#include "utils.hpp" #include "arg.h" #include "common.h" #include "json-schema-to-grammar.h" #include "llama.h" #include "log.h" #include "sampling.h" #include "speculative.h" // Change JSON_ASSERT from assert() to GGML_ASSERT: #define JSON_ASSERT GGML_ASSERT #include "json.hpp" // mime type for sending response #define MIMETYPE_JSON "application/json; charset=utf-8" // auto generated files (update with ./deps.sh) #include "index.html.gz.hpp" #include "loading.html.hpp" #include #include #include #include #include #include #include #include #include #include #include using json = nlohmann::ordered_json; enum stop_type { STOP_TYPE_NONE, STOP_TYPE_EOS, STOP_TYPE_WORD, STOP_TYPE_LIMIT, }; // state diagram: https://github.com/ggerganov/llama.cpp/pull/9283 enum slot_state { SLOT_STATE_IDLE, SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future SLOT_STATE_PROCESSING_PROMPT, SLOT_STATE_DONE_PROMPT, SLOT_STATE_GENERATING, }; enum server_state { SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet SERVER_STATE_READY, // Server is ready and model is loaded }; enum server_task_type { SERVER_TASK_TYPE_COMPLETION, SERVER_TASK_TYPE_EMBEDDING, SERVER_TASK_TYPE_RERANK, SERVER_TASK_TYPE_INFILL, SERVER_TASK_TYPE_CANCEL, SERVER_TASK_TYPE_NEXT_RESPONSE, SERVER_TASK_TYPE_METRICS, SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE, SERVER_TASK_TYPE_SET_LORA, }; // https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11 enum error_type { ERROR_TYPE_INVALID_REQUEST, ERROR_TYPE_AUTHENTICATION, ERROR_TYPE_SERVER, ERROR_TYPE_NOT_FOUND, ERROR_TYPE_PERMISSION, ERROR_TYPE_UNAVAILABLE, // custom error ERROR_TYPE_NOT_SUPPORTED, // custom error }; struct slot_params { bool stream = true; bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt bool return_tokens = false; int32_t n_keep = 0; // number of tokens to keep from initial prompt int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half int32_t n_predict = -1; // new tokens to predict int32_t n_indent = 0; // mininum line indentation for the generated text in number of whitespace characters int64_t t_max_prompt_ms = -1; // TODO: implement int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit std::vector antiprompt; bool timings_per_token = false; bool post_sampling_probs = false; bool ignore_eos = false; struct common_params_sampling sampling; struct common_params_speculative speculative; // OAI-compat fields bool verbose = false; bool oaicompat = false; bool oaicompat_chat = true; std::string oaicompat_model; std::string oaicompat_cmpl_id; json to_json() const { std::vector samplers; samplers.reserve(sampling.samplers.size()); for (const auto & sampler : sampling.samplers) { samplers.emplace_back(common_sampler_type_to_str(sampler)); } return json { {"n_predict", n_predict}, // Server configured n_predict {"seed", sampling.seed}, {"temperature", sampling.temp}, {"dynatemp_range", sampling.dynatemp_range}, {"dynatemp_exponent", sampling.dynatemp_exponent}, {"top_k", sampling.top_k}, {"top_p", sampling.top_p}, {"min_p", sampling.min_p}, {"xtc_probability", sampling.xtc_probability}, {"xtc_threshold", sampling.xtc_threshold}, {"typical_p", sampling.typ_p}, {"repeat_last_n", sampling.penalty_last_n}, {"repeat_penalty", sampling.penalty_repeat}, {"presence_penalty", sampling.penalty_present}, {"frequency_penalty", sampling.penalty_freq}, {"dry_multiplier", sampling.dry_multiplier}, {"dry_base", sampling.dry_base}, {"dry_allowed_length", sampling.dry_allowed_length}, {"dry_penalty_last_n", sampling.dry_penalty_last_n}, {"dry_sequence_breakers", sampling.dry_sequence_breakers}, {"mirostat", sampling.mirostat}, {"mirostat_tau", sampling.mirostat_tau}, {"mirostat_eta", sampling.mirostat_eta}, {"stop", antiprompt}, {"max_tokens", n_predict}, // User configured n_predict {"n_keep", n_keep}, {"n_discard", n_discard}, {"ignore_eos", sampling.ignore_eos}, {"stream", stream}, {"logit_bias", format_logit_bias(sampling.logit_bias)}, {"n_probs", sampling.n_probs}, {"min_keep", sampling.min_keep}, {"grammar", sampling.grammar}, {"samplers", samplers}, {"speculative.n_max", speculative.n_max}, {"speculative.n_min", speculative.n_min}, {"speculative.p_min", speculative.p_min}, {"timings_per_token", timings_per_token}, {"post_sampling_probs", post_sampling_probs}, }; } }; struct server_task { int id = -1; // to be filled by server_queue int index = -1; // used when there are multiple prompts (batch request) server_task_type type; // used by SERVER_TASK_TYPE_CANCEL int id_target = -1; // used by SERVER_TASK_TYPE_INFERENCE slot_params params; llama_tokens prompt_tokens; int id_selected_slot = -1; // used by SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE struct slot_action { int slot_id; std::string filename; std::string filepath; }; slot_action slot_action; // used by SERVER_TASK_TYPE_METRICS bool metrics_reset_bucket = false; server_task(server_task_type type) : type(type) {} static slot_params params_from_json_cmpl( const llama_model * model, const llama_context * ctx, const common_params & params_base, const json & data) { slot_params params; // Sampling parameter defaults are loaded from the global server context (but individual requests can still override them) slot_params defaults; defaults.sampling = params_base.sampling; defaults.speculative = params_base.speculative; // enabling this will output extra debug information in the HTTP responses from the server params.verbose = params_base.verbosity > 9; params.timings_per_token = json_value(data, "timings_per_token", false); params.stream = json_value(data, "stream", false); params.cache_prompt = json_value(data, "cache_prompt", true); params.return_tokens = json_value(data, "return_tokens", false); params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict)); params.n_indent = json_value(data, "n_indent", defaults.n_indent); params.n_keep = json_value(data, "n_keep", defaults.n_keep); params.n_discard = json_value(data, "n_discard", defaults.n_discard); //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms); params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k); params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p); params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p); params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability); params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold); params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p); params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp); params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range); params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent); params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n); params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat); params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq); params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present); params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier); params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base); params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length); params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n); params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat); params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau); params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta); params.sampling.seed = json_value(data, "seed", defaults.sampling.seed); params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs); params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep); params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs); params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min); params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max); params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min); params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min); params.speculative.n_min = std::max(params.speculative.n_min, 2); params.speculative.n_max = std::max(params.speculative.n_max, 0); // TODO: add more sanity checks for the input parameters if (params.sampling.penalty_last_n < -1) { throw std::runtime_error("Error: repeat_last_n must be >= -1"); } if (params.sampling.dry_penalty_last_n < -1) { throw std::runtime_error("Error: dry_penalty_last_n must be >= -1"); } if (params.sampling.penalty_last_n == -1) { // note: should be the slot's context and not the full context, but it's ok params.sampling.penalty_last_n = llama_n_ctx(ctx); } if (params.sampling.dry_penalty_last_n == -1) { params.sampling.dry_penalty_last_n = llama_n_ctx(ctx); } if (params.sampling.dry_base < 1.0f) { params.sampling.dry_base = defaults.sampling.dry_base; } // sequence breakers for DRY { // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39 if (data.contains("dry_sequence_breakers")) { params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector()); if (params.sampling.dry_sequence_breakers.empty()) { throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings"); } } } // process "json_schema" and "grammar" if (data.contains("json_schema") && !data.at("json_schema").is_null() && data.contains("grammar") && !data.at("grammar").is_null()) { throw std::runtime_error("Either \"json_schema\" or \"grammar\" can be specified, but not both"); } if (data.contains("json_schema") && !data.contains("grammar")) { try { auto schema = json_value(data, "json_schema", json::object()); params.sampling.grammar = json_schema_to_grammar(schema); } catch (const std::exception & e) { throw std::runtime_error(std::string("\"json_schema\": ") + e.what()); } } else { params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar); } { params.sampling.logit_bias.clear(); params.ignore_eos = json_value(data, "ignore_eos", false); const auto & logit_bias = data.find("logit_bias"); if (logit_bias != data.end() && logit_bias->is_array()) { const int n_vocab = llama_n_vocab(model); for (const auto & el : *logit_bias) { // TODO: we may want to throw errors here, in case "el" is incorrect if (el.is_array() && el.size() == 2) { float bias; if (el[1].is_number()) { bias = el[1].get(); } else if (el[1].is_boolean() && !el[1].get()) { bias = -INFINITY; } else { continue; } if (el[0].is_number_integer()) { llama_token tok = el[0].get(); if (tok >= 0 && tok < n_vocab) { params.sampling.logit_bias.push_back({tok, bias}); } } else if (el[0].is_string()) { auto toks = common_tokenize(model, el[0].get(), false); for (auto tok : toks) { params.sampling.logit_bias.push_back({tok, bias}); } } } } } } { params.antiprompt.clear(); const auto & stop = data.find("stop"); if (stop != data.end() && stop->is_array()) { for (const auto & word : *stop) { if (!word.empty()) { params.antiprompt.push_back(word); } } } } { const auto & samplers = data.find("samplers"); if (samplers != data.end()) { if (samplers->is_array()) { std::vector sampler_names; for (const auto & name : *samplers) { if (name.is_string()) { sampler_names.emplace_back(name); } } params.sampling.samplers = common_sampler_types_from_names(sampler_names, false); } else if (samplers->is_string()){ std::string sampler_string; for (const auto & name : *samplers) { sampler_string += name; } params.sampling.samplers = common_sampler_types_from_chars(sampler_string); } } else { params.sampling.samplers = defaults.sampling.samplers; } } std::string model_name = params_base.model_alias.empty() ? DEFAULT_OAICOMPAT_MODEL : params_base.model_alias; params.oaicompat_model = json_value(data, "model", model_name); return params; } // utility function static std::unordered_set get_list_id(const std::vector & tasks) { std::unordered_set ids(tasks.size()); for (size_t i = 0; i < tasks.size(); i++) { ids.insert(tasks[i].id); } return ids; } }; struct result_timings { int32_t prompt_n = -1; double prompt_ms; double prompt_per_token_ms; double prompt_per_second; int32_t predicted_n = -1; double predicted_ms; double predicted_per_token_ms; double predicted_per_second; json to_json() const { return { {"prompt_n", prompt_n}, {"prompt_ms", prompt_ms}, {"prompt_per_token_ms", prompt_per_token_ms}, {"prompt_per_second", prompt_per_second}, {"predicted_n", predicted_n}, {"predicted_ms", predicted_ms}, {"predicted_per_token_ms", predicted_per_token_ms}, {"predicted_per_second", predicted_per_second}, }; } }; struct server_task_result { int id = -1; int id_slot = -1; virtual bool is_error() { // only used by server_task_result_error return false; } virtual bool is_stop() { // only used by server_task_result_cmpl_* return false; } virtual int get_index() { return -1; } virtual json to_json() = 0; virtual ~server_task_result() = default; }; // using shared_ptr for polymorphism of server_task_result using server_task_result_ptr = std::unique_ptr; inline std::string stop_type_to_str(stop_type type) { switch (type) { case STOP_TYPE_EOS: return "eos"; case STOP_TYPE_WORD: return "word"; case STOP_TYPE_LIMIT: return "limit"; default: return "none"; } } struct completion_token_output { llama_token tok; float prob; std::string text_to_send; struct prob_info { llama_token tok; std::string txt; float prob; }; std::vector probs; json to_json(bool post_sampling_probs) const { json probs_for_token = json::array(); for (const auto & p : probs) { std::string txt(p.txt); txt.resize(validate_utf8(txt)); probs_for_token.push_back(json { {"id", p.tok}, {"token", txt}, {"bytes", str_to_bytes(p.txt)}, { post_sampling_probs ? "prob" : "logprob", post_sampling_probs ? p.prob : logarithm(p.prob) }, }); } return probs_for_token; } static json probs_vector_to_json(const std::vector & probs, bool post_sampling_probs) { json out = json::array(); for (const auto & p : probs) { std::string txt(p.text_to_send); txt.resize(validate_utf8(txt)); out.push_back(json { {"id", p.tok}, {"token", txt}, {"bytes", str_to_bytes(p.text_to_send)}, { post_sampling_probs ? "prob" : "logprob", post_sampling_probs ? p.prob : logarithm(p.prob) }, { post_sampling_probs ? "top_probs" : "top_logprobs", p.to_json(post_sampling_probs) }, }); } return out; } static float logarithm(float x) { // nlohmann::json converts -inf to null, so we need to prevent that return x == 0.0f ? std::numeric_limits::lowest() : std::log(x); } static std::vector str_to_bytes(const std::string & str) { std::vector bytes; for (unsigned char c : str) { bytes.push_back(c); } return bytes; } }; struct server_task_result_cmpl_final : server_task_result { int index = 0; std::string content; llama_tokens tokens; bool stream; result_timings timings; std::string prompt; bool truncated; int32_t n_decoded; int32_t n_prompt_tokens; int32_t n_tokens_cached; bool has_new_line; std::string stopping_word; stop_type stop = STOP_TYPE_NONE; bool post_sampling_probs; std::vector probs_output; slot_params generation_params; // OAI-compat fields bool verbose = false; bool oaicompat = false; bool oaicompat_chat = true; // TODO: support oaicompat for non-chat std::string oaicompat_model; std::string oaicompat_cmpl_id; virtual int get_index() override { return index; } virtual bool is_stop() override { return true; // in stream mode, final responses are considered stop } virtual json to_json() override { return oaicompat ? (stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat()) : to_json_non_oaicompat(); } json to_json_non_oaicompat() { json res = json { {"index", index}, {"content", stream ? "" : content}, // in stream mode, content is already in last partial chunk {"tokens", stream ? llama_tokens {} : tokens}, {"id_slot", id_slot}, {"stop", true}, {"model", oaicompat_model}, {"tokens_predicted", n_decoded}, {"tokens_evaluated", n_prompt_tokens}, {"generation_settings", generation_params.to_json()}, {"prompt", prompt}, {"has_new_line", has_new_line}, {"truncated", truncated}, {"stop_type", stop_type_to_str(stop)}, {"stopping_word", stopping_word}, {"tokens_cached", n_tokens_cached}, {"timings", timings.to_json()}, }; if (!stream && !probs_output.empty()) { res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs); } return res; } json to_json_oaicompat_chat() { std::string finish_reason = "length"; if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) { finish_reason = "stop"; } json choice = json{ {"finish_reason", finish_reason}, {"index", 0}, {"message", json { {"content", content}, {"role", "assistant"} } }}; if (!stream && probs_output.size() > 0) { choice["logprobs"] = json{ {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)}, }; } std::time_t t = std::time(0); json res = json { {"choices", json::array({choice})}, {"created", t}, {"model", oaicompat_model}, {"system_fingerprint", build_info}, {"object", "chat.completion"}, {"usage", json { {"completion_tokens", n_decoded}, {"prompt_tokens", n_prompt_tokens}, {"total_tokens", n_decoded + n_prompt_tokens} }}, {"id", oaicompat_cmpl_id} }; // extra fields for debugging purposes if (verbose) { res["__verbose"] = to_json_non_oaicompat(); } if (timings.prompt_n >= 0) { res.push_back({"timings", timings.to_json()}); } return res; } json to_json_oaicompat_chat_stream() { std::time_t t = std::time(0); std::string finish_reason = "length"; if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) { finish_reason = "stop"; } json choice = json{ {"finish_reason", finish_reason}, {"index", 0}, {"delta", json::object()} }; json ret = json { {"choices", json::array({choice})}, {"created", t}, {"id", oaicompat_cmpl_id}, {"model", oaicompat_model}, {"system_fingerprint", build_info}, {"object", "chat.completion.chunk"}, {"usage", json { {"completion_tokens", n_decoded}, {"prompt_tokens", n_prompt_tokens}, {"total_tokens", n_decoded + n_prompt_tokens}, }}, }; if (timings.prompt_n >= 0) { ret.push_back({"timings", timings.to_json()}); } return ret; } }; struct server_task_result_cmpl_partial : server_task_result { int index = 0; std::string content; llama_tokens tokens; int32_t n_decoded; int32_t n_prompt_tokens; bool post_sampling_probs; completion_token_output prob_output; result_timings timings; // OAI-compat fields bool verbose = false; bool oaicompat = false; bool oaicompat_chat = true; // TODO: support oaicompat for non-chat std::string oaicompat_model; std::string oaicompat_cmpl_id; virtual int get_index() override { return index; } virtual bool is_stop() override { return false; // in stream mode, partial responses are not considered stop } virtual json to_json() override { return oaicompat ? to_json_oaicompat() : to_json_non_oaicompat(); } json to_json_non_oaicompat() { // non-OAI-compat JSON json res = json { {"index", index}, {"content", content}, {"tokens", tokens}, {"stop", false}, {"id_slot", id_slot}, {"tokens_predicted", n_decoded}, {"tokens_evaluated", n_prompt_tokens}, }; // populate the timings object when needed (usually for the last response or with timings_per_token enabled) if (timings.prompt_n > 0) { res.push_back({"timings", timings.to_json()}); } if (!prob_output.probs.empty()) { res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs); } return res; } json to_json_oaicompat() { bool first = n_decoded == 0; std::time_t t = std::time(0); json choices; if (first) { if (content.empty()) { choices = json::array({json{{"finish_reason", nullptr}, {"index", 0}, {"delta", json{{"role", "assistant"}}}}}); } else { // We have to send this as two updates to conform to openai behavior json initial_ret = json{{"choices", json::array({json{ {"finish_reason", nullptr}, {"index", 0}, {"delta", json{ {"role", "assistant"} }}}})}, {"created", t}, {"id", oaicompat_cmpl_id}, {"model", oaicompat_model}, {"object", "chat.completion.chunk"}}; json second_ret = json{ {"choices", json::array({json{{"finish_reason", nullptr}, {"index", 0}, {"delta", json { {"content", content}}} }})}, {"created", t}, {"id", oaicompat_cmpl_id}, {"model", oaicompat_model}, {"object", "chat.completion.chunk"}}; return std::vector({initial_ret, second_ret}); } } else { choices = json::array({json{ {"finish_reason", nullptr}, {"index", 0}, {"delta", json { {"content", content}, }}, }}); } GGML_ASSERT(choices.size() >= 1); if (prob_output.probs.size() > 0) { choices[0]["logprobs"] = json{ {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)}, }; } json ret = json { {"choices", choices}, {"created", t}, {"id", oaicompat_cmpl_id}, {"model", oaicompat_model}, {"system_fingerprint", build_info}, {"object", "chat.completion.chunk"} }; if (timings.prompt_n >= 0) { ret.push_back({"timings", timings.to_json()}); } return std::vector({ret}); } }; struct server_task_result_embd : server_task_result { int index = 0; std::vector> embedding; int32_t n_tokens; // OAI-compat fields bool oaicompat = false; virtual int get_index() override { return index; } virtual json to_json() override { return oaicompat ? to_json_oaicompat() : to_json_non_oaicompat(); } json to_json_non_oaicompat() { return json { {"index", index}, {"embedding", embedding}, }; } json to_json_oaicompat() { return json { {"index", index}, {"embedding", embedding[0]}, {"tokens_evaluated", n_tokens}, }; } }; struct server_task_result_rerank : server_task_result { int index = 0; float score = -1e6; int32_t n_tokens; virtual int get_index() override { return index; } virtual json to_json() override { return json { {"index", index}, {"score", score}, {"tokens_evaluated", n_tokens}, }; } }; // this function maybe used outside of server_task_result_error static json format_error_response(const std::string & message, const enum error_type type) { std::string type_str; int code = 500; switch (type) { case ERROR_TYPE_INVALID_REQUEST: type_str = "invalid_request_error"; code = 400; break; case ERROR_TYPE_AUTHENTICATION: type_str = "authentication_error"; code = 401; break; case ERROR_TYPE_NOT_FOUND: type_str = "not_found_error"; code = 404; break; case ERROR_TYPE_SERVER: type_str = "server_error"; code = 500; break; case ERROR_TYPE_PERMISSION: type_str = "permission_error"; code = 403; break; case ERROR_TYPE_NOT_SUPPORTED: type_str = "not_supported_error"; code = 501; break; case ERROR_TYPE_UNAVAILABLE: type_str = "unavailable_error"; code = 503; break; } return json { {"code", code}, {"message", message}, {"type", type_str}, }; } struct server_task_result_error : server_task_result { int index = 0; error_type err_type = ERROR_TYPE_SERVER; std::string err_msg; virtual bool is_error() override { return true; } virtual json to_json() override { return format_error_response(err_msg, err_type); } }; struct server_task_result_metrics : server_task_result { int n_idle_slots; int n_processing_slots; int n_tasks_deferred; int64_t t_start; int32_t kv_cache_tokens_count; int32_t kv_cache_used_cells; // TODO: somehow reuse server_metrics in the future, instead of duplicating the fields uint64_t n_prompt_tokens_processed_total = 0; uint64_t t_prompt_processing_total = 0; uint64_t n_tokens_predicted_total = 0; uint64_t t_tokens_generation_total = 0; uint64_t n_prompt_tokens_processed = 0; uint64_t t_prompt_processing = 0; uint64_t n_tokens_predicted = 0; uint64_t t_tokens_generation = 0; uint64_t n_decode_total = 0; uint64_t n_busy_slots_total = 0; // while we can also use std::vector this requires copying the slot object which can be quite messy // therefore, we use json to temporarily store the slot.to_json() result json slots_data = json::array(); virtual json to_json() override { return json { { "idle", n_idle_slots }, { "processing", n_processing_slots }, { "deferred", n_tasks_deferred }, { "t_start", t_start }, { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total }, { "t_tokens_generation_total", t_tokens_generation_total }, { "n_tokens_predicted_total", n_tokens_predicted_total }, { "t_prompt_processing_total", t_prompt_processing_total }, { "n_prompt_tokens_processed", n_prompt_tokens_processed }, { "t_prompt_processing", t_prompt_processing }, { "n_tokens_predicted", n_tokens_predicted }, { "t_tokens_generation", t_tokens_generation }, { "n_decode_total", n_decode_total }, { "n_busy_slots_total", n_busy_slots_total }, { "kv_cache_tokens_count", kv_cache_tokens_count }, { "kv_cache_used_cells", kv_cache_used_cells }, { "slots", slots_data }, }; } }; struct server_task_result_slot_save_load : server_task_result { std::string filename; bool is_save; // true = save, false = load size_t n_tokens; size_t n_bytes; double t_ms; virtual json to_json() override { if (is_save) { return json { { "id_slot", id_slot }, { "filename", filename }, { "n_saved", n_tokens }, { "n_written", n_bytes }, { "timings", { { "save_ms", t_ms } }}, }; } else { return json { { "id_slot", id_slot }, { "filename", filename }, { "n_restored", n_tokens }, { "n_read", n_bytes }, { "timings", { { "restore_ms", t_ms } }}, }; } } }; struct server_task_result_slot_erase : server_task_result { size_t n_erased; virtual json to_json() override { return json { { "id_slot", id_slot }, { "n_erased", n_erased }, }; } }; struct server_task_result_apply_lora : server_task_result { virtual json to_json() override { return json {{ "success", true }}; } }; struct server_slot { int id; int id_task = -1; // only used for completion/embedding/infill/rerank server_task_type task_type = SERVER_TASK_TYPE_COMPLETION; llama_batch batch_spec = {}; llama_context * ctx = nullptr; llama_context * ctx_dft = nullptr; common_speculative * spec = nullptr; // the index relative to completion multi-task request size_t index = 0; struct slot_params params; slot_state state = SLOT_STATE_IDLE; // used to determine the slot that has been used the longest int64_t t_last_used = -1; // generation props int32_t n_ctx = 0; // context size per slot int32_t n_past = 0; int32_t n_decoded = 0; int32_t n_remaining = -1; int32_t i_batch = -1; int32_t n_predict = -1; // TODO: disambiguate from params.n_predict // n_prompt_tokens may not be equal to prompt_tokens.size(), because prompt maybe truncated int32_t n_prompt_tokens = 0; int32_t n_prompt_tokens_processed = 0; // input prompt tokens llama_tokens prompt_tokens; size_t last_nl_pos = 0; std::string generated_text; llama_tokens generated_tokens; llama_tokens cache_tokens; std::vector generated_token_probs; bool has_next_token = true; bool has_new_line = false; bool truncated = false; stop_type stop; std::string stopping_word; // sampling json json_schema; struct common_sampler * smpl = nullptr; llama_token sampled; // stats size_t n_sent_text = 0; // number of sent text character int64_t t_start_process_prompt; int64_t t_start_generation; double t_prompt_processing; // ms double t_token_generation; // ms std::function callback_on_release; void reset() { SLT_DBG(*this, "%s", "\n"); n_prompt_tokens = 0; last_nl_pos = 0; generated_text = ""; has_new_line = false; truncated = false; stop = STOP_TYPE_NONE; stopping_word = ""; n_past = 0; n_sent_text = 0; task_type = SERVER_TASK_TYPE_COMPLETION; generated_tokens.clear(); generated_token_probs.clear(); } bool is_non_causal() const { return task_type == SERVER_TASK_TYPE_EMBEDDING || task_type == SERVER_TASK_TYPE_RERANK; } bool has_budget(const common_params & global_params) { if (params.n_predict == -1 && global_params.n_predict == -1) { return true; // limitless } n_remaining = -1; if (params.n_predict != -1) { n_remaining = params.n_predict - n_decoded; } else if (global_params.n_predict != -1) { n_remaining = global_params.n_predict - n_decoded; } return n_remaining > 0; // no budget } bool is_processing() const { return state != SLOT_STATE_IDLE; } bool can_speculate() const { return ctx_dft && params.speculative.n_max > 0 && params.cache_prompt; } void add_token(const completion_token_output & token) { if (!is_processing()) { SLT_WRN(*this, "%s", "slot is not processing\n"); return; } generated_token_probs.push_back(token); } void release() { if (is_processing()) { SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated); t_last_used = ggml_time_us(); t_token_generation = (ggml_time_us() - t_start_generation) / 1e3; state = SLOT_STATE_IDLE; callback_on_release(id); } } result_timings get_timings() const { result_timings timings; timings.prompt_n = n_prompt_tokens_processed; timings.prompt_ms = t_prompt_processing; timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed; timings.prompt_per_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed; timings.predicted_n = n_decoded; timings.predicted_ms = t_token_generation; timings.predicted_per_token_ms = t_token_generation / n_decoded; timings.predicted_per_second = 1e3 / t_token_generation * n_decoded; return timings; } size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) { size_t stop_pos = std::string::npos; for (const std::string & word : params.antiprompt) { size_t pos; if (is_full_stop) { const size_t tmp = word.size() + last_token_size; const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0; pos = text.find(word, from_pos); } else { // otherwise, partial stop pos = find_partial_stop_string(word, text); } if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) { if (is_full_stop) { stop = STOP_TYPE_WORD; stopping_word = word; has_next_token = false; } stop_pos = pos; } } return stop_pos; } void print_timings() const { const double t_prompt = t_prompt_processing / n_prompt_tokens_processed; const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed; const double t_gen = t_token_generation / n_decoded; const double n_gen_second = 1e3 / t_token_generation * n_decoded; SLT_INF(*this, "\n" "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n" " eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n" " total time = %10.2f ms / %5d tokens\n", t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second, t_token_generation, n_decoded, t_gen, n_gen_second, t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded); } json to_json() const { return json { {"id", id}, {"id_task", id_task}, {"n_ctx", n_ctx}, {"speculative", can_speculate()}, {"is_processing", is_processing()}, {"non_causal", is_non_causal()}, {"params", params.to_json()}, {"prompt", common_detokenize(ctx, prompt_tokens)}, {"next_token", { {"has_next_token", has_next_token}, {"has_new_line", has_new_line}, {"n_remain", n_remaining}, {"n_decoded", n_decoded}, {"stopping_word", stopping_word}, } }, }; } }; struct server_metrics { int64_t t_start = 0; uint64_t n_prompt_tokens_processed_total = 0; uint64_t t_prompt_processing_total = 0; uint64_t n_tokens_predicted_total = 0; uint64_t t_tokens_generation_total = 0; uint64_t n_prompt_tokens_processed = 0; uint64_t t_prompt_processing = 0; uint64_t n_tokens_predicted = 0; uint64_t t_tokens_generation = 0; uint64_t n_decode_total = 0; uint64_t n_busy_slots_total = 0; void init() { t_start = ggml_time_us(); } void on_prompt_eval(const server_slot & slot) { n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed; n_prompt_tokens_processed += slot.n_prompt_tokens_processed; t_prompt_processing += slot.t_prompt_processing; t_prompt_processing_total += slot.t_prompt_processing; } void on_prediction(const server_slot & slot) { n_tokens_predicted_total += slot.n_decoded; n_tokens_predicted += slot.n_decoded; t_tokens_generation += slot.t_token_generation; t_tokens_generation_total += slot.t_token_generation; } void on_decoded(const std::vector & slots) { n_decode_total++; for (const auto & slot : slots) { if (slot.is_processing()) { n_busy_slots_total++; } } } void reset_bucket() { n_prompt_tokens_processed = 0; t_prompt_processing = 0; n_tokens_predicted = 0; t_tokens_generation = 0; } }; struct server_queue { int id = 0; bool running; // queues std::deque queue_tasks; std::deque queue_tasks_deferred; std::mutex mutex_tasks; std::condition_variable condition_tasks; // callback functions std::function callback_new_task; std::function callback_update_slots; // Add a new task to the end of the queue int post(server_task task, bool front = false) { std::unique_lock lock(mutex_tasks); GGML_ASSERT(task.id != -1); QUE_DBG("new task, id = %d, front = %d\n", task.id, front); if (front) { queue_tasks.push_front(std::move(task)); } else { queue_tasks.push_back(std::move(task)); } condition_tasks.notify_one(); return task.id; } // multi-task version of post() int post(std::vector & tasks, bool front = false) { std::unique_lock lock(mutex_tasks); for (auto & task : tasks) { if (task.id == -1) { task.id = id++; } QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front); if (front) { queue_tasks.push_front(std::move(task)); } else { queue_tasks.push_back(std::move(task)); } } condition_tasks.notify_one(); return 0; } // Add a new task, but defer until one slot is available void defer(server_task task) { std::unique_lock lock(mutex_tasks); QUE_DBG("defer task, id = %d\n", task.id); queue_tasks_deferred.push_back(std::move(task)); condition_tasks.notify_one(); } // Get the next id for creating a new task int get_new_id() { std::unique_lock lock(mutex_tasks); int new_id = id++; return new_id; } // Register function to process a new task void on_new_task(std::function callback) { callback_new_task = std::move(callback); } // Register the function to be called when all slots data is ready to be processed void on_update_slots(std::function callback) { callback_update_slots = std::move(callback); } // Call when the state of one slot is changed, it will move one task from deferred to main queue void pop_deferred_task() { std::unique_lock lock(mutex_tasks); if (!queue_tasks_deferred.empty()) { queue_tasks.emplace_back(std::move(queue_tasks_deferred.front())); queue_tasks_deferred.pop_front(); } condition_tasks.notify_one(); } // end the start_loop routine void terminate() { std::unique_lock lock(mutex_tasks); running = false; condition_tasks.notify_all(); } /** * Main loop consists of these steps: * - Wait until a new task arrives * - Process the task (i.e. maybe copy data into slot) * - Check if multitask is finished * - Update all slots */ void start_loop() { running = true; while (true) { QUE_DBG("%s", "processing new tasks\n"); while (true) { std::unique_lock lock(mutex_tasks); if (queue_tasks.empty()) { lock.unlock(); break; } server_task task = queue_tasks.front(); queue_tasks.pop_front(); lock.unlock(); QUE_DBG("processing task, id = %d\n", task.id); callback_new_task(std::move(task)); } // all tasks in the current loop is processed, slots data is now ready QUE_DBG("%s", "update slots\n"); callback_update_slots(); QUE_DBG("%s", "waiting for new tasks\n"); { std::unique_lock lock(mutex_tasks); if (queue_tasks.empty()) { if (!running) { QUE_DBG("%s", "terminate\n"); return; } condition_tasks.wait(lock, [&]{ return (!queue_tasks.empty() || !running); }); } } } } }; struct server_response { // for keeping track of all tasks waiting for the result std::unordered_set waiting_task_ids; // the main result queue (using ptr for polymorphism) std::vector queue_results; std::mutex mutex_results; std::condition_variable condition_results; // add the id_task to the list of tasks waiting for response void add_waiting_task_id(int id_task) { SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size()); std::unique_lock lock(mutex_results); waiting_task_ids.insert(id_task); } void add_waiting_tasks(const std::vector & tasks) { std::unique_lock lock(mutex_results); for (const auto & task : tasks) { SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size()); waiting_task_ids.insert(task.id); } } // when the request is finished, we can remove task associated with it void remove_waiting_task_id(int id_task) { SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size()); std::unique_lock lock(mutex_results); waiting_task_ids.erase(id_task); } void remove_waiting_task_ids(const std::unordered_set & id_tasks) { std::unique_lock lock(mutex_results); for (const auto & id_task : id_tasks) { SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size()); waiting_task_ids.erase(id_task); } } // This function blocks the thread until there is a response for one of the id_tasks server_task_result_ptr recv(const std::unordered_set & id_tasks) { while (true) { std::unique_lock lock(mutex_results); condition_results.wait(lock, [&]{ return !queue_results.empty(); }); for (int i = 0; i < (int) queue_results.size(); i++) { if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) { server_task_result_ptr res = std::move(queue_results[i]); queue_results.erase(queue_results.begin() + i); return res; } } } // should never reach here } // single-task version of recv() server_task_result_ptr recv(int id_task) { std::unordered_set id_tasks = {id_task}; return recv(id_tasks); } // Send a new result to a waiting id_task void send(server_task_result_ptr && result) { SRV_DBG("sending result for task id = %d\n", result->id); std::unique_lock lock(mutex_results); for (const auto & id_task : waiting_task_ids) { if (result->id == id_task) { SRV_DBG("task id = %d pushed to result queue\n", result->id); queue_results.emplace_back(std::move(result)); condition_results.notify_all(); return; } } } }; struct server_context { common_params params_base; llama_model * model = nullptr; llama_context * ctx = nullptr; std::vector loras; llama_model * model_dft = nullptr; llama_context_params cparams_dft; llama_batch batch = {}; bool clean_kv_cache = true; bool add_bos_token = true; bool has_eos_token = false; int32_t n_ctx; // total context for all clients / slots // slots / clients std::vector slots; json default_generation_settings_for_props; server_queue queue_tasks; server_response queue_results; server_metrics metrics; // Necessary similarity of prompt for slot selection float slot_prompt_similarity = 0.0f; ~server_context() { if (ctx) { llama_free(ctx); ctx = nullptr; } if (model) { llama_free_model(model); model = nullptr; } if (model_dft) { llama_free_model(model_dft); model_dft = nullptr; } // Clear any sampling context for (server_slot & slot : slots) { common_sampler_free(slot.smpl); slot.smpl = nullptr; llama_free(slot.ctx_dft); slot.ctx_dft = nullptr; common_speculative_free(slot.spec); slot.spec = nullptr; llama_batch_free(slot.batch_spec); } llama_batch_free(batch); } bool load_model(const common_params & params) { SRV_INF("loading model '%s'\n", params.model.c_str()); params_base = params; common_init_result llama_init = common_init_from_params(params_base); model = llama_init.model; ctx = llama_init.context; loras = llama_init.lora_adapters; if (model == nullptr) { SRV_ERR("failed to load model, '%s'\n", params_base.model.c_str()); return false; } n_ctx = llama_n_ctx(ctx); add_bos_token = llama_add_bos_token(model); has_eos_token = llama_token_eos(model) != LLAMA_TOKEN_NULL; if (!params_base.speculative.model.empty()) { SRV_INF("loading draft model '%s'\n", params_base.speculative.model.c_str()); auto params_dft = params_base; params_dft.devices = params_base.speculative.devices; params_dft.model = params_base.speculative.model; params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx; params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers; params_dft.n_parallel = 1; common_init_result llama_init_dft = common_init_from_params(params_dft); model_dft = llama_init_dft.model; if (model_dft == nullptr) { SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.c_str()); return false; } if (!common_speculative_are_compatible(ctx, llama_init_dft.context)) { SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.c_str(), params_base.model.c_str()); llama_free (llama_init_dft.context); llama_free_model(llama_init_dft.model); return false; } const int n_ctx_dft = llama_n_ctx(llama_init_dft.context); cparams_dft = common_context_params_to_llama(params_dft); cparams_dft.n_batch = n_ctx_dft; // force F16 KV cache for the draft model for extra performance cparams_dft.type_k = GGML_TYPE_F16; cparams_dft.type_v = GGML_TYPE_F16; // the context is not needed - we will create one for each slot llama_free(llama_init_dft.context); } return true; } bool validate_model_chat_template() const { std::vector model_template(2048, 0); // longest known template is about 1200 bytes std::string template_key = "tokenizer.chat_template"; int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size()); if (res >= 0) { llama_chat_message chat[] = {{"user", "test"}}; std::string tmpl = std::string(model_template.data(), model_template.size()); int32_t chat_res = llama_chat_apply_template(model, tmpl.c_str(), chat, 1, true, nullptr, 0); return chat_res > 0; } return false; } void init() { const int32_t n_ctx_slot = n_ctx / params_base.n_parallel; SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel); for (int i = 0; i < params_base.n_parallel; i++) { server_slot slot; slot.id = i; slot.ctx = ctx; slot.n_ctx = n_ctx_slot; slot.n_predict = params_base.n_predict; if (model_dft) { slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1); slot.ctx_dft = llama_new_context_with_model(model_dft, cparams_dft); if (slot.ctx_dft == nullptr) { SRV_ERR("%s", "failed to create draft context\n"); return; } slot.spec = common_speculative_init(slot.ctx_dft); if (slot.spec == nullptr) { SRV_ERR("%s", "failed to create speculator\n"); return; } } SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx); slot.params.sampling = params_base.sampling; slot.callback_on_release = [this](int) { queue_tasks.pop_deferred_task(); }; slot.reset(); slots.push_back(slot); } default_generation_settings_for_props = slots[0].to_json(); // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used) { const int32_t n_batch = llama_n_batch(ctx); // only a single seq_id per token is needed batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1); } metrics.init(); } server_slot * get_slot_by_id(int id) { for (server_slot & slot : slots) { if (slot.id == id) { return &slot; } } return nullptr; } server_slot * get_available_slot(const server_task & task) { server_slot * ret = nullptr; // find the slot that has at least n% prompt similarity if (ret == nullptr && slot_prompt_similarity != 0.0f) { int lcs_len = 0; float similarity = 0; for (server_slot & slot : slots) { // skip the slot if it is not available if (slot.is_processing()) { continue; } // skip the slot if it does not contains cached tokens if (slot.cache_tokens.empty()) { continue; } // length of the Longest Common Subsequence between the current slot's prompt and the input prompt int cur_lcs_len = common_lcs(slot.cache_tokens, task.prompt_tokens); // fraction of the common subsequence length compared to the current slot's prompt length float cur_similarity = static_cast(cur_lcs_len) / static_cast(slot.cache_tokens.size()); // select the current slot if the criteria match if (cur_lcs_len > lcs_len && cur_similarity > slot_prompt_similarity) { lcs_len = cur_lcs_len; similarity = cur_similarity; ret = &slot; } } if (ret != nullptr) { SLT_DBG(*ret, "selected slot by lcs similarity, lcs_len = %d, similarity = %f\n", lcs_len, similarity); } } // find the slot that has been least recently used if (ret == nullptr) { int64_t t_last = ggml_time_us(); for (server_slot & slot : slots) { // skip the slot if it is not available if (slot.is_processing()) { continue; } // select the current slot if the criteria match if (slot.t_last_used < t_last) { t_last = slot.t_last_used; ret = &slot; } } if (ret != nullptr) { SLT_DBG(*ret, "selected slot by lru, t_last = %" PRId64 "\n", t_last); } } return ret; } bool launch_slot_with_task(server_slot & slot, const server_task & task) { slot.reset(); slot.id_task = task.id; slot.index = task.index; slot.task_type = task.type; slot.params = std::move(task.params); slot.prompt_tokens = std::move(task.prompt_tokens); SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str()); if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) { // Might be better to reject the request with a 400 ? slot.params.n_predict = slot.n_predict; SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d", slot.n_predict, slot.n_predict); } if (slot.params.ignore_eos && has_eos_token) { slot.params.sampling.logit_bias.push_back({llama_token_eos(model), -INFINITY}); } { if (slot.smpl != nullptr) { common_sampler_free(slot.smpl); } slot.smpl = common_sampler_init(model, slot.params.sampling); if (slot.smpl == nullptr) { // for now, the only error that may happen here is invalid grammar send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST); return false; } } if (slot.ctx_dft) { llama_batch_free(slot.batch_spec); slot.batch_spec = llama_batch_init(slot.params.speculative.n_max + 1, 0, 1); } slot.state = SLOT_STATE_STARTED; SLT_INF(slot, "%s", "processing task\n"); return true; } void kv_cache_clear() { SRV_DBG("%s", "clearing KV cache\n"); // clear the entire KV cache llama_kv_cache_clear(ctx); clean_kv_cache = false; } bool process_token(completion_token_output & result, server_slot & slot) { // remember which tokens were sampled - used for repetition penalties during sampling const std::string token_str = result.text_to_send; slot.sampled = result.tok; slot.generated_text += token_str; if (slot.params.return_tokens) { slot.generated_tokens.push_back(result.tok); } slot.has_next_token = true; // check if there is incomplete UTF-8 character at the end bool incomplete = validate_utf8(slot.generated_text) < slot.generated_text.size(); // search stop word and delete it if (!incomplete) { size_t pos = std::min(slot.n_sent_text, slot.generated_text.size()); const std::string str_test = slot.generated_text.substr(pos); bool send_text = true; size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true); if (stop_pos != std::string::npos) { slot.generated_text.erase( slot.generated_text.begin() + pos + stop_pos, slot.generated_text.end()); pos = std::min(slot.n_sent_text, slot.generated_text.size()); } else if (slot.has_next_token) { stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false); send_text = stop_pos == std::string::npos; } // check if there is any token to predict if (send_text) { // no send the stop word in the response result.text_to_send = slot.generated_text.substr(pos, std::string::npos); slot.n_sent_text += result.text_to_send.size(); // add the token to slot queue and cache } slot.add_token(result); if (slot.params.stream) { send_partial_response(slot, result); } } if (incomplete) { slot.has_next_token = true; } // check the limits if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) { slot.stop = STOP_TYPE_LIMIT; slot.has_next_token = false; SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict); } if (slot.has_new_line) { // if we have already seen a new line, we stop after a certain time limit if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) { slot.stop = STOP_TYPE_LIMIT; slot.has_next_token = false; SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms); } // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent if (slot.params.n_indent > 0) { // check the current indentation // TODO: improve by not doing it more than once for each new line if (slot.last_nl_pos > 0) { size_t pos = slot.last_nl_pos; int n_indent = 0; while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) { n_indent++; pos++; } if (pos < slot.generated_text.size() && n_indent < slot.params.n_indent) { slot.stop = STOP_TYPE_LIMIT; slot.has_next_token = false; // cut the last line slot.generated_text.erase(pos, std::string::npos); SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent); } } // find the next new line { const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos); if (pos != std::string::npos) { slot.last_nl_pos = pos + 1; } } } } // check if there is a new line in the generated text if (result.text_to_send.find('\n') != std::string::npos) { slot.has_new_line = true; } // if context shift is disabled, we stop when it reaches the context limit if (slot.n_past >= slot.n_ctx) { slot.truncated = true; slot.stop = STOP_TYPE_LIMIT; slot.has_next_token = false; SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n", slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx); } if (llama_token_is_eog(model, result.tok)) { slot.stop = STOP_TYPE_EOS; slot.has_next_token = false; SLT_DBG(slot, "%s", "stopped by EOS\n"); } const auto n_ctx_train = llama_n_ctx_train(model); if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) { slot.truncated = true; slot.stop = STOP_TYPE_LIMIT; slot.has_next_token = false; // stop prediction SLT_WRN(slot, "n_predict (%d) is set for infinite generation. " "Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n", slot.params.n_predict, n_ctx_train); } SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str()); return slot.has_next_token; // continue } void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) { size_t n_probs = slot.params.sampling.n_probs; size_t n_vocab = llama_n_vocab(llama_get_model(ctx)); if (post_sampling) { const auto * cur_p = common_sampler_get_candidates(slot.smpl); const size_t max_probs = cur_p->size; // set probability for sampled token for (size_t i = 0; i < max_probs; i++) { if (cur_p->data[i].id == result.tok) { result.prob = cur_p->data[i].p; break; } } // set probability for top n_probs tokens result.probs.reserve(max_probs); for (size_t i = 0; i < std::min(max_probs, n_probs); i++) { result.probs.push_back({ cur_p->data[i].id, common_detokenize(ctx, {cur_p->data[i].id}, special), cur_p->data[i].p }); } } else { // TODO: optimize this with min-p optimization std::vector cur = get_token_probabilities(ctx, idx); // set probability for sampled token for (size_t i = 0; i < n_vocab; i++) { // set probability for sampled token if (cur[i].id == result.tok) { result.prob = cur[i].p; break; } } // set probability for top n_probs tokens result.probs.reserve(n_probs); for (size_t i = 0; i < std::min(n_vocab, n_probs); i++) { result.probs.push_back({ cur[i].id, common_detokenize(ctx, {cur[i].id}, special), cur[i].p }); } } } void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) { send_error(task.id, error, type); } void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) { send_error(slot.id_task, error, type); } void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) { SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str()); auto res = std::make_unique(); res->id = id_task; res->err_type = type; res->err_msg = error; queue_results.send(std::move(res)); } void send_partial_response(server_slot & slot, const completion_token_output & tkn) { auto res = std::make_unique(); res->id = slot.id_task; res->index = slot.index; res->content = tkn.text_to_send; res->tokens = { tkn.tok }; res->n_decoded = slot.n_decoded; res->n_prompt_tokens = slot.n_prompt_tokens; res->post_sampling_probs = slot.params.post_sampling_probs; res->verbose = slot.params.verbose; res->oaicompat = slot.params.oaicompat; res->oaicompat_chat = slot.params.oaicompat_chat; res->oaicompat_model = slot.params.oaicompat_model; res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id; // populate res.probs_output if (slot.params.sampling.n_probs > 0) { res->prob_output = tkn; // copy the token probs } // populate timings if this is final response or timings_per_token is enabled if (slot.stop != STOP_TYPE_NONE || slot.params.timings_per_token) { res->timings = slot.get_timings(); } queue_results.send(std::move(res)); } void send_final_response(server_slot & slot) { auto res = std::make_unique(); res->id = slot.id_task; res->id_slot = slot.id; res->index = slot.index; res->content = slot.generated_text; res->tokens = slot.generated_tokens; res->timings = slot.get_timings(); res->prompt = common_detokenize(ctx, slot.prompt_tokens, true); res->truncated = slot.truncated; res->n_decoded = slot.n_decoded; res->n_prompt_tokens = slot.n_prompt_tokens; res->n_tokens_cached = slot.n_past; res->has_new_line = slot.has_new_line; res->stopping_word = slot.stopping_word; res->stop = slot.stop; res->post_sampling_probs = slot.params.post_sampling_probs; res->verbose = slot.params.verbose; res->stream = slot.params.stream; res->oaicompat = slot.params.oaicompat; res->oaicompat_chat = slot.params.oaicompat_chat; res->oaicompat_model = slot.params.oaicompat_model; res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id; // populate res.probs_output if (slot.params.sampling.n_probs > 0) { if (!slot.params.stream && slot.stop == STOP_TYPE_WORD) { const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false); size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size()); res->probs_output = std::vector( slot.generated_token_probs.begin(), slot.generated_token_probs.end() - safe_offset); } else { res->probs_output = std::vector( slot.generated_token_probs.begin(), slot.generated_token_probs.end()); } } res->generation_params = slot.params; // copy the parameters queue_results.send(std::move(res)); } void send_embedding(const server_slot & slot, const llama_batch & batch) { auto res = std::make_unique(); res->id = slot.id_task; res->index = slot.index; res->n_tokens = slot.n_prompt_tokens; res->oaicompat = slot.params.oaicompat; const int n_embd = llama_n_embd(model); std::vector embd_res(n_embd, 0.0f); for (int i = 0; i < batch.n_tokens; ++i) { if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) { continue; } const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]); if (embd == NULL) { embd = llama_get_embeddings_ith(ctx, i); } if (embd == NULL) { SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]); res->embedding.push_back(std::vector(n_embd, 0.0f)); continue; } // normalize only when there is pooling // TODO: configurable if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) { common_embd_normalize(embd, embd_res.data(), n_embd, 2); res->embedding.push_back(embd_res); } else { res->embedding.push_back({ embd, embd + n_embd }); } } SLT_DBG(slot, "%s", "sending embeddings\n"); queue_results.send(std::move(res)); } void send_rerank(const server_slot & slot, const llama_batch & batch) { auto res = std::make_unique(); res->id = slot.id_task; res->index = slot.index; res->n_tokens = slot.n_prompt_tokens; for (int i = 0; i < batch.n_tokens; ++i) { if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) { continue; } const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]); if (embd == NULL) { embd = llama_get_embeddings_ith(ctx, i); } if (embd == NULL) { SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]); res->score = -1e6; continue; } res->score = embd[0]; } SLT_DBG(slot, "sending rerank result, res.score = %f\n", res->score); queue_results.send(std::move(res)); } // // Functions to create new task(s) and receive result(s) // void cancel_tasks(const std::unordered_set & id_tasks) { std::vector cancel_tasks; cancel_tasks.reserve(id_tasks.size()); for (const auto & id_task : id_tasks) { SRV_WRN("cancel task, id_task = %d\n", id_task); server_task task(SERVER_TASK_TYPE_CANCEL); task.id_target = id_task; cancel_tasks.push_back(task); queue_results.remove_waiting_task_id(id_task); } // push to beginning of the queue, so it has highest priority queue_tasks.post(cancel_tasks, true); } // receive the results from task(s) void receive_multi_results( const std::unordered_set & id_tasks, const std::function&)> & result_handler, const std::function & error_handler) { std::vector results(id_tasks.size()); for (size_t i = 0; i < id_tasks.size(); i++) { server_task_result_ptr result = queue_results.recv(id_tasks); if (result->is_error()) { error_handler(result->to_json()); cancel_tasks(id_tasks); return; } GGML_ASSERT( dynamic_cast(result.get()) != nullptr || dynamic_cast(result.get()) != nullptr || dynamic_cast(result.get()) != nullptr ); const size_t idx = result->get_index(); GGML_ASSERT(idx < results.size() && "index out of range"); results[idx] = std::move(result); } result_handler(results); } // receive the results from task(s), in stream mode void receive_cmpl_results_stream( const std::unordered_set & id_tasks, const std::function & result_handler, const std::function & error_handler) { size_t n_finished = 0; while (true) { server_task_result_ptr result = queue_results.recv(id_tasks); if (result->is_error()) { error_handler(result->to_json()); cancel_tasks(id_tasks); return; } GGML_ASSERT( dynamic_cast(result.get()) != nullptr || dynamic_cast(result.get()) != nullptr ); if (!result_handler(result)) { cancel_tasks(id_tasks); break; } if (result->is_stop()) { if (++n_finished == id_tasks.size()) { break; } } } } // // Functions to process the task // void process_single_task(server_task task) { switch (task.type) { case SERVER_TASK_TYPE_COMPLETION: case SERVER_TASK_TYPE_INFILL: case SERVER_TASK_TYPE_EMBEDDING: case SERVER_TASK_TYPE_RERANK: { const int id_slot = task.id_selected_slot; server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task); if (slot == nullptr) { // if no slot is available, we defer this task for processing later SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id); queue_tasks.defer(task); break; } if (slot->is_processing()) { // if requested slot is unavailable, we defer this task for processing later SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id); queue_tasks.defer(task); break; } if (!launch_slot_with_task(*slot, task)) { SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id); break; } } break; case SERVER_TASK_TYPE_CANCEL: { // release slot linked with the task id for (auto & slot : slots) { if (slot.id_task == task.id_target) { slot.release(); break; } } } break; case SERVER_TASK_TYPE_NEXT_RESPONSE: { // do nothing } break; case SERVER_TASK_TYPE_METRICS: { json slots_data = json::array(); int n_idle_slots = 0; int n_processing_slots = 0; for (server_slot & slot : slots) { json slot_data = slot.to_json(); if (slot.is_processing()) { n_processing_slots++; } else { n_idle_slots++; } slots_data.push_back(slot_data); } SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots); auto res = std::make_unique(); res->id = task.id; res->slots_data = std::move(slots_data); res->n_idle_slots = n_idle_slots; res->n_processing_slots = n_processing_slots; res->n_tasks_deferred = queue_tasks.queue_tasks_deferred.size(); res->t_start = metrics.t_start; res->kv_cache_tokens_count = llama_get_kv_cache_token_count(ctx); res->kv_cache_used_cells = llama_get_kv_cache_used_cells(ctx); res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total; res->t_prompt_processing_total = metrics.t_prompt_processing_total; res->n_tokens_predicted_total = metrics.n_tokens_predicted_total; res->t_tokens_generation_total = metrics.t_tokens_generation_total; res->n_prompt_tokens_processed = metrics.n_prompt_tokens_processed; res->t_prompt_processing = metrics.t_prompt_processing; res->n_tokens_predicted = metrics.n_tokens_predicted; res->t_tokens_generation = metrics.t_tokens_generation; res->n_decode_total = metrics.n_decode_total; res->n_busy_slots_total = metrics.n_busy_slots_total; if (task.metrics_reset_bucket) { metrics.reset_bucket(); } queue_results.send(std::move(res)); } break; case SERVER_TASK_TYPE_SLOT_SAVE: { int id_slot = task.slot_action.slot_id; server_slot * slot = get_slot_by_id(id_slot); if (slot == nullptr) { send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST); break; } if (slot->is_processing()) { // if requested slot is unavailable, we defer this task for processing later SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id); queue_tasks.defer(task); break; } const size_t token_count = slot->cache_tokens.size(); const int64_t t_start = ggml_time_us(); std::string filename = task.slot_action.filename; std::string filepath = task.slot_action.filepath; const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), token_count); const int64_t t_end = ggml_time_us(); const double t_save_ms = (t_end - t_start) / 1000.0; auto res = std::make_unique(); res->id = task.id; res->id_slot = id_slot; res->filename = filename; res->is_save = true; res->n_tokens = token_count; res->n_bytes = nwrite; res->t_ms = t_save_ms; queue_results.send(std::move(res)); } break; case SERVER_TASK_TYPE_SLOT_RESTORE: { int id_slot = task.slot_action.slot_id; server_slot * slot = get_slot_by_id(id_slot); if (slot == nullptr) { send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST); break; } if (slot->is_processing()) { // if requested slot is unavailable, we defer this task for processing later SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id); queue_tasks.defer(task); break; } const int64_t t_start = ggml_time_us(); std::string filename = task.slot_action.filename; std::string filepath = task.slot_action.filepath; slot->cache_tokens.resize(slot->n_ctx); size_t token_count = 0; size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), slot->cache_tokens.size(), &token_count); if (nread == 0) { slot->cache_tokens.resize(0); send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST); break; } slot->cache_tokens.resize(token_count); const int64_t t_end = ggml_time_us(); const double t_restore_ms = (t_end - t_start) / 1000.0; auto res = std::make_unique(); res->id = task.id; res->id_slot = id_slot; res->filename = filename; res->is_save = false; res->n_tokens = token_count; res->n_bytes = nread; res->t_ms = t_restore_ms; queue_results.send(std::move(res)); } break; case SERVER_TASK_TYPE_SLOT_ERASE: { int id_slot = task.slot_action.slot_id; server_slot * slot = get_slot_by_id(id_slot); if (slot == nullptr) { send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST); break; } if (slot->is_processing()) { // if requested slot is unavailable, we defer this task for processing later SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id); queue_tasks.defer(task); break; } // Erase token cache const size_t n_erased = slot->cache_tokens.size(); llama_kv_cache_seq_rm(ctx, slot->id, -1, -1); slot->cache_tokens.clear(); auto res = std::make_unique(); res->id = task.id; res->id_slot = id_slot; res->n_erased = n_erased; queue_results.send(std::move(res)); } break; case SERVER_TASK_TYPE_SET_LORA: { common_lora_adapters_apply(ctx, loras); auto res = std::make_unique(); res->id = task.id; queue_results.send(std::move(res)); } break; } } void update_slots() { // check if all slots are idle { bool all_idle = true; for (auto & slot : slots) { if (slot.is_processing()) { all_idle = false; break; } } if (all_idle) { SRV_INF("%s", "all slots are idle\n"); if (clean_kv_cache) { kv_cache_clear(); } return; } } { SRV_DBG("%s", "posting NEXT_RESPONSE\n"); server_task task(SERVER_TASK_TYPE_NEXT_RESPONSE); task.id = queue_tasks.get_new_id(); queue_tasks.post(task); } // apply context-shift if needed // TODO: simplify and improve for (server_slot & slot : slots) { if (slot.is_processing() && slot.n_past + 1 >= slot.n_ctx) { if (!params_base.ctx_shift) { // this check is redundant (for good) // we should never get here, because generation should already stopped in process_token() slot.release(); send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER); continue; } // Shift context const int n_keep = slot.params.n_keep + add_bos_token; const int n_left = slot.n_past - n_keep; const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2); SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard); llama_kv_cache_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard); llama_kv_cache_seq_add(ctx, slot.id, n_keep + n_discard, slot.n_past, -n_discard); if (slot.params.cache_prompt) { for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) { slot.cache_tokens[i - n_discard] = slot.cache_tokens[i]; } slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard); } slot.n_past -= n_discard; slot.truncated = true; } } // start populating the batch for this iteration common_batch_clear(batch); // frist, add sampled tokens from any ongoing sequences for (auto & slot : slots) { if (slot.state != SLOT_STATE_GENERATING) { continue; } slot.i_batch = batch.n_tokens; common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true); slot.n_past += 1; if (slot.params.cache_prompt) { slot.cache_tokens.push_back(slot.sampled); } SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_cache_tokens = %d, truncated = %d\n", slot.n_ctx, slot.n_past, (int) slot.cache_tokens.size(), slot.truncated); } // process in chunks of params.n_batch int32_t n_batch = llama_n_batch(ctx); int32_t n_ubatch = llama_n_ubatch(ctx); // track if this is an embedding or non-embedding batch // if we've added sampled tokens above, we are in non-embedding mode // -1: none, 0: non-embedding, 1: embedding // TODO: make enum int32_t batch_type = batch.n_tokens > 0 ? 0 : -1; // next, batch any pending prompts without exceeding n_batch if (params_base.cont_batching || batch.n_tokens == 0) { for (auto & slot : slots) { // this slot still has a prompt to be processed if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) { auto & prompt_tokens = slot.prompt_tokens; // TODO: maybe move branch to outside of this loop in the future if (slot.state == SLOT_STATE_STARTED) { slot.t_start_process_prompt = ggml_time_us(); slot.t_start_generation = 0; slot.n_past = 0; slot.n_prompt_tokens = prompt_tokens.size(); slot.state = SLOT_STATE_PROCESSING_PROMPT; SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens); // print prompt tokens (for debugging) if (1) { // first 16 tokens (avoid flooding logs) for (int i = 0; i < std::min(16, prompt_tokens.size()); i++) { SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str()); } } else { // all for (int i = 0; i < (int) prompt_tokens.size(); i++) { SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str()); } } // empty prompt passed -> release the slot and send empty response if (prompt_tokens.empty()) { SLT_WRN(slot, "%s", "empty prompt - releasing slot\n"); slot.release(); slot.print_timings(); send_final_response(slot); continue; } if (slot.is_non_causal()) { if (slot.n_prompt_tokens > n_ubatch) { slot.release(); send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER); continue; } if (slot.n_prompt_tokens > slot.n_ctx) { slot.release(); send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_SERVER); continue; } } else { if (!params_base.ctx_shift) { // if context shift is disabled, we make sure prompt size is smaller than KV size // TODO: there should be a separate parameter that control prompt truncation // context shift should be applied only during the generation phase if (slot.n_prompt_tokens >= slot.n_ctx) { slot.release(); send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST); continue; } } if (slot.params.n_keep < 0) { slot.params.n_keep = slot.n_prompt_tokens; } slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep); // if input prompt is too big, truncate it if (slot.n_prompt_tokens >= slot.n_ctx) { const int n_left = slot.n_ctx - slot.params.n_keep; const int n_block_size = n_left / 2; const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size; llama_tokens new_tokens( prompt_tokens.begin(), prompt_tokens.begin() + slot.params.n_keep); new_tokens.insert( new_tokens.end(), prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size, prompt_tokens.end()); prompt_tokens = std::move(new_tokens); slot.truncated = true; slot.n_prompt_tokens = prompt_tokens.size(); SLT_WRN(slot, "input truncated, n_ctx = %d, n_keep = %d, n_left = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, n_left, slot.n_prompt_tokens); GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx); } if (slot.params.cache_prompt) { // reuse any previously computed tokens that are common with the new prompt slot.n_past = common_lcp(slot.cache_tokens, prompt_tokens); // reuse chunks from the cached prompt by shifting their KV cache in the new position if (params_base.n_cache_reuse > 0) { size_t head_c = slot.n_past; // cache size_t head_p = slot.n_past; // current prompt SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params_base.n_cache_reuse, slot.n_past); while (head_c < slot.cache_tokens.size() && head_p < prompt_tokens.size()) { size_t n_match = 0; while (head_c + n_match < slot.cache_tokens.size() && head_p + n_match < prompt_tokens.size() && slot.cache_tokens[head_c + n_match] == prompt_tokens[head_p + n_match]) { n_match++; } if (n_match >= (size_t) params_base.n_cache_reuse) { SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match); //for (size_t i = head_p; i < head_p + n_match; i++) { // SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str()); //} const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c; llama_kv_cache_seq_rm (ctx, slot.id, head_p, head_c); llama_kv_cache_seq_add(ctx, slot.id, head_c, -1, kv_shift); for (size_t i = 0; i < n_match; i++) { slot.cache_tokens[head_p + i] = slot.cache_tokens[head_c + i]; slot.n_past++; } head_c += n_match; head_p += n_match; } else { head_c += 1; } } SLT_DBG(slot, "after context reuse, new slot.n_past = %d\n", slot.n_past); } } } if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) { // we have to evaluate at least 1 token to generate logits. SLT_WRN(slot, "need to evaluate at least 1 token to generate logits, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens); slot.n_past--; } slot.n_prompt_tokens_processed = 0; } // non-causal tasks require to fit the entire prompt in the physical batch if (slot.is_non_causal()) { // cannot fit the prompt in the current batch - will try next iter if (batch.n_tokens + slot.n_prompt_tokens > n_batch) { continue; } } // check that we are in the right batch_type, if not defer the slot int slot_type = slot.is_non_causal(); if (batch_type == -1) { batch_type = slot_type; } else if (batch_type != slot_type) { continue; } // keep only the common part if (!llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1)) { // could not partially delete (likely using a non-Transformer model) llama_kv_cache_seq_rm(ctx, slot.id, -1, -1); // there is no common part left slot.n_past = 0; } SLT_INF(slot, "kv cache rm [%d, end)\n", slot.n_past); // remove the non-common part from the cache slot.cache_tokens.resize(slot.n_past); // add prompt tokens for processing in the current batch while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) { // without pooling, we want to output the embeddings for all the tokens in the batch const bool need_embd = slot.task_type == SERVER_TASK_TYPE_EMBEDDING && llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE; common_batch_add(batch, prompt_tokens[slot.n_past], slot.n_past, { slot.id }, need_embd); if (slot.params.cache_prompt) { slot.cache_tokens.push_back(prompt_tokens[slot.n_past]); } slot.n_prompt_tokens_processed++; slot.n_past++; } SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens); // entire prompt has been processed if (slot.n_past == slot.n_prompt_tokens) { slot.state = SLOT_STATE_DONE_PROMPT; GGML_ASSERT(batch.n_tokens > 0); common_sampler_reset(slot.smpl); // Process all prompt tokens through sampler system for (int i = 0; i < slot.n_prompt_tokens; ++i) { common_sampler_accept(slot.smpl, prompt_tokens[i], false); } // extract the logits only for the last token batch.logits[batch.n_tokens - 1] = true; slot.n_decoded = 0; slot.i_batch = batch.n_tokens - 1; SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens); } } if (batch.n_tokens >= n_batch) { break; } } } if (batch.n_tokens == 0) { SRV_WRN("%s", "no tokens to decode\n"); return; } SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens); // make sure we're in the right embedding mode llama_set_embeddings(ctx, batch_type == 1); // process the created batch of tokens for (int32_t i = 0; i < batch.n_tokens; i += n_batch) { const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i); llama_batch batch_view = { n_tokens, batch.token + i, nullptr, batch.pos + i, batch.n_seq_id + i, batch.seq_id + i, batch.logits + i, }; const int ret = llama_decode(ctx, batch_view); metrics.on_decoded(slots); if (ret != 0) { if (n_batch == 1 || ret < 0) { // if you get here, it means the KV cache is full - try increasing it via the context size SRV_ERR("failed to decode the batch: KV cache is full - try increasing it via the context size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret); for (auto & slot : slots) { slot.release(); send_error(slot, "Input prompt is too big compared to KV size. Please try increasing KV size."); } break; // break loop of n_batch } // retry with half the batch size to try to find a free slot in the KV cache n_batch /= 2; i -= n_batch; SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret); continue; // continue loop of n_batch } for (auto & slot : slots) { if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) { continue; // continue loop of slots } if (slot.state == SLOT_STATE_DONE_PROMPT) { if (slot.task_type == SERVER_TASK_TYPE_EMBEDDING) { // prompt evaluated for embedding send_embedding(slot, batch_view); slot.release(); slot.i_batch = -1; continue; // continue loop of slots } if (slot.task_type == SERVER_TASK_TYPE_RERANK) { send_rerank(slot, batch_view); slot.release(); slot.i_batch = -1; continue; // continue loop of slots } // prompt evaluated for next-token prediction slot.state = SLOT_STATE_GENERATING; } else if (slot.state != SLOT_STATE_GENERATING) { continue; // continue loop of slots } const int tok_idx = slot.i_batch - i; llama_token id = common_sampler_sample(slot.smpl, ctx, tok_idx); slot.i_batch = -1; common_sampler_accept(slot.smpl, id, true); slot.n_decoded += 1; const int64_t t_current = ggml_time_us(); if (slot.n_decoded == 1) { slot.t_start_generation = t_current; slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3; metrics.on_prompt_eval(slot); } slot.t_token_generation = (t_current - slot.t_start_generation) / 1e3; completion_token_output result; result.tok = id; result.text_to_send = common_token_to_piece(ctx, result.tok, params_base.special); result.prob = 1.0f; // TODO: set it here instead of doing inside populate_token_probs if (slot.params.sampling.n_probs > 0) { populate_token_probs(slot, result, slot.params.post_sampling_probs, params_base.special, tok_idx); } if (!process_token(result, slot)) { // release slot because of stop condition slot.release(); slot.print_timings(); send_final_response(slot); metrics.on_prediction(slot); continue; } } // do speculative decoding for (auto & slot : slots) { if (!slot.is_processing() || !slot.can_speculate()) { continue; } if (slot.state != SLOT_STATE_GENERATING) { continue; } // determine the max draft that fits the current slot state int n_draft_max = slot.params.speculative.n_max; // note: n_past is not yet increased for the `id` token sampled above // also, need to leave space for 1 extra token to allow context shifts n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.n_past - 2); if (slot.n_remaining > 0) { n_draft_max = std::min(n_draft_max, slot.n_remaining - 1); } SLT_DBG(slot, "max possible draft: %d\n", n_draft_max); if (n_draft_max < slot.params.speculative.n_min) { SLT_DBG(slot, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.params.speculative.n_min); continue; } llama_token id = slot.sampled; struct common_speculative_params params_spec; params_spec.n_draft = n_draft_max; params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.params.speculative.n_max; params_spec.p_min = slot.params.speculative.p_min; llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, slot.cache_tokens, id); // ignore small drafts if (slot.params.speculative.n_min > (int) draft.size()) { SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min); continue; } // construct the speculation batch common_batch_clear(slot.batch_spec); common_batch_add (slot.batch_spec, id, slot.n_past, { slot.id }, true); for (size_t i = 0; i < draft.size(); ++i) { common_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true); } SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens); llama_decode(ctx, slot.batch_spec); // the accepted tokens from the speculation const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft); slot.n_past += ids.size(); slot.n_decoded += ids.size(); slot.cache_tokens.push_back(id); slot.cache_tokens.insert(slot.cache_tokens.end(), ids.begin(), ids.end() - 1); llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1); for (size_t i = 0; i < ids.size(); ++i) { completion_token_output result; result.tok = ids[i]; result.text_to_send = common_token_to_piece(ctx, result.tok, params_base.special); result.prob = 1.0f; // set later // TODO: set result.probs if (!process_token(result, slot)) { // release slot because of stop condition slot.release(); slot.print_timings(); send_final_response(slot); metrics.on_prediction(slot); break; } } SLT_DBG(slot, "accepted %d/%d draft tokens, new n_past = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.n_past); } } SRV_DBG("%s", "run slots completed\n"); } json model_meta() const { return json { {"vocab_type", llama_vocab_type (model)}, {"n_vocab", llama_n_vocab (model)}, {"n_ctx_train", llama_n_ctx_train (model)}, {"n_embd", llama_n_embd (model)}, {"n_params", llama_model_n_params(model)}, {"size", llama_model_size (model)}, }; } }; static void log_server_request(const httplib::Request & req, const httplib::Response & res) { // skip GH copilot requests when using default port if (req.path == "/v1/health" || req.path == "/v1/completions") { return; } LOG_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status); LOG_DBG("request: %s\n", req.body.c_str()); LOG_DBG("response: %s\n", res.body.c_str()); } std::function shutdown_handler; std::atomic_flag is_terminating = ATOMIC_FLAG_INIT; inline void signal_handler(int signal) { if (is_terminating.test_and_set()) { // in case it hangs, we can force terminate the server by hitting Ctrl+C twice // this is for better developer experience, we can remove when the server is stable enough fprintf(stderr, "Received second interrupt, terminating immediately.\n"); exit(1); } shutdown_handler(signal); } int main(int argc, char ** argv) { // own arguments required by this example common_params params; if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) { return 1; } common_init(); // struct that contains llama context and inference server_context ctx_server; llama_backend_init(); llama_numa_init(params.numa); LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency()); LOG_INF("\n"); LOG_INF("%s\n", common_params_get_system_info(params).c_str()); LOG_INF("\n"); std::unique_ptr svr; #ifdef CPPHTTPLIB_OPENSSL_SUPPORT if (params.ssl_file_key != "" && params.ssl_file_cert != "") { LOG_INF("Running with SSL: key = %s, cert = %s\n", params.ssl_file_key.c_str(), params.ssl_file_cert.c_str()); svr.reset( new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str()) ); } else { LOG_INF("Running without SSL\n"); svr.reset(new httplib::Server()); } #else if (params.ssl_file_key != "" && params.ssl_file_cert != "") { LOG_ERR("Server is built without SSL support\n"); return 1; } svr.reset(new httplib::Server()); #endif std::atomic state{SERVER_STATE_LOADING_MODEL}; svr->set_default_headers({{"Server", "llama.cpp"}}); svr->set_logger(log_server_request); auto res_error = [](httplib::Response & res, const json & error_data) { json final_response {{"error", error_data}}; res.set_content(safe_json_to_str(final_response), MIMETYPE_JSON); res.status = json_value(error_data, "code", 500); }; auto res_ok = [](httplib::Response & res, const json & data) { res.set_content(safe_json_to_str(data), MIMETYPE_JSON); res.status = 200; }; svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, const std::exception_ptr & ep) { std::string message; try { std::rethrow_exception(ep); } catch (const std::exception & e) { message = e.what(); } catch (...) { message = "Unknown Exception"; } json formatted_error = format_error_response(message, ERROR_TYPE_SERVER); LOG_WRN("got exception: %s\n", formatted_error.dump().c_str()); res_error(res, formatted_error); }); svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) { if (res.status == 404) { res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND)); } // for other error codes, we skip processing here because it's already done by res_error() }); // set timeouts and change hostname and port svr->set_read_timeout (params.timeout_read); svr->set_write_timeout(params.timeout_write); std::unordered_map log_data; log_data["hostname"] = params.hostname; log_data["port"] = std::to_string(params.port); if (params.api_keys.size() == 1) { auto key = params.api_keys[0]; log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0)); } else if (params.api_keys.size() > 1) { log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded"; } // Necessary similarity of prompt for slot selection ctx_server.slot_prompt_similarity = params.slot_prompt_similarity; // // Middlewares // auto middleware_validate_api_key = [¶ms, &res_error](const httplib::Request & req, httplib::Response & res) { static const std::unordered_set public_endpoints = { "/health", "/models", "/v1/models", }; // If API key is not set, skip validation if (params.api_keys.empty()) { return true; } // If path is public or is static file, skip validation if (public_endpoints.find(req.path) != public_endpoints.end() || req.path == "/") { return true; } // Check for API key in the header auto auth_header = req.get_header_value("Authorization"); std::string prefix = "Bearer "; if (auth_header.substr(0, prefix.size()) == prefix) { std::string received_api_key = auth_header.substr(prefix.size()); if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) { return true; // API key is valid } } // API key is invalid or not provided res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION)); LOG_WRN("Unauthorized: Invalid API Key\n"); return false; }; auto middleware_server_state = [&res_error, &state](const httplib::Request & req, httplib::Response & res) { server_state current_state = state.load(); if (current_state == SERVER_STATE_LOADING_MODEL) { auto tmp = string_split(req.path, '.'); if (req.path == "/" || tmp.back() == "html") { res.set_content(reinterpret_cast(loading_html), loading_html_len, "text/html; charset=utf-8"); res.status = 503; } else { res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE)); } return false; } return true; }; // register server middlewares svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) { res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); // If this is OPTIONS request, skip validation because browsers don't include Authorization header if (req.method == "OPTIONS") { res.set_header("Access-Control-Allow-Credentials", "true"); res.set_header("Access-Control-Allow-Methods", "GET, POST"); res.set_header("Access-Control-Allow-Headers", "*"); res.set_content("", "text/html"); // blank response, no data return httplib::Server::HandlerResponse::Handled; // skip further processing } if (!middleware_server_state(req, res)) { return httplib::Server::HandlerResponse::Handled; } if (!middleware_validate_api_key(req, res)) { return httplib::Server::HandlerResponse::Handled; } return httplib::Server::HandlerResponse::Unhandled; }); // // Route handlers (or controllers) // const auto handle_health = [&](const httplib::Request &, httplib::Response & res) { // error and loading states are handled by middleware json health = {{"status", "ok"}}; res_ok(res, health); }; const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) { if (!params.endpoint_slots) { res_error(res, format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED)); return; } // request slots data using task queue server_task task(SERVER_TASK_TYPE_METRICS); task.id = ctx_server.queue_tasks.get_new_id(); ctx_server.queue_results.add_waiting_task_id(task.id); ctx_server.queue_tasks.post(task, true); // high-priority task // get the result server_task_result_ptr result = ctx_server.queue_results.recv(task.id); ctx_server.queue_results.remove_waiting_task_id(task.id); if (result->is_error()) { res_error(res, result->to_json()); return; } // TODO: get rid of this dynamic_cast auto res_metrics = dynamic_cast(result.get()); GGML_ASSERT(res_metrics != nullptr); // optionally return "fail_on_no_slot" error if (req.has_param("fail_on_no_slot")) { if (res_metrics->n_idle_slots == 0) { res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE)); return; } } res_ok(res, res_metrics->slots_data); }; const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) { if (!params.endpoint_metrics) { res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED)); return; } // request slots data using task queue server_task task(SERVER_TASK_TYPE_METRICS); task.id = ctx_server.queue_tasks.get_new_id(); task.metrics_reset_bucket = true; ctx_server.queue_results.add_waiting_task_id(task.id); ctx_server.queue_tasks.post(task, true); // high-priority task // get the result server_task_result_ptr result = ctx_server.queue_results.recv(task.id); ctx_server.queue_results.remove_waiting_task_id(task.id); if (result->is_error()) { res_error(res, result->to_json()); return; } // TODO: get rid of this dynamic_cast auto res_metrics = dynamic_cast(result.get()); GGML_ASSERT(res_metrics != nullptr); // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names json all_metrics_def = json { {"counter", {{ {"name", "prompt_tokens_total"}, {"help", "Number of prompt tokens processed."}, {"value", (uint64_t) res_metrics->n_prompt_tokens_processed_total} }, { {"name", "prompt_seconds_total"}, {"help", "Prompt process time"}, {"value", (uint64_t) res_metrics->t_prompt_processing_total / 1.e3} }, { {"name", "tokens_predicted_total"}, {"help", "Number of generation tokens processed."}, {"value", (uint64_t) res_metrics->n_tokens_predicted_total} }, { {"name", "tokens_predicted_seconds_total"}, {"help", "Predict process time"}, {"value", (uint64_t) res_metrics->t_tokens_generation_total / 1.e3} }, { {"name", "n_decode_total"}, {"help", "Total number of llama_decode() calls"}, {"value", res_metrics->n_decode_total} }, { {"name", "n_busy_slots_per_decode"}, {"help", "Average number of busy slots per llama_decode() call"}, {"value", (float) res_metrics->n_busy_slots_total / (float) res_metrics->n_decode_total} }}}, {"gauge", {{ {"name", "prompt_tokens_seconds"}, {"help", "Average prompt throughput in tokens/s."}, {"value", res_metrics->n_prompt_tokens_processed ? 1.e3 / res_metrics->t_prompt_processing * res_metrics->n_prompt_tokens_processed : 0.} },{ {"name", "predicted_tokens_seconds"}, {"help", "Average generation throughput in tokens/s."}, {"value", res_metrics->n_tokens_predicted ? 1.e3 / res_metrics->t_tokens_generation * res_metrics->n_tokens_predicted : 0.} },{ {"name", "kv_cache_usage_ratio"}, {"help", "KV-cache usage. 1 means 100 percent usage."}, {"value", 1. * res_metrics->kv_cache_used_cells / params.n_ctx} },{ {"name", "kv_cache_tokens"}, {"help", "KV-cache tokens."}, {"value", (uint64_t) res_metrics->kv_cache_tokens_count} },{ {"name", "requests_processing"}, {"help", "Number of request processing."}, {"value", (uint64_t) res_metrics->n_processing_slots} },{ {"name", "requests_deferred"}, {"help", "Number of request deferred."}, {"value", (uint64_t) res_metrics->n_tasks_deferred} }}} }; std::stringstream prometheus; for (const auto & el : all_metrics_def.items()) { const auto & type = el.key(); const auto & metrics_def = el.value(); for (const auto & metric_def : metrics_def) { const std::string name = metric_def.at("name"); const std::string help = metric_def.at("help"); auto value = json_value(metric_def, "value", 0.); prometheus << "# HELP llamacpp:" << name << " " << help << "\n" << "# TYPE llamacpp:" << name << " " << type << "\n" << "llamacpp:" << name << " " << value << "\n"; } } res.set_header("Process-Start-Time-Unix", std::to_string(res_metrics->t_start)); res.set_content(prometheus.str(), "text/plain; version=0.0.4"); res.status = 200; // HTTP OK }; const auto handle_slots_save = [&ctx_server, &res_error, &res_ok, ¶ms](const httplib::Request & req, httplib::Response & res, int id_slot) { json request_data = json::parse(req.body); std::string filename = request_data.at("filename"); if (!fs_validate_filename(filename)) { res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST)); return; } std::string filepath = params.slot_save_path + filename; server_task task(SERVER_TASK_TYPE_SLOT_SAVE); task.id = ctx_server.queue_tasks.get_new_id(); task.slot_action.slot_id = id_slot; task.slot_action.filename = filename; task.slot_action.filepath = filepath; ctx_server.queue_results.add_waiting_task_id(task.id); ctx_server.queue_tasks.post(task); server_task_result_ptr result = ctx_server.queue_results.recv(task.id); ctx_server.queue_results.remove_waiting_task_id(task.id); if (result->is_error()) { res_error(res, result->to_json()); return; } res_ok(res, result->to_json()); }; const auto handle_slots_restore = [&ctx_server, &res_error, &res_ok, ¶ms](const httplib::Request & req, httplib::Response & res, int id_slot) { json request_data = json::parse(req.body); std::string filename = request_data.at("filename"); if (!fs_validate_filename(filename)) { res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST)); return; } std::string filepath = params.slot_save_path + filename; server_task task(SERVER_TASK_TYPE_SLOT_RESTORE); task.id = ctx_server.queue_tasks.get_new_id(); task.slot_action.slot_id = id_slot; task.slot_action.filename = filename; task.slot_action.filepath = filepath; ctx_server.queue_results.add_waiting_task_id(task.id); ctx_server.queue_tasks.post(task); server_task_result_ptr result = ctx_server.queue_results.recv(task.id); ctx_server.queue_results.remove_waiting_task_id(task.id); if (result->is_error()) { res_error(res, result->to_json()); return; } GGML_ASSERT(dynamic_cast(result.get()) != nullptr); res_ok(res, result->to_json()); }; const auto handle_slots_erase = [&ctx_server, &res_error, &res_ok](const httplib::Request & /* req */, httplib::Response & res, int id_slot) { server_task task(SERVER_TASK_TYPE_SLOT_ERASE); task.id = ctx_server.queue_tasks.get_new_id(); task.slot_action.slot_id = id_slot; ctx_server.queue_results.add_waiting_task_id(task.id); ctx_server.queue_tasks.post(task); server_task_result_ptr result = ctx_server.queue_results.recv(task.id); ctx_server.queue_results.remove_waiting_task_id(task.id); if (result->is_error()) { res_error(res, result->to_json()); return; } GGML_ASSERT(dynamic_cast(result.get()) != nullptr); res_ok(res, result->to_json()); }; const auto handle_slots_action = [¶ms, &res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) { if (params.slot_save_path.empty()) { res_error(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED)); return; } std::string id_slot_str = req.path_params.at("id_slot"); int id_slot; try { id_slot = std::stoi(id_slot_str); } catch (const std::exception &) { res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST)); return; } std::string action = req.get_param_value("action"); if (action == "save") { handle_slots_save(req, res, id_slot); } else if (action == "restore") { handle_slots_restore(req, res, id_slot); } else if (action == "erase") { handle_slots_erase(req, res, id_slot); } else { res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST)); } }; const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) { // this endpoint is publicly available, please only return what is safe to be exposed json data = { { "default_generation_settings", ctx_server.default_generation_settings_for_props }, { "total_slots", ctx_server.params_base.n_parallel }, { "model_path", ctx_server.params_base.model }, { "chat_template", llama_get_chat_template(ctx_server.model) }, { "build_info", build_info }, }; res_ok(res, data); }; const auto handle_props_change = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) { if (!ctx_server.params_base.endpoint_props) { res_error(res, format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED)); return; } json data = json::parse(req.body); // update any props here res_ok(res, {{ "success", true }}); }; // handle completion-like requests (completion, chat, infill) // we can optionally provide a custom format for partial results and final results const auto handle_completions_generic = [&ctx_server, &res_error, &res_ok]( server_task_type type, json & data, httplib::Response & res, bool oaicompat = false, bool oaicompat_chat = false) { GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL); if (ctx_server.params_base.embedding) { res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED)); return; } auto completion_id = gen_chatcmplid(); std::vector tasks; try { std::vector tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, data.at("prompt"), true, true); tasks.reserve(tokenized_prompts.size()); for (size_t i = 0; i < tokenized_prompts.size(); i++) { server_task task = server_task(type); task.id = ctx_server.queue_tasks.get_new_id(); task.index = i; task.prompt_tokens = std::move(tokenized_prompts[i]); task.params = server_task::params_from_json_cmpl(ctx_server.model, ctx_server.ctx, ctx_server.params_base, data); task.id_selected_slot = json_value(data, "id_slot", -1); // OAI-compat task.params.oaicompat = oaicompat; task.params.oaicompat_chat = oaicompat_chat; task.params.oaicompat_cmpl_id = completion_id; // oaicompat_model is already populated by params_from_json_cmpl tasks.push_back(task); } } catch (const std::exception & e) { res_error(res, format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST)); return; } ctx_server.queue_results.add_waiting_tasks(tasks); ctx_server.queue_tasks.post(tasks); bool stream = json_value(data, "stream", false); const auto task_ids = server_task::get_list_id(tasks); if (!stream) { ctx_server.receive_multi_results(task_ids, [&](std::vector & results) { if (results.size() == 1) { // single result res_ok(res, results[0]->to_json()); } else { // multiple results (multitask) json arr = json::array(); for (auto & res : results) { arr.push_back(res->to_json()); } res_ok(res, arr); } }, [&](const json & error_data) { res_error(res, error_data); }); ctx_server.queue_results.remove_waiting_task_ids(task_ids); } else { const auto chunked_content_provider = [task_ids, &ctx_server, oaicompat](size_t, httplib::DataSink & sink) { ctx_server.receive_cmpl_results_stream(task_ids, [&](server_task_result_ptr & result) -> bool { json res_json = result->to_json(); if (res_json.is_array()) { for (const auto & res : res_json) { if (!server_sent_event(sink, "data", res)) { return false; } } return true; } else { return server_sent_event(sink, "data", res_json); } }, [&](const json & error_data) { server_sent_event(sink, "error", error_data); }); if (oaicompat) { static const std::string ev_done = "data: [DONE]\n\n"; sink.write(ev_done.data(), ev_done.size()); } sink.done(); return false; }; auto on_complete = [task_ids, &ctx_server] (bool) { ctx_server.queue_results.remove_waiting_task_ids(task_ids); }; res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete); } }; const auto handle_completions = [&handle_completions_generic](const httplib::Request & req, httplib::Response & res) { json data = json::parse(req.body); return handle_completions_generic( SERVER_TASK_TYPE_COMPLETION, data, res, /* oaicompat */ false, /* oaicompat_chat */ false); }; const auto handle_infill = [&ctx_server, &res_error, &handle_completions_generic](const httplib::Request & req, httplib::Response & res) { // check model compatibility std::string err; if (llama_token_fim_pre(ctx_server.model) == LLAMA_TOKEN_NULL) { err += "prefix token is missing. "; } if (llama_token_fim_suf(ctx_server.model) == LLAMA_TOKEN_NULL) { err += "suffix token is missing. "; } if (llama_token_fim_mid(ctx_server.model) == LLAMA_TOKEN_NULL) { err += "middle token is missing. "; } if (!err.empty()) { res_error(res, format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED)); return; } json data = json::parse(req.body); // validate input if (data.contains("prompt") && !data.at("prompt").is_string()) { // prompt is optional res_error(res, format_error_response("\"prompt\" must be a string", ERROR_TYPE_INVALID_REQUEST)); } if (!data.contains("input_prefix")) { res_error(res, format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST)); } if (!data.contains("input_suffix")) { res_error(res, format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST)); } if (data.contains("input_extra") && !data.at("input_extra").is_array()) { // input_extra is optional res_error(res, format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST)); return; } json input_extra = json_value(data, "input_extra", json::array()); for (const auto & chunk : input_extra) { // { "text": string, "filename": string } if (!chunk.contains("text") || !chunk.at("text").is_string()) { res_error(res, format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST)); return; } // filename is optional if (chunk.contains("filename") && !chunk.at("filename").is_string()) { res_error(res, format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST)); return; } } data["input_extra"] = input_extra; // default to empty array if it's not exist std::string prompt = json_value(data, "prompt", std::string()); std::vector tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, prompt, true, true); SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size()); data["prompt"] = format_infill( ctx_server.ctx, data.at("input_prefix"), data.at("input_suffix"), data.at("input_extra"), ctx_server.params_base.n_batch, ctx_server.params_base.n_predict, ctx_server.slots[0].n_ctx, // TODO: there should be a better way ctx_server.params_base.spm_infill, tokenized_prompts[0] ); return handle_completions_generic(SERVER_TASK_TYPE_INFILL, data, res); }; const auto handle_chat_completions = [&ctx_server, ¶ms, &res_error, &handle_completions_generic](const httplib::Request & req, httplib::Response & res) { if (ctx_server.params_base.embedding) { res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED)); return; } json data = oaicompat_completion_params_parse(ctx_server.model, json::parse(req.body), params.chat_template); return handle_completions_generic( SERVER_TASK_TYPE_COMPLETION, data, res, /* oaicompat */ true, /* oaicompat_chat */ true); }; const auto handle_models = [¶ms, &ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) { json models = { {"object", "list"}, {"data", { { {"id", params.model_alias}, {"object", "model"}, {"created", std::time(0)}, {"owned_by", "llamacpp"}, {"meta", ctx_server.model_meta()} }, }} }; res_ok(res, models); }; const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) { const json body = json::parse(req.body); json tokens_response = json::array(); if (body.count("content") != 0) { const bool add_special = json_value(body, "add_special", false); const bool with_pieces = json_value(body, "with_pieces", false); llama_tokens tokens = tokenize_mixed(ctx_server.ctx, body.at("content"), add_special, true); if (with_pieces) { for (const auto& token : tokens) { std::string piece = common_token_to_piece(ctx_server.ctx, token); json piece_json; // Check if the piece is valid UTF-8 if (is_valid_utf8(piece)) { piece_json = piece; } else { // If not valid UTF-8, store as array of byte values piece_json = json::array(); for (unsigned char c : piece) { piece_json.push_back(static_cast(c)); } } tokens_response.push_back({ {"id", token}, {"piece", piece_json} }); } } else { tokens_response = tokens; } } const json data = format_tokenizer_response(tokens_response); res_ok(res, data); }; const auto handle_detokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) { const json body = json::parse(req.body); std::string content; if (body.count("tokens") != 0) { const llama_tokens tokens = body.at("tokens"); content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend()); } const json data = format_detokenized_response(content); res_ok(res, data); }; const auto handle_embeddings_impl = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res, bool oaicompat) { const json body = json::parse(req.body); if (oaicompat && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) { res_error(res, format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST)); return; } // for the shape of input/content, see tokenize_input_prompts() json prompt; if (body.count("input") != 0) { prompt = body.at("input"); } else if (body.contains("content")) { oaicompat = false; prompt = body.at("content"); } else { res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST)); return; } std::vector tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, prompt, true, true); for (const auto & tokens : tokenized_prompts) { // this check is necessary for models that do not add BOS token to the input if (tokens.empty()) { res_error(res, format_error_response("Input content cannot be empty", ERROR_TYPE_INVALID_REQUEST)); return; } } // create and queue the task json responses = json::array(); bool error = false; { std::vector tasks; for (size_t i = 0; i < tokenized_prompts.size(); i++) { server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING); task.id = ctx_server.queue_tasks.get_new_id(); task.index = i; task.prompt_tokens = std::move(tokenized_prompts[i]); // OAI-compat task.params.oaicompat = oaicompat; tasks.push_back(task); } ctx_server.queue_results.add_waiting_tasks(tasks); ctx_server.queue_tasks.post(tasks); // get the result std::unordered_set task_ids = server_task::get_list_id(tasks); ctx_server.receive_multi_results(task_ids, [&](std::vector & results) { for (auto & res : results) { GGML_ASSERT(dynamic_cast(res.get()) != nullptr); responses.push_back(res->to_json()); } }, [&](const json & error_data) { res_error(res, error_data); error = true; }); ctx_server.queue_results.remove_waiting_task_ids(task_ids); } if (error) { return; } // write JSON response json root = oaicompat ? format_embeddings_response_oaicompat(body, responses) : json(responses); res_ok(res, root); }; const auto handle_embeddings = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) { handle_embeddings_impl(req, res, false); }; const auto handle_embeddings_oai = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) { handle_embeddings_impl(req, res, true); }; const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) { if (!ctx_server.params_base.reranking || ctx_server.params_base.embedding) { res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking` and without `--embedding`", ERROR_TYPE_NOT_SUPPORTED)); return; } const json body = json::parse(req.body); // TODO: implement //int top_n = 1; //if (body.count("top_n") != 1) { // top_n = body.at("top_n"); //} else { // res_error(res, format_error_response("\"top_n\" must be provided", ERROR_TYPE_INVALID_REQUEST)); // return; //} json query; if (body.count("query") == 1) { query = body.at("query"); if (!query.is_string()) { res_error(res, format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST)); return; } } else { res_error(res, format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST)); return; } std::vector documents = json_value(body, "documents", std::vector()); if (documents.empty()) { res_error(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST)); return; } llama_tokens tokenized_query = tokenize_input_prompts(ctx_server.ctx, query, /* add_special */ false, true)[0]; // create and queue the task json responses = json::array(); bool error = false; { std::vector tasks; std::vector tokenized_docs = tokenize_input_prompts(ctx_server.ctx, documents, /* add_special */ false, true); tasks.reserve(tokenized_docs.size()); for (size_t i = 0; i < tokenized_docs.size(); i++) { server_task task = server_task(SERVER_TASK_TYPE_RERANK); task.id = ctx_server.queue_tasks.get_new_id(); task.index = i; task.prompt_tokens = format_rerank(ctx_server.model, tokenized_query, tokenized_docs[i]); tasks.push_back(task); } ctx_server.queue_results.add_waiting_tasks(tasks); ctx_server.queue_tasks.post(tasks); // get the result std::unordered_set task_ids = server_task::get_list_id(tasks); ctx_server.receive_multi_results(task_ids, [&](std::vector & results) { for (auto & res : results) { GGML_ASSERT(dynamic_cast(res.get()) != nullptr); responses.push_back(res->to_json()); } }, [&](const json & error_data) { res_error(res, error_data); error = true; }); } if (error) { return; } // write JSON response json root = format_response_rerank(body, responses); res_ok(res, root); }; const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) { json result = json::array(); for (size_t i = 0; i < ctx_server.loras.size(); ++i) { auto & lora = ctx_server.loras[i]; result.push_back({ {"id", i}, {"path", lora.path}, {"scale", lora.scale}, }); } res_ok(res, result); res.status = 200; // HTTP OK }; const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) { const std::vector body = json::parse(req.body); int max_idx = ctx_server.loras.size(); // clear existing value for (auto & lora : ctx_server.loras) { lora.scale = 0.0f; } // set value for (auto entry : body) { int id = entry.at("id"); float scale = entry.at("scale"); if (0 <= id && id < max_idx) { ctx_server.loras[id].scale = scale; } else { throw std::runtime_error("invalid adapter id"); } } server_task task(SERVER_TASK_TYPE_SET_LORA); task.id = ctx_server.queue_tasks.get_new_id(); ctx_server.queue_results.add_waiting_task_id(task.id); ctx_server.queue_tasks.post(task); server_task_result_ptr result = ctx_server.queue_results.recv(task.id); ctx_server.queue_results.remove_waiting_task_id(task.id); if (result->is_error()) { res_error(res, result->to_json()); return; } GGML_ASSERT(dynamic_cast(result.get()) != nullptr); res_ok(res, result->to_json()); }; // // Router // if (!params.webui) { LOG_INF("Web UI is disabled\n"); } else { // register static assets routes if (!params.public_path.empty()) { // Set the base directory for serving static files bool is_found = svr->set_mount_point("/", params.public_path); if (!is_found) { LOG_ERR("%s: static assets path not found: %s\n", __func__, params.public_path.c_str()); return 1; } } else { // using embedded static index.html svr->Get("/", [](const httplib::Request & req, httplib::Response & res) { if (req.get_header_value("Accept-Encoding").find("gzip") == std::string::npos) { res.set_content("Error: gzip is not supported by this browser", "text/plain"); } else { res.set_header("Content-Encoding", "gzip"); res.set_content(reinterpret_cast(index_html_gz), index_html_gz_len, "text/html; charset=utf-8"); } return false; }); } } // register API routes svr->Get ("/health", handle_health); // public endpoint (no API key check) svr->Get ("/metrics", handle_metrics); svr->Get ("/props", handle_props); svr->Post("/props", handle_props_change); svr->Get ("/models", handle_models); // public endpoint (no API key check) svr->Get ("/v1/models", handle_models); // public endpoint (no API key check) svr->Post("/completion", handle_completions); // legacy svr->Post("/completions", handle_completions); svr->Post("/v1/completions", handle_completions); svr->Post("/chat/completions", handle_chat_completions); svr->Post("/v1/chat/completions", handle_chat_completions); svr->Post("/infill", handle_infill); svr->Post("/embedding", handle_embeddings); // legacy svr->Post("/embeddings", handle_embeddings); svr->Post("/v1/embeddings", handle_embeddings_oai); svr->Post("/rerank", handle_rerank); svr->Post("/reranking", handle_rerank); svr->Post("/v1/rerank", handle_rerank); svr->Post("/v1/reranking", handle_rerank); svr->Post("/tokenize", handle_tokenize); svr->Post("/detokenize", handle_detokenize); // LoRA adapters hotswap svr->Get ("/lora-adapters", handle_lora_adapters_list); svr->Post("/lora-adapters", handle_lora_adapters_apply); // Save & load slots svr->Get ("/slots", handle_slots); svr->Post("/slots/:id_slot", handle_slots_action); // // Start the server // if (params.n_threads_http < 1) { // +2 threads for monitoring endpoints params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1); } log_data["n_threads_http"] = std::to_string(params.n_threads_http); svr->new_task_queue = [¶ms] { return new httplib::ThreadPool(params.n_threads_http); }; // clean up function, to be called before exit auto clean_up = [&svr]() { svr->stop(); llama_backend_free(); }; // bind HTTP listen port bool was_bound = false; if (params.port == 0) { int bound_port = svr->bind_to_any_port(params.hostname); if ((was_bound = (bound_port >= 0))) { params.port = bound_port; } } else { was_bound = svr->bind_to_port(params.hostname, params.port); } if (!was_bound) { //LOG_ERROR("couldn't bind HTTP server socket", { // {"hostname", params.hostname}, // {"port", params.port}, //}); LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port); clean_up(); return 1; } // run the HTTP server in a thread std::thread t([&]() { svr->listen_after_bind(); }); svr->wait_until_ready(); LOG_INF("%s: HTTP server is listening, hostname: %s, port: %d, http threads: %d\n", __func__, params.hostname.c_str(), params.port, params.n_threads_http); // load the model LOG_INF("%s: loading model\n", __func__); if (!ctx_server.load_model(params)) { clean_up(); t.join(); LOG_ERR("%s: exiting due to model loading error\n", __func__); return 1; } ctx_server.init(); state.store(SERVER_STATE_READY); LOG_INF("%s: model loaded\n", __func__); // if a custom chat template is not supplied, we will use the one that comes with the model (if any) if (params.chat_template.empty()) { if (!ctx_server.validate_model_chat_template()) { LOG_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__); params.chat_template = "chatml"; } } // print sample chat example to make it clear which template is used LOG_INF("%s: chat template, built_in: %d, chat_example: '%s'\n", __func__, params.chat_template.empty(), common_chat_format_example(ctx_server.model, params.chat_template).c_str()); ctx_server.queue_tasks.on_new_task(std::bind( &server_context::process_single_task, &ctx_server, std::placeholders::_1)); ctx_server.queue_tasks.on_update_slots(std::bind( &server_context::update_slots, &ctx_server)); shutdown_handler = [&](int) { ctx_server.queue_tasks.terminate(); }; LOG_INF("%s: server is listening on http://%s:%d - starting the main loop\n", __func__, params.hostname.c_str(), params.port); ctx_server.queue_tasks.start_loop(); #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) struct sigaction sigint_action; sigint_action.sa_handler = signal_handler; sigemptyset (&sigint_action.sa_mask); sigint_action.sa_flags = 0; sigaction(SIGINT, &sigint_action, NULL); sigaction(SIGTERM, &sigint_action, NULL); #elif defined (_WIN32) auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL { return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false; }; SetConsoleCtrlHandler(reinterpret_cast(console_ctrl_handler), true); #endif clean_up(); t.join(); return 0; }