#include "arg.h" #include "common.h" #include "sampling.h" #include "speculative.h" #include "log.h" #include "llama.h" #include #include #include #include int main(int argc, char ** argv) { common_params params; if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SPECULATIVE)) { return 1; } if (params.n_predict < -1) { LOG_ERR("%s: --n-predict must be >= -1\n", __func__); return 1; } common_init(); if (params.speculative.model.empty()) { LOG_ERR("%s: --model-draft is required\n", __func__); return 1; } // init llama.cpp llama_backend_init(); llama_numa_init(params.numa); llama_model * model_tgt = NULL; llama_model * model_dft = NULL; llama_context * ctx_tgt = NULL; llama_context * ctx_dft = NULL; // load the target model common_init_result llama_init_tgt = common_init_from_params(params); model_tgt = llama_init_tgt.model; ctx_tgt = llama_init_tgt.context; // load the draft model params.devices = params.speculative.devices; params.model = params.speculative.model; params.n_ctx = params.speculative.n_ctx; params.n_batch = params.speculative.n_ctx > 0 ? params.speculative.n_ctx : params.n_batch; params.n_gpu_layers = params.speculative.n_gpu_layers; if (params.speculative.cpuparams.n_threads > 0) { params.cpuparams.n_threads = params.speculative.cpuparams.n_threads; } params.cpuparams_batch.n_threads = params.speculative.cpuparams_batch.n_threads; common_init_result llama_init_dft = common_init_from_params(params); model_dft = llama_init_dft.model; ctx_dft = llama_init_dft.context; if (!common_speculative_are_compatible(ctx_tgt, ctx_dft)) { return 1; } // Tokenize the prompt std::vector inp; inp = common_tokenize(ctx_tgt, params.prompt, true, true); if (llama_n_ctx(ctx_tgt) < (uint32_t) inp.size()) { LOG_ERR("%s: the prompt exceeds the context size (%d tokens, ctx %d)\n", __func__, (int) inp.size(), llama_n_ctx(ctx_tgt)); return 1; } if (llama_n_batch(ctx_tgt) < (uint32_t) inp.size()) { LOG_ERR("%s: the prompt exceeds the batch size (%d tokens, batch %d)\n", __func__, (int) inp.size(), llama_n_batch(ctx_tgt)); return 1; } LOG("\n\n"); for (auto id : inp) { LOG("%s", common_token_to_piece(ctx_tgt, id).c_str()); } // how many tokens to draft each time int n_draft = params.speculative.n_max; int n_draft_min = params.speculative.n_min; float p_min = params.speculative.p_min; int n_predict = 0; int n_drafted = 0; int n_accept = 0; // used to determine end of generation bool has_eos = false; // ================================================ // everything until here is standard initialization // the relevant stuff for speculative decoding starts here const auto t_enc_start = ggml_time_us(); // target model sampling context struct common_sampler * smpl = common_sampler_init(model_tgt, params.sampling); // eval the prompt llama_decode(ctx_tgt, llama_batch_get_one(inp.data(), inp.size() - 1)); // note: keep the last token separate! llama_token id_last = inp.back(); // all tokens currently in the target context llama_tokens prompt_tgt(inp.begin(), inp.end() - 1); prompt_tgt.reserve(llama_n_ctx(ctx_tgt)); int n_past = inp.size() - 1; // init the speculator struct common_speculative_params params_spec; params_spec.n_draft = n_draft; params_spec.n_reuse = llama_n_ctx(ctx_dft) - n_draft; params_spec.p_min = p_min; struct common_speculative * spec = common_speculative_init(ctx_dft); llama_batch batch_tgt = llama_batch_init(llama_n_batch(ctx_tgt), 0, 1); const auto t_enc_end = ggml_time_us(); const auto t_dec_start = ggml_time_us(); while (true) { // optionally, generate draft tokens that can be appended to the target batch // // this is the most important part of the speculation. the more probable tokens that are provided here // the better the performance will be. in theory, this computation can be performed asynchronously and even // offloaded to a remote device. it doesn't even have to be based on an LLM. instead, it can provide tokens // from a cache or lookup tables. // llama_tokens draft = common_speculative_gen_draft(spec, params_spec, prompt_tgt, id_last); //LOG_DBG("draft: %s\n", string_from(ctx_dft, draft).c_str()); // always have a token to evaluate from before - id_last common_batch_clear(batch_tgt); common_batch_add (batch_tgt, id_last, n_past++, { 0 }, true); // evaluate the target model on [id_last, draft0, draft1, ..., draftN-1] { // do not waste time on small drafts if (draft.size() < (size_t) n_draft_min) { draft.clear(); } for (size_t i = 0; i < draft.size(); ++i) { common_batch_add(batch_tgt, draft[i], n_past + i, { 0 }, true); } //LOG_DBG("target batch: %s\n", string_from(ctx_tgt, batch_tgt).c_str()); llama_decode(ctx_tgt, batch_tgt); } // sample from the full target batch and return the accepted tokens based on the target sampler // // for each token to be accepted, the sampler would have to sample that same token // in such cases, instead of decoding the sampled token as we normally do, we simply continue with the // available logits from the batch and sample the next token until we run out of logits or the sampler // disagrees with the draft // const auto ids = common_sampler_sample_and_accept_n(smpl, ctx_tgt, draft); //LOG_DBG("ids: %s\n", string_from(ctx_tgt, ids).c_str()); GGML_ASSERT(ids.size() > 0); // there will always be at least one accepted token n_past += ids.size() - 1; n_drafted += draft.size(); // note: we ignore the discarded small drafts n_accept += ids.size() - 1; n_predict += ids.size(); // process the accepted tokens and update contexts // // this is the standard token post-processing that we normally do // in this case, we do it for a group of accepted tokens at once // for (size_t i = 0; i < ids.size(); ++i) { prompt_tgt.push_back(id_last); id_last = ids[i]; if (llama_token_is_eog(model_tgt, id_last)) { has_eos = true; break; } const std::string token_str = common_token_to_piece(ctx_tgt, id_last); if (params.use_color && i + 1 < ids.size()) { LOG("\u001b[%dm%s\u001b[37m", (36 - 0 % 6), token_str.c_str()); } else { LOG("%s", token_str.c_str()); } } LOG_DBG("accepted %d/%d draft tokens, the last target token is: (%d)\n", (int) ids.size() - 1, (int) draft.size(), id_last); { LOG_DBG("clear kv cache from any extra tokens, n_past = %d\n", n_past); llama_kv_cache_seq_rm(ctx_tgt, 0, n_past, -1); } if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) { break; } } auto t_dec_end = ggml_time_us(); const int n_input = inp.size(); LOG("\n\n"); LOG_INF("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f)); LOG_INF("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f)); LOG_INF("\n"); LOG_INF("n_draft = %d\n", n_draft); LOG_INF("n_predict = %d\n", n_predict); LOG_INF("n_drafted = %d\n", n_drafted); LOG_INF("n_accept = %d\n", n_accept); LOG_INF("accept = %.3f%%\n", 100.0f * n_accept / n_drafted); LOG_INF("\n"); LOG_INF("draft:\n\n"); llama_perf_context_print(ctx_dft); LOG_INF("\n"); LOG_INF("target:\n\n"); common_perf_print(ctx_tgt, smpl); common_sampler_free(smpl); common_speculative_free(spec); llama_free(ctx_tgt); llama_free_model(model_tgt); llama_free(ctx_dft); llama_free_model(model_dft); llama_backend_free(); LOG("\n\n"); return 0; }