#include "mmq.cuh" void ggml_cuda_op_mul_mat_q( ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i, const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols, const int64_t src1_padded_row_size, cudaStream_t stream) { const int64_t ne00 = src0->ne[0]; const int64_t nb01 = src0->nb[1]; const int64_t ne10 = src1->ne[0]; const int64_t ne11 = src1->ne[1]; GGML_ASSERT(ne10 % QK8_1 == 0); const int64_t ne0 = dst->ne[0]; const int64_t row_diff = row_high - row_low; const int64_t stride00 = nb01 / ggml_type_size(src0->type); int id = ggml_cuda_get_device(); const int compute_capability = ggml_cuda_info().devices[id].cc; // the main device has a larger memory buffer to hold the results from all GPUs // nrows_dst == nrows of the matrix that the kernel writes into const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff; const mmq_args args = {src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stride00, src1_padded_row_size, src1_ncols, ne11, nrows_dst}; switch (src0->type) { case GGML_TYPE_Q4_0: mul_mat_q_case(ctx, args, stream); break; case GGML_TYPE_Q4_1: mul_mat_q_case(ctx, args, stream); break; case GGML_TYPE_Q5_0: mul_mat_q_case(ctx, args, stream); break; case GGML_TYPE_Q5_1: mul_mat_q_case(ctx, args, stream); break; case GGML_TYPE_Q8_0: mul_mat_q_case(ctx, args, stream); break; case GGML_TYPE_Q2_K: mul_mat_q_case(ctx, args, stream); break; case GGML_TYPE_Q3_K: mul_mat_q_case(ctx, args, stream); break; case GGML_TYPE_Q4_K: mul_mat_q_case(ctx, args, stream); break; case GGML_TYPE_Q5_K: mul_mat_q_case(ctx, args, stream); break; case GGML_TYPE_Q6_K: mul_mat_q_case(ctx, args, stream); break; default: GGML_ASSERT(false); break; } GGML_UNUSED(src1); GGML_UNUSED(dst); GGML_UNUSED(src1_ddf_i); } bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) { #ifdef GGML_CUDA_FORCE_CUBLAS return false; #endif // GGML_CUDA_FORCE_CUBLAS bool mmq_supported; switch (type) { case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: case GGML_TYPE_Q2_K: case GGML_TYPE_Q3_K: case GGML_TYPE_Q4_K: case GGML_TYPE_Q5_K: case GGML_TYPE_Q6_K: mmq_supported = true; break; default: mmq_supported = false; break; } if (!mmq_supported) { return false; } if (int8_mma_available(cc)) { return true; } if (cc < MIN_CC_DP4A) { return false; } #ifdef GGML_CUDA_FORCE_MMQ return true; #endif //GGML_CUDA_FORCE_MMQ if (cc < CC_OFFSET_AMD) { return cc < CC_VOLTA || ne11 < MMQ_DP4A_MAX_BATCH_SIZE; } return cc < CC_RDNA3 || ne11 < MMQ_DP4A_MAX_BATCH_SIZE; }