5, 7, 11}, std::array ne_tgt = {5, 7, 11, 13}) : type(type), ne(ne), ne_tgt(ne_tgt) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_set_name(a, "a"); ggml_tensor * out = ggml_upscale_ext(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3]); ggml_set_name(out, "out"); return out; } }; // GGML_OP_GROUP_NORM struct test_group_norm : public test_case { const ggml_type type; const std::array ne; const int32_t num_groups; const float eps; std::string vars() override { return VARS_TO_STR3(type, ne, num_groups); } test_group_norm(ggml_type type = GGML_TYPE_F32, std::array ne = {64, 64, 320, 1}, int32_t num_groups = 32, float eps = 1e-6f) : type(type), ne(ne), num_groups(num_groups), eps(eps) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_set_name(a, "a"); ggml_tensor * out = ggml_group_norm(ctx, a, num_groups, eps); ggml_set_name(out, "out"); return out; } }; // GGML_OP_ACC struct test_acc : public test_case { const ggml_type type; const std::array ne_a; const std::array ne_b; std::string vars() override { return VARS_TO_STR3(type, ne_a, ne_b); } test_acc(ggml_type type = GGML_TYPE_F32, std::array ne_a = {256, 17, 1, 1}, std::array ne_b = {256, 16, 1, 1}) : type(type), ne_a(ne_a), ne_b(ne_b) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data()); ggml_set_param(ctx, a); ggml_set_name(a, "a"); ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data()); ggml_set_param(ctx, b); ggml_set_name(b, "b"); ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]); ggml_set_name(out, "out"); return out; } }; // GGML_OP_PAD struct test_pad : public test_case { const ggml_type type; const std::array ne_a; const int pad_0; const int pad_1; std::string vars() override { return VARS_TO_STR4(type, ne_a, pad_0, pad_1); } test_pad(ggml_type type = GGML_TYPE_F32, std::array ne_a = {512, 512, 1, 1}, int pad_0 = 1, int pad_1 = 1) : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data()); ggml_set_name(a, "a"); ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0); ggml_set_name(out, "out"); return out; } }; // GGML_OP_ARANGE struct test_arange : public test_case { const ggml_type type; const float start; const float stop; const float step; std::string vars() override { return VARS_TO_STR4(type, start, stop, step); } test_arange(ggml_type type = GGML_TYPE_F32, float start = 0.f, float stop = 10.f, float step = 1.f) : type(type), start(start), stop(stop), step(step) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * out = ggml_arange(ctx, start, stop, step); ggml_set_name(out, "out"); return out; } }; // GGML_OP_TIMESTEP_EMBEDDING struct test_timestep_embedding : public test_case { const ggml_type type; const std::array ne_a; const int dim; const int max_period; std::string vars() override { return VARS_TO_STR4(type, ne_a, dim, max_period); } test_timestep_embedding(ggml_type type = GGML_TYPE_F32, std::array ne_a = {2, 1, 1, 1}, int dim = 320, int max_period=10000) : type(type), ne_a(ne_a), dim(dim), max_period(max_period) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data()); ggml_set_name(a, "a"); ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period); ggml_set_name(out, "out"); return out; } }; // GGML_OP_LEAKY_RELU struct test_leaky_relu : public test_case { const ggml_type type; const std::array ne_a; const float negative_slope; std::string vars() override { return VARS_TO_STR3(type, ne_a, negative_slope); } test_leaky_relu(ggml_type type = GGML_TYPE_F32, std::array ne_a = {10, 5, 4, 3}, float negative_slope = 0.1f) : type(type), ne_a(ne_a), negative_slope(negative_slope) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data()); ggml_set_name(a, "a"); ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true); ggml_set_name(out, "out"); return out; } }; // GGML_OP_FLASH_ATTN_EXT struct test_flash_attn_ext : public test_case { const int64_t hs; // head size const int64_t nh; // num heads const int64_t kv; // kv size const int64_t nb; // batch size const bool mask; // use mask const float max_bias; // ALiBi const float logit_softcap; // Gemma 2 const ggml_type type_KV; std::string vars() override { return VARS_TO_STR8(hs, nh, kv, nb, mask, max_bias, logit_softcap, type_KV); } double max_nmse_err() override { return 5e-4; } test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t kv = 96, int64_t nb = 8, bool mask = true, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_type type_KV = GGML_TYPE_F16) : hs(hs), nh(nh), kv(kv), nb(nb), mask(mask), max_bias(max_bias), logit_softcap(logit_softcap), type_KV(type_KV) {} ggml_tensor * build_graph(ggml_context * ctx) override { const int64_t hs_padded = GGML_PAD(hs, ggml_blck_size(type_KV)); ggml_tensor * q = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, hs_padded, nb, nh, 1); ggml_set_name(q, "q"); ggml_tensor * k = ggml_new_tensor_4d(ctx, type_KV, hs_padded, kv, nh, 1); ggml_set_name(k, "k"); ggml_tensor * v = ggml_new_tensor_4d(ctx, type_KV, hs_padded, kv, nh, 1); ggml_set_name(v, "v"); ggml_tensor * m = nullptr; if (mask) { m = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, 1); ggml_set_name(m, "m"); } ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hs), max_bias, logit_softcap); ggml_set_name(out, "out"); return out; } bool grad_precise() override { return true; } }; // GGML_OP_CROSS_ENTROPY_LOSS struct test_cross_entropy_loss : public test_case { const ggml_type type; const std::array ne; std::string vars() override { return VARS_TO_STR2(type, ne); } test_cross_entropy_loss(ggml_type type = GGML_TYPE_F32, std::array ne = {10, 5, 4, 3}) : type(type), ne(ne) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_set_param(ctx, logits); ggml_set_name(logits, "logits"); ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data()); // The labels are assumed to be constant -> no gradients. ggml_set_name(labels, "labels"); // Ensure labels add up to 1: labels = ggml_soft_max(ctx, labels); ggml_set_name(labels, "labels_normalized"); ggml_tensor * out = ggml_cross_entropy_loss(ctx, logits, labels); ggml_set_name(out, "out"); return out; } void initialize_tensors(ggml_context * ctx) override { // For larger abs. diffs between logits softmax is more linear, therefore more precise num. gradients. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { init_tensor_uniform(t, -100.0f, 100.0f); } } float grad_eps() override { return 1.0f; } bool grad_precise() override { return true; } }; // GGML_OP_OPT_STEP_ADAMW struct test_opt_step_adamw : public test_case { const ggml_type type; const std::array ne; const float alpha; const float beta1; const float beta2; const float eps; const float wd; std::string vars() override { return VARS_TO_STR7(type, ne, alpha, beta1, beta2, eps, wd); } test_opt_step_adamw(ggml_type type = GGML_TYPE_F32, std::array ne = {10, 5, 4, 3}, float alpha = 1e-3f, float beta1 = 0.9f, float beta2 = 0.999f, float eps = 1e-8f, float wd = 0.0f) : type(type), ne(ne), alpha(alpha), beta1(beta1), beta2(beta2), eps(eps), wd(wd) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]); ggml_set_param(ctx, a); // Despite tensor a having gradients the output tensor will not. ggml_set_name(a, "a"); ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]); ggml_set_name(grad, "grad"); ggml_tensor * out = ggml_opt_step_adamw(ctx, a, grad, alpha, beta1, beta2, eps, wd); ggml_set_name(out, "out"); return out; } void initialize_tensors(ggml_context * ctx) override { for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { init_tensor_uniform(t, 0.0f, 1.0f); // grad_v needs non-negative values. } } bool grad_precise() override { return true; } }; enum llm_norm_type { LLM_NORM, LLM_NORM_RMS, }; struct llama_hparams { uint32_t n_vocab; uint32_t n_embd; uint32_t n_head; uint32_t n_head_kv; static constexpr uint32_t n_layer = 1; uint32_t n_rot; uint32_t n_embd_head; // dimension of values (d_v) uint32_t n_ff; float f_norm_eps; float f_norm_rms_eps; // cparams static constexpr uint32_t n_ctx = 512; // user-specified context size static constexpr uint32_t n_ctx_orig = n_ctx; // batch int32_t n_tokens; // llm_build_context static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads return n_embd_head * n_head_kv; } }; // LLM base class struct test_llm : public test_case { llama_hparams hp; protected: test_llm(llama_hparams hp) : hp(std::move(hp)) { } public: struct ggml_tensor * llm_build_norm( struct ggml_context * ctx, struct ggml_tensor * cur, struct ggml_tensor * mw, struct ggml_tensor * mb, llm_norm_type type) { switch (type) { case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break; case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break; } cur = ggml_mul(ctx, cur, mw); if (mb) { cur = ggml_add(ctx, cur, mb); } return cur; } void llm_build_kv_store( struct ggml_context * ctx, struct ggml_tensor * k_l, struct ggml_tensor * v_l, struct ggml_tensor * k_cur, struct ggml_tensor * v_cur) { // compute the transposed [n_tokens, n_embd] V matrix struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens)); struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(), (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head); struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(), ( hp.n_ctx)*ggml_element_size(v_l), (hp.kv_head)*ggml_element_size(v_l)); // important: storing RoPE-ed version of K in the KV cache! ggml_cpy(ctx, k_cur, k_cache_view); ggml_cpy(ctx, v_cur_t, v_cache_view); } struct ggml_tensor * llm_build_kqv( struct ggml_context * ctx, struct ggml_tensor * k_l, struct ggml_tensor * v_l, struct ggml_tensor * q_cur, struct ggml_tensor * kq_mask, float kq_scale) { struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3); struct ggml_tensor * k = ggml_view_3d(ctx, k_l, hp.n_embd_head, hp.n_kv, hp.n_head_kv, ggml_row_size(k_l->type, hp.n_embd_gqa()), ggml_row_size(k_l->type, hp.n_embd_head), 0); struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q); kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, 0.0f); // split cached v into n_head heads struct ggml_tensor * v = ggml_view_3d(ctx, v_l, hp.n_kv, hp.n_embd_head, hp.n_head_kv, ggml_element_size(v_l)*hp.n_ctx, ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head, 0); struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq); struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3); struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens); struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd); cur = ggml_mul_mat(ctx, wo, cur); return cur; } void initialize_tensors(ggml_context * ctx) override { for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { if (t->type == GGML_TYPE_I32) { // pos std::vector data(hp.n_tokens); for (int i = 0; i < hp.n_tokens; i++) { data[i] = rand() % hp.n_ctx; } ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int)); } else { init_tensor_uniform(t); } } } }; // Llama struct test_llama : public test_llm { static constexpr float freq_base = 10000.0f; static constexpr float freq_scale = 1.0f; static constexpr float ext_factor = 0.0f; static constexpr float attn_factor = 1.0f; static constexpr float beta_fast = 32.0f; static constexpr float beta_slow = 1.0f; std::string op_desc(ggml_tensor * t) override { GGML_UNUSED(t); return "LLAMA"; } std::string vars() override { auto n_tokens = hp.n_tokens; return VARS_TO_STR1(n_tokens); } double max_nmse_err() override { return 2e-3; } test_llama(int n_tokens = 1) : test_llm({ /*n_vocab =*/ 32000, /*n_embd =*/ 3200, /*n_head =*/ 32, /*n_head_kv =*/ 32, /*n_rot =*/ 100, /*n_embd_head =*/ 100, /*n_ff =*/ 8640, /*f_norm_eps =*/ 0.f, /*f_norm_rms_eps =*/ 1e-5f, /*n_tokens =*/ n_tokens, }) { } ggml_tensor * build_graph(ggml_context * ctx) override { struct ggml_tensor * cur; struct ggml_tensor * inpL; inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens); // inp_pos - contains the positions struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1); ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400); ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400); for (uint32_t il = 0; il < hp.n_layer; ++il) { struct ggml_tensor * inpSA = inpL; // norm ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd); cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS); // self-attention { ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd); ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa()); ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa()); // compute Q and K and RoPE them struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur); struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur); struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur); Qcur = ggml_rope_ext( ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, nullptr, hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, nullptr, hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur); cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head))); } struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA); // feed-forward network ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd); cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS); ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff); ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd); ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff); struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur); cur = ggml_mul_mat(ctx, ffn_gate, cur); cur = ggml_silu(ctx, cur); cur = ggml_mul(ctx, cur, tmp); cur = ggml_mul_mat(ctx, ffn_down, cur); cur = ggml_add(ctx, cur, ffn_inp); // input for next layer inpL = cur; } cur = inpL; ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd); cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS); // lm_head ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab); cur = ggml_mul_mat(ctx, output, cur); return cur; } }; // Falcon struct test_falcon : public test_llm { static constexpr float freq_base = 10000.0f; static constexpr float freq_scale = 1.0f; static constexpr float ext_factor = 0.0f; static constexpr float attn_factor = 1.0f; static constexpr float beta_fast = 32.0f; static constexpr float beta_slow = 1.0f; std::string op_desc(ggml_tensor * t) override { GGML_UNUSED(t); return "FALCON"; } std::string vars() override { auto n_tokens = hp.n_tokens; return VARS_TO_STR1(n_tokens); } double max_nmse_err() override { return 2e-3; } test_falcon(int n_tokens = 1) : test_llm({ /*n_vocab =*/ 32000, /*n_embd =*/ 3200, /*n_head =*/ 50, /*n_head_kv =*/ 1, /*n_rot =*/ 64, /*n_embd_head =*/ 64, /*n_ff =*/ 8640, /*f_norm_eps =*/ 1e-5f, /*f_norm_rms_eps =*/ 0.f, /*n_tokens =*/ n_tokens, }) { } ggml_tensor * build_graph(ggml_context * ctx) override { struct ggml_tensor * cur; struct ggml_tensor * inpL; inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens); // inp_pos - contains the positions struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1); ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400); ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400); for (uint32_t il = 0; il < hp.n_layer; ++il) { // norm ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd); ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd); ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM); // self-attention { cur = attn_norm; ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa()); cur = ggml_mul_mat(ctx, wqkv, cur); struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd))); struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd))); struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa()))); Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens); Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens); // using mode = 2 for neox mode Qcur = ggml_rope_ext( ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur); cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head))); } struct ggml_tensor * ffn_inp = cur; // feed forward { ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff); ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd); cur = attn_norm; cur = ggml_mul_mat(ctx, ffn_up, cur); cur = ggml_gelu(ctx, cur); cur = ggml_mul_mat(ctx, ffn_down, cur); } cur = ggml_add(ctx, cur, ffn_inp); cur = ggml_add(ctx, cur, inpL); // input for next layer inpL = cur; } cur = inpL; ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd); ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd); cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM); // lm_head ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab); cur = ggml_mul_mat(ctx, output, cur); return cur; } }; // ########################################### // ## Section 3: GGML Op Test Instantiation ## // ########################################### static const ggml_type all_types[] = { GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0, GGML_TYPE_Q2_K, GGML_TYPE_Q3_K, GGML_TYPE_Q4_K, GGML_TYPE_Q5_K, GGML_TYPE_Q6_K, // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S, GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M, GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS, }; static const ggml_type base_types[] = { GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q4_K, GGML_TYPE_IQ2_XXS }; static const ggml_type other_types[] = { GGML_TYPE_Q4_1, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0, GGML_TYPE_Q2_K, GGML_TYPE_Q3_K, GGML_TYPE_Q5_K, GGML_TYPE_Q6_K, // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S, GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M, GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS, GGML_TYPE_BF16, }; // Test cases for evaluation: should try to cover edge cases while using small input sizes to keep the runtime low static std::vector> make_test_cases_eval() { std::vector> test_cases; std::default_random_engine rng(0); // unary ops for (int v : {0, 1}) { for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) { test_cases.emplace_back(new test_unary((ggml_unary_op) op, GGML_TYPE_F32, { 128, 2, 2, 2 }, v)); test_cases.emplace_back(new test_unary((ggml_unary_op) op, GGML_TYPE_F32, { 5, 7, 11, 13 }, v)); } } test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, false)); for (ggml_type type : all_types) { for (int b : {1, 7}) { for (bool v : {false, true}) { test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, v)); } } } for (int b : {1, 7}) { for (bool v : {false, true}) { test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, v)); } } for (ggml_type type_input : {GGML_TYPE_F32}) { for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) { for (int k0 : {1, 3}) { for (int k1 : {1, 3}) { for (int s0 : {1, 2}) { for (int s1 : {1, 2}) { for (int p0 : {0, 1}) { for (int p1 : {0, 1}) { test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1)); } } } } } } } } test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32)); test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32)); test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16)); // test cases for 1D im2col test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false)); test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false)); test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false)); // sycl backend will limit task global_range < MAX_INT // test cases for 2D im2col with large input W and H (occurs in stable-diffusion) // however these cases need to alloc more memory which may fail in some devices (Intel Arc770, etc.) // these cases are verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend) // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true)); // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true)); test_cases.emplace_back(new test_conv_transpose_1d()); test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1)); test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1)); test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1)); test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1)); test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1)); test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1)); test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1)); for (int ne3 : {1, 3}) { // CUDA backward pass only supports ne3 == 1 test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 1})); test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {2, 1, 1, 1})); test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 2, 1, 1})); test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 2, 1})); test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 2})); test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 5, 4, ne3}, {2, 1, 1, 1})); test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 5, 4, ne3}, {1, 1, 1, 2})); } test_cases.emplace_back(new test_dup(GGML_TYPE_F32)); test_cases.emplace_back(new test_dup(GGML_TYPE_F16)); test_cases.emplace_back(new test_dup(GGML_TYPE_I32)); test_cases.emplace_back(new test_dup(GGML_TYPE_I16)); test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {0, 2, 1, 3})); test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); // dup by rows test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3})); test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); // dup dst not-contiguous test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3})); test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3})); for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) { test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim)); } for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) { for (ggml_type type_dst : all_types) { test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4})); test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows } } for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) { for (ggml_type type_dst : {GGML_TYPE_F16, GGML_TYPE_F32}) { test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {1, 0, 2, 3})); // cpy not-contiguous } } test_cases.emplace_back(new test_cont()); test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 1 ,1})); test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 3 ,5})); test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 3, 5 ,7})); test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 1 ,1})); test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 3 ,5})); test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 3, 5 ,7})); test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 1 ,1})); test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 3 ,5})); test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 3, 5 ,7})); auto add_test_bin_bcast = [&](ggml_type type, std::array ne, std::array nr) { for (auto op : {ggml_add, ggml_mul, ggml_div}) { test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr)); } }; add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 8, 1}, {1, 1, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1, 1}, {32, 1, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 320, 320}, {1, 1, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 1, 1}, {1, 1, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 1}, {1, 1, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {2, 1, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 2, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 1}); add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 1, 2}); add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 2}); add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 2, 2, 2}); add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {2, 2, 2, 2}); // stable diffusion add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 1, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 16, 16, 1}); add_test_bin_bcast(GGML_TYPE_F32, {1280, 16, 16, 1}, {1, 1, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 256, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1280, 1}, {16, 16, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {16, 16, 1280, 1}, {1, 1, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1920, 1}, {16, 16, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 2560, 1}, {16, 16, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1280, 1}, {32, 32, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1920, 1}, {32, 32, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 640, 1}, {32, 32, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {5120, 1, 1, 1}, {1, 256, 1, 1}); add_test_bin_bcast(GGML_TYPE_F32, {640, 1, 1, 1}, {1, 1, 1, 1}); //add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {1, 1, 1, 1}); //add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {2, 1, 1, 1}); test_cases.emplace_back(new test_add1()); test_cases.emplace_back(new test_scale()); for (float eps : {1e-6f, 1e-5f, 1e-3f, 1e-1f}) { test_cases.emplace_back(new test_norm(GGML_TYPE_F32, {64, 5, 4, 3}, eps)); test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, eps)); } test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 1, 1}, {4, 1536, 1, 1})); test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {8, 1536, 1, 1}, {4, 1536, 1, 1})); test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 4, 1}, {4, 1536, 1, 1})); test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1024, 32, 4)); test_cases.emplace_back(new test_rwkv_wkv(GGML_TYPE_F32, 32, 64, 1, 1)); test_cases.emplace_back(new test_rwkv_wkv(GGML_TYPE_F32, 32, 64, 32, 1)); test_cases.emplace_back(new test_rwkv_wkv(GGML_TYPE_F32, 32, 64, 32, 4)); test_cases.emplace_back(new test_rwkv_wkv(GGML_TYPE_F32, 32, 64, 128, 4)); #if 1 for (ggml_type type_a : base_types) { for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) { test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1, 1}, {1, 1})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {1, 1})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {2, 1})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {1, 1})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {2, 1})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {1, 2})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {2, 2})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, { 1, 1}, {1, 1})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 1}, {1, 1})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 1}, {2, 1})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 1})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 1})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 2})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 2})); } } for (ggml_type type_a : other_types) { for (ggml_type type_b : {GGML_TYPE_F32}) { if (ggml_blck_size(type_a) != 256) { test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1})); } test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1})); } } #else // m = a rows // n = b rows // k = cols std::uniform_int_distribution<> dist_m(1, 128); std::uniform_int_distribution<> dist_n(16, 128); std::uniform_int_distribution<> dist_k(1, 16); for (int i = 0; i < 1000; i++) { for (ggml_type type_a : all_types) { for (ggml_type type_b : {GGML_TYPE_F32}) { int m = dist_m(rng); int n = dist_n(rng); int k = dist_k(rng) * ggml_blck_size(type_a); test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1, 1}, {1, 1})); } } } #endif test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1})); test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1})); test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1})); test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1})); test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1})); test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1})); // sycl backend will limit task global_range < MAX_INT // test case for f16-type-convert-to-fp32 kernel with large k under fp32 compute dtype (occurs in stable-diffusion) // however this case needs to alloc more memory which may fail in some devices (Intel Arc770, etc.) // this case is verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend) // test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 512, 262144, 9216, {1, 1}, {1, 1})); for (ggml_type type_a : base_types) { for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) { for (int n_mats : {4, 8}) { for (int n_used : {1, 2, 4}) { for (bool b : {false, true}) { for (int n : {1, 32}) { int m = 512; int k = 256; test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k)); } } } } } } for (ggml_type type_a : other_types) { for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) { for (int n_mats : {4}) { for (int n_used : {2}) { for (bool b : {false}) { for (int n : {1}) { int m = 512; int k = 256; test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k)); } } } } } } for (ggml_type type_a : base_types) { for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) { test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 1, 16, { 1, 1})); test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 1, 16, {10, 1})); test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 1, 16, {10, 1})); test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 1, 16, {10, 10})); test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 1, 16, {10, 10})); test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 1, 16, {10, 10})); test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 1, 16, {10, 10})); test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, { 1, 1})); test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, { 1, 1}, true)); test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, {10, 1})); test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, {10, 1})); test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, {10, 10})); test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, {10, 10})); test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, {10, 10})); test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, {10, 10})); } } test_cases.emplace_back(new test_sqr()); test_cases.emplace_back(new test_sqrt()); test_cases.emplace_back(new test_log()); test_cases.emplace_back(new test_sin()); test_cases.emplace_back(new test_cos()); test_cases.emplace_back(new test_clamp()); test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5)); test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 1}, 5)); test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 2}, 5)); #if 0 std::uniform_int_distribution<> dist_ne1(1, 50); int exponent = 1; while (exponent < (1 << 17)) { std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent); for (int n = 0; n < 10; ++n) { int64_t ne0 = dist_ne0(rng); int64_t ne1 = dist_ne1(rng); test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f)); } exponent <<= 1; } #endif for (bool mask : {false, true}) { for (float max_bias : {0.0f, 8.0f}) { if (!mask && max_bias > 0.0f) continue; for (float scale : {1.0f, 0.1f}) { for (int64_t ne0 : {16, 1024}) { for (int64_t ne1 : {16, 1024}) { test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, scale, max_bias)); test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, scale, max_bias)); } } } } } test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, 0.1f, 0.0f)); test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, 0.1f, 0.0f)); test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 0.0f)); test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 8.0f)); { bool all = true; for (float v : { 0, 1 }) { for (float fs : { 1.0f, 1.4245f }) { for (float ef : { 0.0f, 0.7465f }) { for (float af : { 1.0f, 1.4245f }) { for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) { for (bool ff : {false, true}) { // freq_factors test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, 0, 512, fs, ef, af, ff, v)); // llama 7B if (all) { test_cases.emplace_back(new test_rope(type, {128, 40, 2, 1}, 128, 0, 512, fs, ef, af, ff, v)); // llama 13B test_cases.emplace_back(new test_rope(type, {128, 52, 2, 1}, 128, 0, 512, fs, ef, af, ff, v)); // llama 30B test_cases.emplace_back(new test_rope(type, {128, 64, 2, 1}, 128, 0, 512, fs, ef, af, ff, v)); // llama 65B } if (all) { test_cases.emplace_back(new test_rope(type, { 64, 1, 2, 1}, 64, 2, 512, fs, ef, af, ff, v)); // neox (falcon 7B) test_cases.emplace_back(new test_rope(type, { 64, 71, 2, 1}, 64, 2, 512, fs, ef, af, ff, v)); // neox (falcon 7B) test_cases.emplace_back(new test_rope(type, { 64, 8, 2, 1}, 64, 2, 512, fs, ef, af, ff, v)); // neox (falcon 40B) test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, 2, 512, fs, ef, af, ff, v)); // neox (stablelm) test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, 2, 512, fs, ef, af, ff, v)); // neox (phi-2) } test_cases.emplace_back(new test_rope(type, { 64, 128, 2, 1}, 64, 2, 512, fs, ef, af, ff, v)); // neox (falcon 40B) } } all = false; } } } } } for (int v : { 0, 1, 2, 3 }) { for (int dim : { 0, 1, 2, 3, }) { test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v)); test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v)); } } for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) { test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order)); test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order)); test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen } test_cases.emplace_back(new test_sum()); test_cases.emplace_back(new test_sum_rows()); test_cases.emplace_back(new test_upscale()); test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, { 512, 512, 3, 1 }, 2, true)); test_cases.emplace_back(new test_upscale_ext()); test_cases.emplace_back(new test_group_norm()); test_cases.emplace_back(new test_acc()); test_cases.emplace_back(new test_pad()); test_cases.emplace_back(new test_arange()); test_cases.emplace_back(new test_timestep_embedding()); test_cases.emplace_back(new test_leaky_relu()); for (int hs : { 64, 80, 128, 256, }) { for (bool mask : { true, false } ) { for (float max_bias : { 0.0f, 8.0f }) { if (!mask && max_bias > 0.0f) continue; for (float logit_softcap : {0.0f, 10.0f}) { if (hs != 128 && logit_softcap != 0.0f) continue; for (int nh : { 32, }) { for (int kv : { 512, 1024, }) { for (int nb : { 1, 3, 32, 35, }) { for (ggml_type type_KV : {GGML_TYPE_F16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) { test_cases.emplace_back(new test_flash_attn_ext(hs, nh, kv, nb, mask, max_bias, logit_softcap, type_KV)); } } } } } } } } test_cases.emplace_back(new test_cross_entropy_loss()); for (float wd : {0.0f, 1e-2f}) { test_cases.emplace_back(new test_opt_step_adamw(GGML_TYPE_F32, {10, 5, 4, 3}, 1.0f, 1e-3f, 0.9f, 0.999f, wd)); } // these tests are disabled to save execution time, but they can be handy for debugging #if 0 test_cases.emplace_back(new test_llama(1)); test_cases.emplace_back(new test_llama(2)); test_cases.emplace_back(new test_falcon(1)); test_cases.emplace_back(new test_falcon(2)); #endif return test_cases; } // Test cases for performance evaluation: should be representative of real-world use cases static std::vector> make_test_cases_perf() { std::vector> test_cases; test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 1, 1, 1})); test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 512, 1, 1})); for (int bs : {1, 512}) { for (ggml_type type_a : all_types) { for (ggml_type type_b : {GGML_TYPE_F32}) { test_cases.emplace_back(new test_mul_mat(type_a, type_b, 4096, bs, 14336, {1, 1}, {1, 1})); } } } return test_cases; } static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name) { if (mode == MODE_TEST) { auto test_cases = make_test_cases_eval(); ggml_backend_t backend_cpu = ggml_backend_cpu_init(); size_t n_ok = 0; for (auto & test : test_cases) { if (test->eval(backend, backend_cpu, op_name)) { n_ok++; } } printf(" %zu/%zu tests passed\n", n_ok, test_cases.size()); ggml_backend_free(backend_cpu); return n_ok == test_cases.size(); } if (mode == MODE_GRAD) { auto test_cases = make_test_cases_eval(); size_t n_ok = 0; for (auto & test : test_cases) { if (test->eval_grad(backend, op_name)) { n_ok++; } } printf(" %zu/%zu tests passed\n", n_ok, test_cases.size()); return n_ok == test_cases.size(); } if (mode == MODE_PERF) { auto test_cases = make_test_cases_perf(); for (auto & test : test_cases) { test->eval_perf(backend, op_name); } return true; } GGML_ABORT("fatal error"); } static void usage(char ** argv) { printf("Usage: %s [mode] [-o op] [-b backend]\n", argv[0]); printf(" valid modes:\n"); printf(" - test (default, compare with CPU backend for correctness)\n"); printf(" - grad (compare gradients from backpropagation with method of finite differences)\n"); printf(" - perf (performance evaluation)\n"); printf(" op names for -o are as given by ggml_op_desc() (e.g. ADD, MUL_MAT, etc)\n"); } int main(int argc, char ** argv) { test_mode mode = MODE_TEST; const char * op_name_filter = NULL; const char * backend_filter = NULL; for (int i = 1; i < argc; i++) { if (strcmp(argv[i], "test") == 0) { mode = MODE_TEST; } else if (strcmp(argv[i], "perf") == 0) { mode = MODE_PERF; } else if (strcmp(argv[i], "grad") == 0) { mode = MODE_GRAD; } else if (strcmp(argv[i], "-o") == 0) { if (i + 1 < argc) { op_name_filter = argv[++i]; } else { usage(argv); return 1; } } else if (strcmp(argv[i], "-b") == 0) { if (i + 1 < argc) { backend_filter = argv[++i]; } else { usage(argv); return 1; } } else { usage(argv); return 1; } } // enumerate backends printf("Testing %zu backends\n\n", ggml_backend_reg_get_count()); size_t n_ok = 0; for (size_t i = 0; i < ggml_backend_reg_get_count(); i++) { printf("Backend %zu/%zu (%s)\n", i + 1, ggml_backend_reg_get_count(), ggml_backend_reg_get_name(i)); if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_reg_get_name(i)) != 0) { printf(" Skipping\n"); n_ok++; continue; } ggml_backend_t backend = ggml_backend_reg_init_backend(i, NULL); GGML_ASSERT(backend != NULL); if (backend_filter == NULL && ggml_backend_is_cpu(backend) && mode != MODE_GRAD) { printf(" Skipping CPU backend\n"); ggml_backend_free(backend); n_ok++; continue; } if (ggml_backend_is_cpu(backend)) { // TODO: better value for n_threads ggml_backend_cpu_set_n_threads(backend, std::thread::hardware_concurrency() / 2); } printf(" Backend name: %s\n", ggml_backend_name(backend)); bool ok = test_backend(backend, mode, op_name_filter); printf(" Backend %s: ", ggml_backend_name(backend)); if (ok) { printf("\033[1;32mOK\033[0m\n"); n_ok++; } else { printf("\033[1;31mFAIL\033[0m\n"); } printf("\n"); ggml_backend_free(backend); } printf("%zu/%zu backends passed\n", n_ok, ggml_backend_reg_get_count()); if (n_ok != ggml_backend_reg_get_count()) { printf("\033[1;31mFAIL\033[0m\n"); return 1; } ggml_quantize_free(); printf("\033[1;32mOK\033[0m\n"); return 0; }