# Test libllama tokenizer == AutoTokenizer. # Brute force random tokens/text generation. # # Sample usage: # # python3 tests/test-tokenizer-random.py ./models/ggml-vocab-llama-bpe.gguf ./models/tokenizers/llama-bpe # import time import logging import argparse import subprocess import random from typing import Iterator import cffi from transformers import AutoTokenizer, PreTrainedTokenizerBase logger = logging.getLogger("test-tokenizer-random-bpe") class LibLlama: DEFAULT_PATH_LLAMA_H = "./llama.h" DEFAULT_PATH_LIBLLAMA = "./build/libllama.so" # CMakeLists.txt: BUILD_SHARED_LIBS ON def __init__(self, path_llama_h: str = None, path_libllama: str = None): path_llama_h = path_llama_h or self.DEFAULT_PATH_LLAMA_H path_libllama = path_libllama or self.DEFAULT_PATH_LIBLLAMA (self.ffi, self.lib) = self._load_libllama_cffi(path_llama_h, path_libllama) self.lib.llama_backend_init() def _load_libllama_cffi(self, path_llama_h: str, path_libllama: str): cmd = ["gcc", "-E", "-P", "-D__restrict=", "-D__attribute__(x)=", "-D__asm__(x)=", path_llama_h] res = subprocess.run(cmd, stdout=subprocess.PIPE) assert (res.returncode == 0) source = res.stdout.decode() ffi = cffi.FFI() if True: # workarounds for pycparser source = "typedef struct { } __builtin_va_list;" + "\n" + source source = source.replace("sizeof (int)", str(ffi.sizeof("int"))) source = source.replace("sizeof (void *)", str(ffi.sizeof("void*"))) source = source.replace("sizeof (size_t)", str(ffi.sizeof("size_t"))) source = source.replace("sizeof(int32_t)", str(ffi.sizeof("int32_t"))) ffi.cdef(source, override=True) lib = ffi.dlopen(path_libllama) return (ffi, lib) def model_default_params(self, **kwargs): mparams = self.lib.llama_model_default_params() for k, v in kwargs.items(): setattr(mparams, k, v) return mparams def context_default_params(self, **kwargs): cparams = self.lib.llama_context_default_params() for k, v in kwargs.items(): setattr(cparams, k, v) return cparams class LibLlamaModel: def __init__(self, libllama: LibLlama, path_model: str, mparams={}, cparams={}): self.lib = libllama.lib self.ffi = libllama.ffi if isinstance(mparams, dict): mparams = libllama.model_default_params(**mparams) self.model = self.lib.llama_load_model_from_file(path_model.encode(), mparams) if not self.model: raise RuntimeError("error: failed to load model '%s'" % path_model) if isinstance(cparams, dict): cparams = libllama.context_default_params(**cparams) self.ctx = self.lib.llama_new_context_with_model(self.model, cparams) if not self.ctx: raise RuntimeError("error: failed to create context for model '%s'" % path_model) n_tokens_max = self.lib.llama_n_ctx(self.ctx) self.token_ids = self.ffi.new("llama_token[]", n_tokens_max) def free(self): if self.ctx: self.lib.llama_free(self.ctx) if self.model: self.lib.llama_free_model(self.model) self.ctx = None self.model = None self.lib = None def tokenize(self, text: str, n_tokens_max: int = 0, add_special: bool = False, parse_special: bool = False) -> list[int]: n_tokens_max = n_tokens_max if n_tokens_max > 0 else len(self.token_ids) text = text.encode("utf-8") num = self.lib.llama_tokenize(self.model, text, len(text), self.token_ids, n_tokens_max, add_special, parse_special) if num < 0: return [] return list(self.token_ids[0:num]) def generator_custom_text() -> Iterator[str]: """General tests""" yield from [ "", " ", " ", " ", "\t", "\n", "\n\n", "\n\n\n", "\t\n", "Hello world", " Hello world", "Hello World", " Hello World", " Hello World!", "Hello, world!", " Hello, world!", " this is 🦙.cpp", "w048 7tuijk dsdfhu", "нещо на Български", "កាន់តែពិសេសអាចខលចេញ", "🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)", "Hello", " Hello", " Hello", " Hello", " Hello", " Hello\n Hello", " (", "\n =", "' era", "Hello, y'all! How are you 😁 ?我想在apple工作1314151天~", "3", "33", "333", "3333", "33333", "333333", "3333333", "33333333", "333333333", ] def generator_custom_text_edge_cases() -> Iterator[str]: """Edge cases found while debugging""" yield from [ '\x1f-a', # unicode_ranges_control, {0x00001C, 0x00001F} '¼-a', # unicode_ranges_digit, 0x00BC '½-a', # unicode_ranges_digit, 0x00BD '¾-a', # unicode_ranges_digit, 0x00BE 'a 〇b', # unicode_ranges_digit, 0x3007 'Ⅵ-a', # unicode_ranges_digit, {0x00002150, 0x0000218F} // Number Forms '\uFEFF//', # unicode_ranges_control, 0xFEFF (BOM) 'a' # TODO: Phi-3 fail ] def generator_random_chars(iterations = 100) -> Iterator[str]: """Brute force random text with simple characters""" WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5) CHARS = list(set(""" ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz ÁÉÍÓÚÀÈÌÒÙÂÊÎÔÛÄËÏÖÜ áéíóúàèìòùâêîôûäëïöü .-,*/-+ª!"·$%&/()=?¿[]{}<>\\|@#~½¬~;:_ """)) rand = random.Random() for m in range(iterations): rand.seed(m) text = [] num_words = rand.randint(300, 400) for i in range(num_words): k = rand.randint(1, 7) word = rand.choices(CHARS, k=k) space = rand.choice(WHITESPACES) text.append("".join(word) + space) yield "".join(text) def generator_random_vocab_chars(tokenizer: PreTrainedTokenizerBase, iterations = 100) -> Iterator[str]: """Brute force random text with vocab characters""" vocab_ids = list(tokenizer.vocab.values()) vocab_text = tokenizer.decode(vocab_ids, skip_special_tokens=True) vocab_chars = list(set(vocab_text)) del vocab_ids, vocab_text rand = random.Random() for m in range(iterations): rand.seed(m) text = rand.choices(vocab_chars, k=1024) yield "".join(text) def generator_random_vocab_tokens(tokenizer: PreTrainedTokenizerBase, iterations = 100) -> Iterator[str]: """Brute force random text from vocab tokens""" space_id = tokenizer.encode(" ", add_special_tokens=False)[0] vocab_ids = list(tokenizer.vocab.values()) vocab_ids = list(sorted(vocab_ids + vocab_ids)) for i in range(1, len(vocab_ids), 2): vocab_ids[i] = space_id vocab_tokens = tokenizer.decode(vocab_ids, skip_special_tokens=True) vocab_tokens = vocab_tokens.split(" ") del vocab_ids yield from vocab_tokens rand = random.Random() for m in range(iterations): rand.seed(m) text = [] num_words = rand.randint(300, 400) for i in range(num_words): k = rand.randint(1, 3) tokens = rand.choices(vocab_tokens, k=k) tokens = [t.strip(" \n\r\t") for t in tokens] sep = rand.choice(" \n\r\t") text.append("".join(tokens) + sep) yield "".join(text) def generator_random_bytes(iterations = 100) -> Iterator[str]: """Brute force random bytes""" WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5) rand = random.Random() for m in range(iterations): rand.seed(m) text = [] num_words = rand.randint(300, 400) for i in range(num_words): k = rand.randint(1, 8) word = [chr(r) for r in rand.randbytes(k) if r] word.append(rand.choice(WHITESPACES)) text.append("".join(word)) yield "".join(text) def test_compare_tokenizer(model: LibLlamaModel, tokenizer: PreTrainedTokenizerBase, generator: Iterator[str]): def find_first_mismatch(ids1: list[int], ids2: list[int]): for i, (a,b) in enumerate(zip(ids1, ids2)): if a != b: return i if len(ids1) == len(ids2): return -1 return min(len(ids1), len(ids2)) t0 = time.perf_counter() logger.info("%s: %s" % (generator.__name__, "ini")) for text in generator: ids1 = model.tokenize(text, add_special=False, parse_special=False) ids2 = tokenizer.encode(text, add_special_tokens=False) if ids1 != ids2: i = find_first_mismatch(ids1, ids2) ids1 = list(ids1)[max(0, i - 2) : i + 2 + 1] ids2 = list(ids2)[max(0, i - 2) : i + 2 + 1] text2 = tokenizer.decode(ids2, skip_special_tokens=True) assert (text2 in text) logger.info(" Text: " + repr(text2)) logger.info(" TokenIDs: " + str(ids1)) logger.info(" Expected: " + str(ids2)) raise Exception() t1 = time.perf_counter() logger.info("%s: end, time: %.3f secs" % (generator.__name__, t1 - t0)) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("vocab_file", help="path to vocab 'gguf' file") parser.add_argument("dir_tokenizer", help="directory containing 'tokenizer.model' file") parser.add_argument("--verbose", action="store_true", help="increase output verbosity") args = parser.parse_args() logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO) model = LibLlamaModel(LibLlama(), args.vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=2048)) tokenizer = AutoTokenizer.from_pretrained(args.dir_tokenizer) test_compare_tokenizer(model, tokenizer, generator_custom_text()) test_compare_tokenizer(model, tokenizer, generator_custom_text_edge_cases()) test_compare_tokenizer(model, tokenizer, generator_random_chars(10_000)) test_compare_tokenizer(model, tokenizer, generator_random_vocab_chars(tokenizer, 10_000)) test_compare_tokenizer(model, tokenizer, generator_random_vocab_tokens(tokenizer, 10_000)) # test_compare_tokenizer(model, tokenizer, generator_random_bytes(10_000)) # FAIL model.free()