#include "arg.h" #include "common.h" #include "sampling.h" #include "speculative.h" #include "log.h" #include "llama.h" #include #include #include #include #include #define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 128 #define SPEC_VOCAB_CHECK_START_TOKEN_ID 5 struct seq_draft { std::vector i_batch_tgt; std::vector tokens; struct common_sampler * smpl = nullptr; }; int main(int argc, char ** argv) { common_params params; // needed to get candidate probs even for temp <= 0.0 params.sparams.n_probs = 128; if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SPECULATIVE)) { return 1; } if (params.n_predict < -1) { LOG_ERR("%s: --n-predict must be >= -1\n", __func__); return 1; } common_init(); if (params.model_draft.empty()) { LOG_ERR("%s: --model-draft is required\n", __func__); return 1; } // init llama.cpp llama_backend_init(); llama_numa_init(params.numa); llama_model * model_tgt = NULL; llama_model * model_dft = NULL; llama_context * ctx_tgt = NULL; llama_context * ctx_dft = NULL; // load the target model common_init_result llama_init_tgt = common_init_from_params(params); model_tgt = llama_init_tgt.model; ctx_tgt = llama_init_tgt.context; // load the draft model params.model = params.model_draft; params.n_gpu_layers = params.n_gpu_layers_draft; if (params.draft_cpuparams.n_threads > 0) { params.cpuparams.n_threads = params.draft_cpuparams.n_threads; } params.cpuparams_batch.n_threads = params.draft_cpuparams_batch.n_threads; common_init_result llama_init_dft = common_init_from_params(params); model_dft = llama_init_dft.model; ctx_dft = llama_init_dft.context; const bool vocab_type_tgt = llama_vocab_type(model_tgt); LOG_DBG("vocab_type tgt: %d\n", vocab_type_tgt); const bool vocab_type_dft = llama_vocab_type(model_dft); LOG_DBG("vocab_type dft: %d\n", vocab_type_dft); if (vocab_type_tgt != vocab_type_dft) { LOG_ERR("%s: draft model vocab type must match target model to use speculation but ", __func__); LOG_ERR("vocab_type_dft = %d while vocab_type_tgt = %d\n", vocab_type_dft, vocab_type_tgt); return 1; } if ( llama_add_bos_token(model_tgt) != llama_add_bos_token(model_dft) || llama_add_eos_token(model_tgt) != llama_add_eos_token(model_dft) || llama_token_bos(model_tgt) != llama_token_bos(model_dft) || llama_token_eos(model_tgt) != llama_token_eos(model_dft) ) { LOG_ERR("%s: draft model special tokens must match target model to use speculation\n", __func__); return 1; } { const int n_vocab_tgt = llama_n_vocab(model_tgt); const int n_vocab_dft = llama_n_vocab(model_dft); const int vocab_diff = n_vocab_tgt > n_vocab_dft ? n_vocab_tgt - n_vocab_dft : n_vocab_dft - n_vocab_tgt; if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) { LOG_ERR("%s: draft model vocab must closely match target model to use speculation but ", __func__); LOG_ERR("target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n", n_vocab_tgt, llama_n_vocab(model_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE); return 1; } for (int i = SPEC_VOCAB_CHECK_START_TOKEN_ID; i < std::min(n_vocab_tgt, n_vocab_dft); ++i) { const char * token_text_tgt = llama_token_get_text(model_tgt, i); const char * token_text_dft = llama_token_get_text(model_dft, i); if (std::strcmp(token_text_tgt, token_text_dft) != 0) { LOG_ERR("%s: draft model vocab must match target model to use speculation but ", __func__); LOG_ERR("token %d content differs - target '%s', draft '%s'\n", i, common_token_to_piece(ctx_tgt, i).c_str(), common_token_to_piece(ctx_dft, i).c_str()); return 1; } } } // Tokenize the prompt std::vector inp; inp = common_tokenize(ctx_tgt, params.prompt, true, true); const int max_context_size = llama_n_ctx(ctx_tgt); const int max_tokens_list_size = max_context_size - 4; if ((int) inp.size() > max_tokens_list_size) { LOG_ERR("%s: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size); return 1; } LOG("\n\n"); for (auto id : inp) { LOG("%s", common_token_to_piece(ctx_tgt, id).c_str()); } // how many tokens to draft each time int n_draft = params.n_draft; int n_predict = 0; int n_drafted = 0; int n_accept = 0; // used to determine end of generation bool has_eos = false; // ================================================ // everything until here is standard initialization // the relevant stuff for speculative decoding starts here const int n_input = inp.size(); const auto t_enc_start = ggml_time_us(); // target model sampling context struct common_sampler * smpl = common_sampler_init(model_tgt, params.sparams); // eval the prompt llama_decode(ctx_tgt, llama_batch_get_one(inp.data(), n_input - 1)); // note: keep the last token separate! llama_token id_last = inp.back(); int n_past = inp.size() - 1; // init the speculator struct common_speculative_params params_spec; params_spec.n_draft = n_draft; params_spec.n_min = 5; params_spec.model_dft = model_dft; params_spec.ctx_dft = ctx_dft; struct common_speculative * spec = common_speculative_init(params_spec); // feed the prompt to the speculator // // this has to be kept synchronized with the target context // // TODO: simplify this by moving the context management logic in the common_speculative instance // for example, the common_speculative_add_draft can pass the entire context (or part of it) and the // speculator will automatically compute any new tokens that are not present in its context // common_speculative_set_prompt(spec, inp.data(), n_input - 1); llama_batch batch_tgt = llama_batch_init(llama_n_batch(ctx_tgt), 0, 1); const auto t_enc_end = ggml_time_us(); const auto t_dec_start = ggml_time_us(); while (true) { // always have a token to evaluate from before common_batch_clear(batch_tgt); common_batch_add (batch_tgt, id_last, n_past, { 0 }, true); // optionally, append draft tokens to the target batch // // this is the most important part of the speculation. the more probable tokens that are provided here // the better the performance will be. in theory, this computation can be performed asynchronously and even // offloaded to a remote device. it doesn't even have to be based on an LLM. instead, it can provide tokens // from a cache or lookup tables. // common_speculative_add_draft(spec, batch_tgt, id_last, n_past); // evaluate the target model on [id_last, draft0, draft1, ..., draftN-1] { //LOG_DBG("target batch: %s\n", string_from(ctx_tgt, batch_tgt).c_str()); llama_decode(ctx_tgt, batch_tgt); } // sample from the full target batch and return the accepted tokens based on the target sampler // // for each token to be accepted, the sampler would have to sample that same token // in such cases, instead of decoding the sampled token as we normally do, we simply continue with the // available logits from the batch and sample the next token until we run out of logits or the sampler // disagrees with the draft // const auto ids = common_speculative_sample(spec, smpl, ctx_tgt); GGML_ASSERT(ids.size() > 0); // there will always be at least one accepted token n_past += ids.size(); n_drafted += batch_tgt.n_tokens - 1; n_accept += ids.size() - 1; // process the accepted tokens and update contexts // // this is the standard token post-processing that we normally do // in this case, we do it for a group of accepted tokens at once // { llama_token id; std::string token_str; for (size_t i = 0; i < ids.size(); ++i) { id = ids[i]; ++n_predict; if (llama_token_is_eog(model_tgt, id)) { has_eos = true; break; } token_str = common_token_to_piece(ctx_tgt, id); if (params.use_color && i + 1 < ids.size()) { LOG("\u001b[%dm%s\u001b[37m", (36 - 0 % 6), token_str.c_str()); } else { LOG("%s", token_str.c_str()); } } if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) { break; } LOG_DBG("accepted %d draft tokens, the last target token is: (%d, '%s')\n", (int) ids.size() - 1, id, token_str.c_str()); { LOG_DBG("clear kv cache from any extra tokens, n_past = %d\n", n_past); llama_kv_cache_seq_rm(ctx_tgt, 0, n_past, -1); llama_kv_cache_seq_rm(ctx_dft, 0, n_past, -1); } // remember the last accepted token for the next iteration id_last = id; } } auto t_dec_end = ggml_time_us(); LOG("\n\n"); LOG_INF("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f)); LOG_INF("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f)); LOG_INF("\n"); LOG_INF("n_draft = %d\n", n_draft); LOG_INF("n_predict = %d\n", n_predict); LOG_INF("n_drafted = %d\n", n_drafted); LOG_INF("n_accept = %d\n", n_accept); LOG_INF("accept = %.3f%%\n", 100.0f * n_accept / n_drafted); LOG_INF("\n"); LOG_INF("draft:\n\n"); llama_perf_context_print(ctx_dft); LOG_INF("\n"); LOG_INF("target:\n\n"); common_perf_print(ctx_tgt, smpl); common_sampler_free(smpl); common_speculative_free(spec); llama_free(ctx_tgt); llama_free_model(model_tgt); llama_free(ctx_dft); llama_free_model(model_dft); llama_backend_free(); LOG("\n\n"); return 0; }