#include "ggml.h" #include "ggml-alloc.h" #include "ggml-backend.h" #include "ggml-cpu.h" #include "ggml-opt.h" #include #include #include #include #include #include static bool almost_equal(const double a, const double b, const double atol) { return fabs(a - b) < atol; } constexpr int64_t ne_datapoint = 2; constexpr int64_t ne_label = 1; constexpr int64_t ndata = 6; struct helper_ctx_data { std::vector datasets_supervised; std::vector data_batch; std::vector labels_batch; ggml_opt_dataset_t dataset_unsupervised; struct ggml_context * ctx_static; struct ggml_context * ctx_compute; struct ggml_opt_params opt_params; ggml_opt_context_t opt_ctx; struct ggml_tensor * inputs; struct ggml_tensor * weights; struct ggml_tensor * outputs; ggml_backend_buffer_t buf; ggml_opt_result_t result; ggml_opt_result_t result2; }; // These default values make it easier to check optimization results vs. expected values. static ggml_opt_optimizer_params helper_get_test_opt_pars(void * userdata) { ggml_opt_optimizer_params result = ggml_opt_get_default_optimizer_params(userdata); result.adamw.alpha = 1.0f; result.adamw.beta1 = 0.0f; result.adamw.beta2 = 0.0f; result.adamw.eps = 0.0f; return result; } static helper_ctx_data helper_get_ctx_data( ggml_backend_sched_t backend_sched, ggml_backend_t backend, const bool init_opt_ctx = true, const bool optimizer_defaults = true, int64_t nbatch_logical = 1, int64_t nbatch_physical = 1, enum ggml_opt_loss_type loss_type = GGML_OPT_LOSS_TYPE_SUM) { std::vector datasets(ndata); for (int64_t ndata_shard = 1; ndata_shard <= ndata; ++ndata_shard) { ggml_opt_dataset_t dataset = ggml_opt_dataset_init(ne_datapoint, ne_label, ndata, ndata_shard); float * data = ggml_get_data_f32(ggml_opt_dataset_data( dataset)); float * labels = ggml_get_data_f32(ggml_opt_dataset_labels(dataset)); for (int64_t idata = 0; idata < ndata; ++idata) { for (int64_t id = 0; id < ne_datapoint; ++id) { data[ idata*ne_datapoint + id] = 16*idata + id; } for (int64_t il = 0; il < ne_label; ++il) { labels[idata*ne_label + il] = 16*(16*idata + il); } } datasets[ndata_shard-1] = dataset; } ggml_opt_dataset_t dataset_unsupervised = ggml_opt_dataset_init(1, 0, ndata, /*ndata_shard =*/ 1); float * data = ggml_get_data_f32(ggml_opt_dataset_data(dataset_unsupervised)); for (int64_t idata = 0; idata < ndata; ++idata) { data[idata] = idata; } struct ggml_context * ctx_static; struct ggml_context * ctx_compute; { struct ggml_init_params params = { /*.mem_size =*/ (2*ndata + 2)*ggml_tensor_overhead(), /*.mem_buffer =*/ nullptr, /*.no_alloc =*/ true, }; ctx_static = ggml_init(params); } { struct ggml_init_params params = { /*.mem_size =*/ GGML_DEFAULT_GRAPH_SIZE*ggml_tensor_overhead() + 3*ggml_graph_overhead(), /*.mem_buffer =*/ nullptr, /*.no_alloc =*/ true, }; ctx_compute = ggml_init(params); } std::vector data_batch(ndata); std::vector labels_batch(ndata); for (int64_t ndata_batch = 1; ndata_batch <= ndata; ++ndata_batch) { data_batch[ndata_batch-1] = ggml_new_tensor_1d(ctx_static, GGML_TYPE_F32, ndata_batch*ne_datapoint); labels_batch[ndata_batch-1] = ggml_new_tensor_1d(ctx_static, GGML_TYPE_F32, ndata_batch*ne_label); } struct ggml_tensor * inputs = ggml_new_tensor_1d(ctx_static, GGML_TYPE_F32, nbatch_physical); ggml_set_name(inputs, "inputs"); struct ggml_tensor * weights = ggml_new_tensor_1d(ctx_static, GGML_TYPE_F32, 1); ggml_set_name(weights, "weights"); ggml_set_param(ctx_static, weights); struct ggml_tensor * intermediary = ggml_add(ctx_compute, inputs, weights); struct ggml_tensor * outputs = ggml_scale(ctx_compute, intermediary, 1.0f); ggml_set_name(outputs, "outputs"); ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx_static, backend); const float w0 = float(ndata)/2; ggml_backend_tensor_set(weights, &w0, 0, sizeof(float)); GGML_ASSERT(nbatch_logical % nbatch_physical == 0); const int32_t opt_period = nbatch_logical / nbatch_physical; struct ggml_opt_params opt_params = ggml_opt_default_params(backend_sched, ctx_compute, inputs, outputs, loss_type); opt_params.opt_period = opt_period; if (!optimizer_defaults) { opt_params.get_opt_pars = helper_get_test_opt_pars; } ggml_opt_context_t opt_ctx = init_opt_ctx ? ggml_opt_init(opt_params) : nullptr; ggml_opt_result_t result = ggml_opt_result_init(); ggml_opt_result_t result2 = ggml_opt_result_init(); return {datasets, data_batch, labels_batch, dataset_unsupervised, ctx_static, ctx_compute, opt_params, opt_ctx, inputs, weights, outputs, buf, result, result2}; } static void helper_free_ctx_data(struct helper_ctx_data ctx_data) { ggml_opt_result_free(ctx_data.result); ggml_opt_result_free(ctx_data.result2); ggml_opt_free(ctx_data.opt_ctx); ggml_backend_buffer_free(ctx_data.buf); ggml_free(ctx_data.ctx_static); ggml_free(ctx_data.ctx_compute); for (ggml_opt_dataset_t dataset : ctx_data.datasets_supervised) { ggml_opt_dataset_free(dataset); } ggml_opt_dataset_free(ctx_data.dataset_unsupervised); } static void helper_after_test( const char * func, const bool high_level, const std::string options, const std::string subtest, const bool subtest_ok, int & ntest, int & npass) { printf(" %s(high_level=%s%s, subtest=%s): ", func, high_level ? "yes" : "no", options.c_str(), subtest.c_str()); if (subtest_ok) { printf("\033[1;32mOK\033[0m\n"); npass++; } else { printf("\033[1;31mFAIL\033[0m\n"); } ntest++; } static std::pair test_dataset(ggml_backend_sched_t backend_sched, ggml_backend_t backend, const bool shuffle) { int ntest = 0; int npass = 0; struct helper_ctx_data cd = helper_get_ctx_data(backend_sched, backend); for (int64_t ndata_shard = 1; ndata_shard <= ndata; ++ndata_shard) { ggml_opt_dataset_t dataset = cd.datasets_supervised[ndata_shard-1]; if (shuffle) { ggml_opt_dataset_shuffle(cd.opt_ctx, dataset, -1); } for (int64_t ndata_batch = 1; ndata_batch <= ndata; ++ndata_batch) { if (ndata_batch % ndata_shard != 0) { continue; } bool subtest_ok = true; struct ggml_tensor * data_batch = cd.data_batch[ndata_batch-1]; struct ggml_tensor * labels_batch = cd.labels_batch[ndata_batch-1]; std::vector data(ggml_nelements( data_batch)); std::vector labels(ggml_nelements(labels_batch)); std::vector idata_shuffled; const int64_t nbatches = ndata / ndata_batch; for (int64_t ibatch = 0; ibatch < nbatches; ++ibatch) { ggml_opt_dataset_get_batch(dataset, data_batch, labels_batch, ibatch); ggml_backend_tensor_get( data_batch, data.data(), 0, ggml_nbytes( data_batch)); ggml_backend_tensor_get(labels_batch, labels.data(), 0, ggml_nbytes(labels_batch)); for (int64_t idata_batch = 0; idata_batch < ndata_batch; ++idata_batch) { const int64_t idata = ibatch*ndata_batch + idata_batch; const int64_t idata_found = data[idata_batch*ne_datapoint] / 16; subtest_ok = subtest_ok && (shuffle || idata_found == idata); idata_shuffled.push_back(idata_found); for (int64_t id = 0; id < ne_datapoint; ++id) { if (data[ idata_batch*ne_datapoint + id] != 16*idata_found + id) { subtest_ok = false; } } for (int64_t il = 0; il < ne_label; ++il) { if (labels[idata_batch*ne_label + il] != 16*(16*idata_found + il)) { subtest_ok = false; } } } } if (!shuffle || ndata % ndata_batch == 0) { const int ndata_max = (ndata / ndata_batch) * ndata_batch; for (int64_t idata = 0; subtest_ok && idata < ndata_max; ++idata) { int ninstances = 0; for (int64_t id : idata_shuffled) { ninstances += id == idata; } if (ninstances != 1) { subtest_ok = false; } } } printf(" %s(shuffle=%s, ndata_shard=%" PRId64 ", ndata_batch=%" PRId64 "): ", __func__, shuffle ? "yes" : "no", ndata_shard, ndata_batch); if (subtest_ok) { printf("\033[1;32mOK\033[0m\n"); npass++; } else { printf("\033[1;31mFAIL\033[0m\n"); } ntest++; } } helper_free_ctx_data(cd); return std::make_pair(npass, ntest); } static std::pair test_grad(ggml_backend_sched_t backend_sched, ggml_backend_t backend) { int ntest = 0; int npass = 0; struct helper_ctx_data cd = helper_get_ctx_data(backend_sched, backend, /*init_opt_ctx =*/ true, /*optimizer_defaults =*/ false, /*nbatch_logical =*/ 999999, /*nbatch_physical =*/ 1); std::vector grad_history(ndata); for (int64_t idata = 0; idata < ndata; ++idata) { grad_history[idata] = NAN; } for (int idata = 0; idata < ndata; ++idata) { const float idataf = idata; ggml_backend_tensor_set(cd.inputs, &idataf, 0, ggml_nbytes(cd.inputs)); ggml_opt_forward_backward(cd.opt_ctx, cd.result); ggml_backend_tensor_get(ggml_opt_grad_acc(cd.opt_ctx, cd.weights), grad_history.data() + idata, 0, sizeof(float)); } { bool subtest_ok = true; for (int idata = 0; idata < ndata; ++idata) { if (grad_history[idata] != idata + 1) { subtest_ok = false; } } printf(" %s(): ", __func__); if (subtest_ok) { printf("\033[1;32mOK\033[0m\n"); npass++; } else { printf("\033[1;31mFAIL\033[0m\n"); } ntest++; } helper_free_ctx_data(cd); return std::make_pair(npass, ntest); } static void helper_after_test_forward_backward( const char * func, const bool high_level, const bool shuffle, const std::string subtest, const bool subtest_ok, int & ntest, int & npass) { std::string options = ", shuffle="; options += shuffle ? "yes" : "no"; helper_after_test(func, high_level, options, subtest, subtest_ok, ntest, npass); } static std::pair test_forward_backward( ggml_backend_sched_t backend_sched, ggml_backend_t backend, const bool high_level, const bool shuffle) { int ntest = 0; int npass = 0; struct helper_ctx_data cd = helper_get_ctx_data(backend_sched, backend, /*init_opt_ctx =*/ true, /*optimizer_defaults =*/ false); struct ggml_tensor * loss = ggml_opt_loss(cd.opt_ctx); std::vector loss_history(ndata); for (int64_t idata = 0; idata < ndata; ++idata) { loss_history[idata] = NAN; } { int64_t ndata; ggml_opt_result_ndata(cd.result, &ndata); double loss; double loss_unc; ggml_opt_result_loss(cd.result, &loss, &loss_unc); double accuracy; double accuracy_unc; ggml_opt_result_accuracy(cd.result, &accuracy, &accuracy_unc); const bool subtest_ok = ndata == 0 && loss == 0.0 && std::isnan(loss_unc) && std::isnan(accuracy) && std::isnan(accuracy_unc); helper_after_test_forward_backward(__func__, high_level, shuffle, "results_initial", subtest_ok, ntest, npass); } if (high_level) { ggml_opt_dataset_t dataset = cd.dataset_unsupervised; if (shuffle) { ggml_opt_dataset_shuffle(cd.opt_ctx, dataset, -1); } ggml_opt_epoch(cd.opt_ctx, dataset, nullptr, cd.result, 0, nullptr, nullptr); } else { for (int idata = 0; idata < ndata; ++idata) { const float idataf = idata; ggml_backend_tensor_set(cd.inputs, &idataf, 0, ggml_nbytes(cd.inputs)); ggml_opt_forward(cd.opt_ctx, cd.result); ggml_backend_tensor_get(loss, loss_history.data() + idata, 0, sizeof(float)); } } { float weights; ggml_backend_tensor_get(cd.weights, &weights, 0, sizeof(float)); const bool subtest_ok = weights == ndata/2; helper_after_test_forward_backward(__func__, high_level, shuffle, "weights_after_forward", subtest_ok, ntest, npass); } { int64_t ndata; ggml_opt_result_ndata(cd.result, &ndata); bool subtest_ok = ndata == 6; double loss; double loss_unc; ggml_opt_result_loss(cd.result, &loss, &loss_unc); subtest_ok = subtest_ok && loss == 33.0 && almost_equal(loss_unc, sqrt(3.5), 1e-10); double accuracy; double accuracy_unc; ggml_opt_result_accuracy(cd.result, &accuracy, &accuracy_unc); subtest_ok = subtest_ok && std::isnan(accuracy) && std::isnan(accuracy_unc); helper_after_test_forward_backward(__func__, high_level, shuffle, "results_after_forward", subtest_ok, ntest, npass); } float w0; ggml_backend_tensor_get(cd.weights, &w0, 0, sizeof(float)); for (int i = 0; i < 10; ++i) { ggml_opt_forward_backward(cd.opt_ctx, nullptr); } ggml_backend_tensor_set(cd.weights, &w0, 0, sizeof(float)); ggml_opt_reset(cd.opt_ctx, /*optimizer =*/ false); ggml_opt_result_reset(cd.result); for (int64_t idata = 0; idata < ndata; ++idata) { loss_history[idata] = NAN; } if (high_level) { ggml_opt_dataset_t dataset = cd.dataset_unsupervised; if (shuffle) { ggml_opt_dataset_shuffle(cd.opt_ctx, dataset, -1); } ggml_opt_epoch(cd.opt_ctx, dataset, cd.result, nullptr, ndata, nullptr, nullptr); } else { for (int idata = 0; idata < ndata; ++idata) { const float idataf = idata; ggml_backend_tensor_set(cd.inputs, &idataf, 0, ggml_nbytes(cd.inputs)); ggml_opt_forward_backward(cd.opt_ctx, cd.result); ggml_backend_tensor_get(loss, loss_history.data() + idata, 0, sizeof(float)); } } { float weights; ggml_backend_tensor_get(cd.weights, &weights, 0, sizeof(float)); const bool subtest_ok = weights == -ndata/2; helper_after_test_forward_backward(__func__, high_level, shuffle, "weights_after_forward_backward", subtest_ok, ntest, npass); } { int64_t ndata; ggml_opt_result_ndata(cd.result, &ndata); bool subtest_ok = ndata == 6; double loss; double loss_unc; ggml_opt_result_loss(cd.result, &loss, &loss_unc); subtest_ok = subtest_ok && loss == 18.0 && (shuffle || loss_unc == 0.0); double accuracy; double accuracy_unc; ggml_opt_result_accuracy(cd.result, &accuracy, &accuracy_unc); subtest_ok = subtest_ok && std::isnan(accuracy) && std::isnan(accuracy_unc); helper_after_test_forward_backward(__func__, high_level, shuffle, "result_after_forward_backward", subtest_ok, ntest, npass); } helper_free_ctx_data(cd); return std::make_pair(npass, ntest); } static std::pair test_epoch_vs_fit(ggml_backend_sched_t backend_sched, ggml_backend_t backend) { int ntest = 0; int npass = 0; float weights_epoch; float weights_fit; { struct helper_ctx_data cd = helper_get_ctx_data(backend_sched, backend, /*init_opt_ctx =*/ true); ggml_opt_dataset_t dataset = cd.dataset_unsupervised; ggml_opt_dataset_shuffle(cd.opt_ctx, dataset, -1); ggml_opt_epoch(cd.opt_ctx, dataset, cd.result, nullptr, ndata, nullptr, nullptr); ggml_backend_tensor_get(cd.weights, &weights_epoch, 0, ggml_nbytes(cd.weights)); helper_free_ctx_data(cd); } { struct helper_ctx_data cd = helper_get_ctx_data(backend_sched, backend, /*init_opt_ctx =*/ false); ggml_opt_dataset_t dataset = cd.dataset_unsupervised; ggml_opt_fit(backend_sched, cd.ctx_compute, cd.inputs, cd.outputs, dataset, GGML_OPT_LOSS_TYPE_SUM, ggml_opt_get_default_optimizer_params, 1, 1, 0.0f, true); ggml_backend_tensor_get(cd.weights, &weights_fit, 0, ggml_nbytes(cd.weights)); helper_free_ctx_data(cd); } const bool subtest_ok = weights_epoch == weights_fit; printf(" %s(): ", __func__); if (subtest_ok) { printf("\033[1;32mOK\033[0m\n"); npass++; } else { printf("\033[1;31mFAIL\033[0m\n"); } ntest++; return std::make_pair(npass, ntest); } static void helper_after_test_idata_split( const char * func, const bool high_level, const int epoch, const std::string subtest, const bool subtest_ok, int & ntest, int & npass) { std::string options = ", epoch="; options += std::to_string(epoch); helper_after_test(func, high_level, options, subtest, subtest_ok, ntest, npass); } static std::pair test_idata_split(ggml_backend_sched_t backend_sched, ggml_backend_t backend, const bool high_level) { int ntest = 0; int npass = 0; struct helper_ctx_data cd = helper_get_ctx_data(backend_sched, backend, /*init_opt_ctx =*/ true, /*optimizer_defaults =*/ false); struct ggml_tensor * loss = ggml_opt_loss(cd.opt_ctx); const int idata_split = ndata * 2/3; std::vector loss_history(ndata); for (int64_t idata = 0; idata < ndata; ++idata) { loss_history[idata] = NAN; } for (int epoch = 1; epoch <= 4; ++epoch) { if (high_level) { ggml_opt_epoch(cd.opt_ctx, cd.dataset_unsupervised, cd.result, cd.result2, idata_split, nullptr, nullptr); } else { int idata = 0; for (; idata < idata_split; ++idata) { const float idataf = idata; ggml_backend_tensor_set(cd.inputs, &idataf, 0, ggml_nbytes(cd.inputs)); ggml_opt_forward_backward(cd.opt_ctx, cd.result); ggml_backend_tensor_get(loss, loss_history.data() + idata, 0, sizeof(float)); } for (; idata < ndata; ++idata) { const float idataf = idata; ggml_backend_tensor_set(cd.inputs, &idataf, 0, ggml_nbytes(cd.inputs)); ggml_opt_forward(cd.opt_ctx, cd.result2); ggml_backend_tensor_get(loss, loss_history.data() + idata, 0, sizeof(float)); } } { float weights; ggml_backend_tensor_get(cd.weights, &weights, 0, sizeof(float)); const bool subtest_ok = weights == ndata/2 - epoch*idata_split; helper_after_test_idata_split(__func__, high_level, epoch, "weights", subtest_ok, ntest, npass); } { int64_t ndata_result; ggml_opt_result_ndata(cd.result, &ndata_result); bool subtest_ok = ndata_result == idata_split; double loss; double loss_unc; ggml_opt_result_loss(cd.result, &loss, &loss_unc); subtest_ok = subtest_ok && loss == 28.0 - epoch*16.0 && loss_unc == 0.0; double accuracy; double accuracy_unc; ggml_opt_result_accuracy(cd.result, &accuracy, &accuracy_unc); subtest_ok = subtest_ok && std::isnan(accuracy) && std::isnan(accuracy_unc); helper_after_test_idata_split(__func__, high_level, epoch, "results_backward", subtest_ok, ntest, npass); } { int64_t ndata_result; ggml_opt_result_ndata(cd.result2, &ndata_result); bool subtest_ok = ndata_result == ndata - idata_split; double loss; double loss_unc; ggml_opt_result_loss(cd.result2, &loss, &loss_unc); subtest_ok = subtest_ok && loss == 15.0 - epoch*8 && almost_equal(loss_unc, sqrt(0.5), 1e-10); double accuracy; double accuracy_unc; ggml_opt_result_accuracy(cd.result2, &accuracy, &accuracy_unc); subtest_ok = subtest_ok && std::isnan(accuracy) && std::isnan(accuracy_unc); helper_after_test_idata_split(__func__, high_level, epoch, "results_forward", subtest_ok, ntest, npass); } ggml_opt_result_reset(cd.result); ggml_opt_result_reset(cd.result2); } helper_free_ctx_data(cd); return std::make_pair(npass, ntest); } static void helper_after_test_gradient_accumulation( const char * func, const int nbatch_physical, const enum ggml_opt_loss_type loss_type, const int epoch, const std::string subtest, const bool subtest_ok, int & ntest, int & npass) { std::string options = ", nbatch_physical="; options += std::to_string(nbatch_physical); options += ", loss_type="; options += loss_type == GGML_OPT_LOSS_TYPE_MEAN ? "mean" : "sum"; options += ", epoch="; options += std::to_string(epoch); helper_after_test(func, false, options, subtest, subtest_ok, ntest, npass); } static std::pair test_gradient_accumulation( ggml_backend_sched_t backend_sched, ggml_backend_t backend, const int32_t nbatch_physical, const enum ggml_opt_loss_type loss_type) { int ntest = 0; int npass = 0; struct helper_ctx_data cd = helper_get_ctx_data( backend_sched, backend, /*init_opt_ctx =*/ true, /*optimizer_defaults =*/ false, /*nbatch_logical =*/ 6, nbatch_physical, loss_type); struct ggml_tensor * loss = ggml_opt_loss(cd.opt_ctx); std::vector grad_history(ndata); for (int64_t idata = 0; idata < ndata; ++idata) { grad_history[idata] = NAN; } for (int epoch = 1; epoch <= 4; ++epoch) { if (nbatch_physical == 1) { for (int idata = 0; idata < ndata; ++idata) { const float idataf = idata; ggml_backend_tensor_set(cd.inputs, &idataf, 0, 1*sizeof(float)); ggml_opt_forward_backward(cd.opt_ctx, cd.result); ggml_backend_tensor_get(ggml_opt_grad_acc(cd.opt_ctx, cd.weights), grad_history.data() + idata, 0, 1*sizeof(float)); } } else if (nbatch_physical == 2) { for (int idata = 0; idata < ndata; idata += 2) { const float idataf[2] = {float(idata + 0), float(idata + 1)}; ggml_backend_tensor_set(cd.inputs, idataf, 0, 2*sizeof(float)); ggml_opt_forward_backward(cd.opt_ctx, cd.result); grad_history[idata + 0] = 0.0f; ggml_backend_tensor_get(ggml_opt_grad_acc(cd.opt_ctx, cd.weights), grad_history.data() + idata + 1, 0, 1*sizeof(float)); } } else { GGML_ASSERT(false); } { GGML_ASSERT(ndata == 6); constexpr double atol = 1e-6; bool subtest_ok = true; if (loss_type == GGML_OPT_LOSS_TYPE_SUM) { if (nbatch_physical == 1) { subtest_ok = subtest_ok && almost_equal(grad_history[0], 1.0, atol); subtest_ok = subtest_ok && almost_equal(grad_history[2], 3.0, atol); subtest_ok = subtest_ok && almost_equal(grad_history[4], 5.0, atol); } else { subtest_ok = subtest_ok && almost_equal(grad_history[0], 0.0, atol); subtest_ok = subtest_ok && almost_equal(grad_history[2], 0.0, atol); subtest_ok = subtest_ok && almost_equal(grad_history[4], 0.0, atol); } subtest_ok = subtest_ok && almost_equal(grad_history[1], 2.0, atol); subtest_ok = subtest_ok && almost_equal(grad_history[3], 4.0, atol); subtest_ok = subtest_ok && almost_equal(grad_history[5], 0.0, atol); } else if (loss_type == GGML_OPT_LOSS_TYPE_MEAN) { if (nbatch_physical == 1) { subtest_ok = subtest_ok && almost_equal(grad_history[0], 1.0/ndata, atol); subtest_ok = subtest_ok && almost_equal(grad_history[2], 3.0/ndata, atol); subtest_ok = subtest_ok && almost_equal(grad_history[4], 5.0/ndata, atol); } else { subtest_ok = subtest_ok && almost_equal(grad_history[0], 0.0/ndata, atol); subtest_ok = subtest_ok && almost_equal(grad_history[2], 0.0/ndata, atol); subtest_ok = subtest_ok && almost_equal(grad_history[4], 0.0/ndata, atol); } subtest_ok = subtest_ok && almost_equal(grad_history[1], 2.0/ndata, atol); subtest_ok = subtest_ok && almost_equal(grad_history[3], 4.0/ndata, atol); subtest_ok = subtest_ok && almost_equal(grad_history[5], 0.0/ndata, atol); } else { GGML_ASSERT(false); } helper_after_test_gradient_accumulation(__func__, nbatch_physical, loss_type, epoch, "grads", subtest_ok, ntest, npass); } { float weights; ggml_backend_tensor_get(cd.weights, &weights, 0, sizeof(float)); const bool subtest_ok = weights == (ndata/2) - epoch; helper_after_test_gradient_accumulation(__func__, nbatch_physical, loss_type, epoch, "weights", subtest_ok, ntest, npass); } { int64_t ndata_result; ggml_opt_result_ndata(cd.result, &ndata_result); bool subtest_ok = ndata_result == ndata/nbatch_physical; double loss; ggml_opt_result_loss(cd.result, &loss, /*loss_unc =*/ nullptr); if (loss_type == GGML_OPT_LOSS_TYPE_SUM) { subtest_ok = subtest_ok && loss == (39.0 - epoch*6.0); } else if (loss_type == GGML_OPT_LOSS_TYPE_MEAN) { subtest_ok = subtest_ok && almost_equal(loss, (39.0 - epoch*6.0) / ndata, 1e-6); } else { GGML_ASSERT(false); } double accuracy; double accuracy_unc; ggml_opt_result_accuracy(cd.result, &accuracy, &accuracy_unc); subtest_ok = subtest_ok && std::isnan(accuracy) && std::isnan(accuracy_unc); helper_after_test_gradient_accumulation(__func__, nbatch_physical, loss_type, epoch, "results", subtest_ok, ntest, npass); } ggml_opt_result_reset(cd.result); } helper_free_ctx_data(cd); return std::make_pair(npass, ntest); } static ggml_opt_optimizer_params helper_get_regression_opt_pars(void * userdata) { ggml_opt_optimizer_params result = ggml_opt_get_default_optimizer_params(userdata); result.adamw.alpha = 0.1f; return result; } static std::pair test_regression(ggml_backend_sched_t backend_sched, ggml_backend_t backend) { int ntest = 0; int npass = 0; // Test for simple regression with f(x) = a*x + b constexpr int64_t ndata_regression = 201; constexpr float a_true = 1.2f; constexpr float b_true = 3.4f; std::mt19937 gen(12345); std::normal_distribution nd{0.0f, 0.1f}; ggml_opt_dataset_t dataset = ggml_opt_dataset_init(1, 1, ndata_regression, ndata_regression); float * data = ggml_get_data_f32(ggml_opt_dataset_data( dataset)); float * labels = ggml_get_data_f32(ggml_opt_dataset_labels(dataset)); constexpr float x_min = -100.0f; constexpr float x_max = 100.0f; for (int64_t idata = 0; idata < ndata_regression; ++idata) { const float x = x_min + (x_max - x_min) * idata/(ndata_regression-1); const float y = a_true*x + b_true + nd(gen); data[idata] = x; labels[idata] = y; } struct ggml_context * ctx_static; struct ggml_context * ctx_compute; { struct ggml_init_params params = { /*.mem_size =*/ 3*ggml_tensor_overhead(), /*.mem_buffer =*/ nullptr, /*.no_alloc =*/ true, }; ctx_static = ggml_init(params); } { struct ggml_init_params params = { /*.mem_size =*/ GGML_DEFAULT_GRAPH_SIZE*ggml_tensor_overhead() + 3*ggml_graph_overhead(), /*.mem_buffer =*/ nullptr, /*.no_alloc =*/ true, }; ctx_compute = ggml_init(params); } // The first dimension is the dimension of the datapoints, the second dimension is the number of datapoints. struct ggml_tensor * x = ggml_new_tensor_2d(ctx_static, GGML_TYPE_F32, 1, ndata_regression); ggml_set_name(x, "x"); struct ggml_tensor * a = ggml_new_tensor_1d(ctx_static, GGML_TYPE_F32, 1); ggml_set_name(a, "a"); ggml_set_param(ctx_static, a); struct ggml_tensor * b = ggml_new_tensor_1d(ctx_static, GGML_TYPE_F32, 1); ggml_set_name(b, "b"); ggml_set_param(ctx_static, b); struct ggml_tensor * f = ggml_add(ctx_compute, ggml_mul(ctx_compute, x, a), b); ggml_set_name(f, "f"); ggml_set_param(ctx_static, f); ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx_static, backend); const float a0 = 1.0f; const float b0 = 3.0f; ggml_backend_tensor_set(a, &a0, 0, sizeof(float)); ggml_backend_tensor_set(b, &b0, 0, sizeof(float)); ggml_opt_fit(backend_sched, ctx_compute, x, f, dataset, GGML_OPT_LOSS_TYPE_MEAN_SQUARED_ERROR, helper_get_regression_opt_pars, 100, ndata_regression, 0.0f, true); { float a_fit; ggml_backend_tensor_get(a, &a_fit, 0, sizeof(float)); float b_fit; ggml_backend_tensor_get(b, &b_fit, 0, sizeof(float)); const bool subtest_ok = almost_equal(a_fit, a_true, 1e-2) && almost_equal(b_fit, b_true, 1e-2); printf(" %s(subtest=weights): ", __func__); if (subtest_ok) { printf("\033[1;32mOK\033[0m\n"); npass++; } else { printf("\033[1;31mFAIL\033[0m\n"); } ntest++; } ggml_backend_buffer_free(buf); ggml_free(ctx_static); ggml_opt_dataset_free(dataset); return std::make_pair(npass, ntest); } static std::pair test_backend(ggml_backend_sched_t backend_sched, ggml_backend_t backend) { int npass = 0; int ntest = 0; for (bool shuffle : {false, true}) { std::pair partial = test_dataset(backend_sched, backend, shuffle); npass += partial.first; ntest += partial.second; } { std::pair partial = test_grad(backend_sched, backend); npass += partial.first; ntest += partial.second; } for (bool high_level : {false, true}){ for (bool shuffle : {false, true}) { if (!high_level && shuffle) { continue; } std::pair partial = test_forward_backward(backend_sched, backend, high_level, shuffle); npass += partial.first; ntest += partial.second; } } { std::pair partial = test_epoch_vs_fit(backend_sched, backend); npass += partial.first; ntest += partial.second; } for (bool high_level : {false, true}){ std::pair partial = test_idata_split(backend_sched, backend, high_level); npass += partial.first; ntest += partial.second; } for (int32_t nbatch_physical : {2, 1}) { for (enum ggml_opt_loss_type loss_type : {GGML_OPT_LOSS_TYPE_SUM, GGML_OPT_LOSS_TYPE_MEAN}) { std::pair partial = test_gradient_accumulation(backend_sched, backend, nbatch_physical, loss_type); npass += partial.first; ntest += partial.second; } } { std::pair partial = test_regression(backend_sched, backend); npass += partial.first; ntest += partial.second; } return std::make_pair(npass, ntest); } int main(void) { const size_t dev_count = ggml_backend_dev_count(); printf("Testing %zu devices\n\n", dev_count); size_t n_ok = 0; std::vector devs; std::vector backends; for (size_t i = 0; i < dev_count; ++i) { devs.push_back(ggml_backend_dev_get(i)); ggml_backend_t backend = ggml_backend_dev_init(devs[i], NULL); GGML_ASSERT(backend != NULL); if (ggml_backend_is_cpu(backend)) { ggml_backend_cpu_set_n_threads(backend, std::thread::hardware_concurrency() / 2); } backends.push_back(backend); } for (size_t i = 0; i < dev_count; ++i) { // Put the backend to be tested in front so that it's prioritized: std::vector backends_modded = {backends[i]}; backends_modded.insert(backends_modded.end(), backends.begin(), backends.end()); ggml_backend_sched_t backend_sched = ggml_backend_sched_new( backends_modded.data(), nullptr, backends_modded.size(), GGML_DEFAULT_GRAPH_SIZE, false); printf("Backend %zu/%zu: %s\n", i + 1, dev_count, ggml_backend_dev_name(devs[i])); printf(" Device description: %s\n", ggml_backend_dev_description(devs[i])); size_t free, total; // NOLINT ggml_backend_dev_memory(devs[i], &free, &total); printf(" Device memory: %zu MB (%zu MB free)\n", total / 1024 / 1024, free / 1024 / 1024); printf("\n"); std::pair result = test_backend(backend_sched, backends[i]); printf(" %d/%d tests passed\n", result.first, result.second); printf(" Backend %s: ", ggml_backend_name(backends[i])); if (result.first == result.second) { printf("\033[1;32mOK\033[0m\n"); n_ok++; } else { printf("\033[1;31mFAIL\033[0m\n"); } printf("\n"); ggml_backend_sched_free(backend_sched); } for (ggml_backend_t backend : backends) { ggml_backend_free(backend); } printf("%zu/%zu backends passed\n", n_ok, dev_count); if (n_ok != dev_count) { printf("\033[1;31mFAIL\033[0m\n"); return 1; } printf("\033[1;32mOK\033[0m\n"); return 0; }