#include "arg.h" #include "base64.hpp" #include "log.h" #include "common.h" #include "sampling.h" #include "clip.h" #include "llava.h" #include "llama.h" #include "ggml.h" #ifdef GGML_USE_CUDA #include "ggml-cuda.h" #endif #ifdef NDEBUG #include "ggml-alloc.h" #include "ggml-backend.h" #endif #include #include #include #include #include #include #include static bool qwen2vl_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed, int n_batch, int * n_past, int * st_pos_id, struct clip_image_size * image_size) { int n_embd = llama_n_embd(llama_get_model(ctx_llama)); const int patch_size = 14 * 2; const int ph = image_size->height / patch_size + (image_size->height % patch_size > 0); const int pw = image_size->width / patch_size + (image_size->width % patch_size > 0); auto img_tokens = image_embed->n_image_pos; // llama_pos mrope_pos[img_tokens * 4]; std::vector mrope_pos; mrope_pos.resize(img_tokens * 4); for (int y = 0; y < ph; y++) { for (int x = 0; x < pw; x++) { int i = y * pw + x; mrope_pos[i] = *st_pos_id; mrope_pos[i + img_tokens] = *st_pos_id + y; mrope_pos[i + img_tokens * 2] = *st_pos_id + x; mrope_pos[i + img_tokens * 3] = 0; } } *st_pos_id += std::max(pw, ph); int processed = 0; std::vector batch_mrope_pos; batch_mrope_pos.resize(img_tokens * 4); for (int i = 0; i < img_tokens; i += n_batch) { int n_eval = img_tokens - i; if (n_eval > n_batch) { n_eval = n_batch; } // llama_pos batch_mrope_pos[n_eval * 4]; std::fill(batch_mrope_pos.begin(), batch_mrope_pos.end(), 0); memcpy(batch_mrope_pos.data(), &mrope_pos[processed], n_eval * sizeof(llama_pos)); memcpy(&batch_mrope_pos[n_eval * 1], &mrope_pos[img_tokens * 1 + processed], n_eval * sizeof(llama_pos)); memcpy(&batch_mrope_pos[n_eval * 2], &mrope_pos[img_tokens * 2 + processed], n_eval * sizeof(llama_pos)); memcpy(&batch_mrope_pos[n_eval * 3], &mrope_pos[img_tokens * 3 + processed], n_eval * sizeof(llama_pos)); llama_batch batch = { int32_t(n_eval), // n_tokens nullptr, // token (image_embed->embed+i*n_embd), // embed batch_mrope_pos.data(), // pos nullptr, // n_seq_id nullptr, // seq_id nullptr, // logits }; if (llama_decode(ctx_llama, batch)) { LOG_ERR("%s : failed to eval\n", __func__); return false; } *n_past += n_eval; processed += n_eval; } return true; } static bool eval_tokens(struct llama_context * ctx_llama, std::vector tokens, int n_batch, int * n_past, int * st_pos_id) { int N = (int) tokens.size(); std::vector pos; for (int i = 0; i < N; i += n_batch) { int n_eval = (int) tokens.size() - i; if (n_eval > n_batch) { n_eval = n_batch; } auto batch = llama_batch_get_one(&tokens[i], n_eval); // TODO: add mrope pos ids somewhere else pos.resize(batch.n_tokens * 4); std::fill(pos.begin(), pos.end(), 0); for (int j = 0; j < batch.n_tokens * 3; j ++) { pos[j] = *st_pos_id + (j % batch.n_tokens); } batch.pos = pos.data(); if (llama_decode(ctx_llama, batch)) { LOG_ERR("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past); return false; } *n_past += n_eval; *st_pos_id += n_eval; } return true; } static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past, int * st_pos_id) { std::vector tokens; tokens.push_back(id); return eval_tokens(ctx_llama, tokens, 1, n_past, st_pos_id); } static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, int * st_pos_id, bool add_bos){ std::string str2 = str; std::vector embd_inp = common_tokenize(ctx_llama, str2, add_bos, true); eval_tokens(ctx_llama, embd_inp, n_batch, n_past, st_pos_id); return true; } static const char * sample(struct common_sampler * smpl, struct llama_context * ctx_llama, int * n_past, int * st_pos_id) { const llama_token id = common_sampler_sample(smpl, ctx_llama, -1); common_sampler_accept(smpl, id, true); static std::string ret; if (llama_token_is_eog(llama_get_model(ctx_llama), id)) { ret = ""; } else { ret = common_token_to_piece(ctx_llama, id); } eval_id(ctx_llama, id, n_past, st_pos_id); return ret.c_str(); } static const char* IMG_BASE64_TAG_BEGIN = ""; static void find_image_tag_in_prompt(const std::string& prompt, size_t& begin_out, size_t& end_out) { begin_out = prompt.find(IMG_BASE64_TAG_BEGIN); end_out = prompt.find(IMG_BASE64_TAG_END, (begin_out == std::string::npos) ? 0UL : begin_out); } static bool prompt_contains_image(const std::string& prompt) { size_t begin, end; find_image_tag_in_prompt(prompt, begin, end); return (begin != std::string::npos); } // replaces the base64 image tag in the prompt with `replacement` static llava_image_embed * llava_image_embed_make_with_prompt_base64(struct clip_ctx * ctx_clip, int n_threads, const std::string& prompt) { size_t img_base64_str_start, img_base64_str_end; find_image_tag_in_prompt(prompt, img_base64_str_start, img_base64_str_end); if (img_base64_str_start == std::string::npos || img_base64_str_end == std::string::npos) { LOG_ERR("%s: invalid base64 image tag. must be %s%s\n", __func__, IMG_BASE64_TAG_BEGIN, IMG_BASE64_TAG_END); return NULL; } auto base64_bytes_start = img_base64_str_start + strlen(IMG_BASE64_TAG_BEGIN); auto base64_bytes_count = img_base64_str_end - base64_bytes_start; auto base64_str = prompt.substr(base64_bytes_start, base64_bytes_count ); auto required_bytes = base64::required_encode_size(base64_str.size()); auto img_bytes = std::vector(required_bytes); base64::decode(base64_str.begin(), base64_str.end(), img_bytes.begin()); auto embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, img_bytes.data(), img_bytes.size()); if (!embed) { LOG_ERR("%s: could not load image from base64 string.\n", __func__); return NULL; } return embed; } static std::string remove_image_from_prompt(const std::string& prompt, const char * replacement = "") { size_t begin, end; find_image_tag_in_prompt(prompt, begin, end); if (begin == std::string::npos || end == std::string::npos) { return prompt; } auto pre = prompt.substr(0, begin); auto post = prompt.substr(end + strlen(IMG_BASE64_TAG_END)); return pre + replacement + post; } struct llava_context { struct clip_ctx * ctx_clip = NULL; struct llama_context * ctx_llama = NULL; struct llama_model * model = NULL; }; static void print_usage(int, char ** argv) { LOG("\n example usage:\n"); LOG("\n %s -m --mmproj --image --image [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]); LOG("\n note: a lower temperature value like 0.1 is recommended for better quality.\n"); } static struct llava_image_embed * load_image(llava_context * ctx_llava, common_params * params, const std::string & fname) { // load and preprocess the image llava_image_embed * embed = NULL; auto prompt = params->prompt; if (prompt_contains_image(prompt)) { if (!params->image.empty()) { LOG_INF("using base64 encoded image instead of command line image path\n"); } embed = llava_image_embed_make_with_prompt_base64(ctx_llava->ctx_clip, params->cpuparams.n_threads, prompt); if (!embed) { LOG_ERR("%s: can't load image from prompt\n", __func__); return NULL; } params->prompt = remove_image_from_prompt(prompt); } else { embed = llava_image_embed_make_with_filename(ctx_llava->ctx_clip, params->cpuparams.n_threads, fname.c_str()); if (!embed) { fprintf(stderr, "%s: is %s really an image file?\n", __func__, fname.c_str()); return NULL; } } return embed; } static void process_prompt(struct llava_context * ctx_llava, struct llava_image_embed * image_embed, common_params * params, const std::string & prompt) { int n_past = 0; int cur_pos_id = 0; const int max_tgt_len = params->n_predict < 0 ? 256 : params->n_predict; std::string system_prompt, user_prompt; size_t image_pos = prompt.find("<|vision_start|>"); if (image_pos != std::string::npos) { // new templating mode: Provide the full prompt including system message and use as a placeholder for the image system_prompt = prompt.substr(0, image_pos); user_prompt = prompt.substr(image_pos + std::string("<|vision_pad|>").length()); LOG_INF("system_prompt: %s\n", system_prompt.c_str()); if (params->verbose_prompt) { auto tmp = common_tokenize(ctx_llava->ctx_llama, system_prompt, true, true); for (int i = 0; i < (int) tmp.size(); i++) { LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str()); } } LOG_INF("user_prompt: %s\n", user_prompt.c_str()); if (params->verbose_prompt) { auto tmp = common_tokenize(ctx_llava->ctx_llama, user_prompt, true, true); for (int i = 0; i < (int) tmp.size(); i++) { LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str()); } } } else { // llava-1.5 native mode system_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|>"; user_prompt = "<|vision_end|>" + prompt + "<|im_end|>\n<|im_start|>assistant\n"; if (params->verbose_prompt) { auto tmp = common_tokenize(ctx_llava->ctx_llama, user_prompt, true, true); for (int i = 0; i < (int) tmp.size(); i++) { LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str()); } } } eval_string(ctx_llava->ctx_llama, system_prompt.c_str(), params->n_batch, &n_past, &cur_pos_id, true); if (image_embed != nullptr) { auto image_size = clip_get_load_image_size(ctx_llava->ctx_clip); qwen2vl_eval_image_embed(ctx_llava->ctx_llama, image_embed, params->n_batch, &n_past, &cur_pos_id, image_size); } eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, &cur_pos_id, false); // generate the response LOG("\n"); struct common_sampler * smpl = common_sampler_init(ctx_llava->model, params->sampling); if (!smpl) { LOG_ERR("%s: failed to initialize sampling subsystem\n", __func__); exit(1); } std::string response = ""; for (int i = 0; i < max_tgt_len; i++) { const char * tmp = sample(smpl, ctx_llava->ctx_llama, &n_past, &cur_pos_id); response += tmp; if (strcmp(tmp, "") == 0) break; if (strstr(tmp, "###")) break; // Yi-VL behavior LOG("%s", tmp); if (strstr(response.c_str(), "<|im_end|>")) break; // Yi-34B llava-1.6 - for some reason those decode not as the correct token (tokenizer works) if (strstr(response.c_str(), "<|im_start|>")) break; // Yi-34B llava-1.6 if (strstr(response.c_str(), "USER:")) break; // mistral llava-1.6 fflush(stdout); } common_sampler_free(smpl); LOG("\n"); } static struct llama_model * llava_init(common_params * params) { llama_backend_init(); llama_numa_init(params->numa); llama_model_params model_params = common_model_params_to_llama(*params); llama_model * model = llama_model_load_from_file(params->model.c_str(), model_params); if (model == NULL) { LOG_ERR("%s: unable to load model\n" , __func__); return NULL; } return model; } static struct llava_context * llava_init_context(common_params * params, llama_model * model) { const char * clip_path = params->mmproj.c_str(); auto prompt = params->prompt; if (prompt.empty()) { prompt = "describe the image in detail."; } auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1); llama_context_params ctx_params = common_context_params_to_llama(*params); ctx_params.n_ctx = params->n_ctx < 2048 ? 2048 : params->n_ctx; // we need a longer context size to process image embeddings llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params); if (ctx_llama == NULL) { LOG_ERR("%s: failed to create the llama_context\n" , __func__); return NULL; } auto * ctx_llava = (struct llava_context *)malloc(sizeof(llava_context)); ctx_llava->ctx_llama = ctx_llama; ctx_llava->ctx_clip = ctx_clip; ctx_llava->model = model; return ctx_llava; } static void llava_free(struct llava_context * ctx_llava) { if (ctx_llava->ctx_clip) { clip_free(ctx_llava->ctx_clip); ctx_llava->ctx_clip = NULL; } llama_free(ctx_llava->ctx_llama); llama_model_free(ctx_llava->model); llama_backend_free(); } #ifndef NDEBUG static void debug_test_mrope_2d() { // 1. Initialize backend ggml_backend_t backend = NULL; std::string backend_name = ""; #ifdef GGML_USE_CUDA fprintf(stderr, "%s: using CUDA backend\n", __func__); backend = ggml_backend_cuda_init(0); // init device 0 backend_name = "cuda"; if (!backend) { fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__); } #endif // if there aren't GPU Backends fallback to CPU backend if (!backend) { backend = ggml_backend_cpu_init(); backend_name = "cpu"; } // Calculate the size needed to allocate size_t ctx_size = 0; ctx_size += 2 * ggml_tensor_overhead(); // tensors // no need to allocate anything else! // 2. Allocate `ggml_context` to store tensor data struct ggml_init_params params = { /*.mem_size =*/ ctx_size, /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, // the tensors will be allocated later by ggml_backend_alloc_ctx_tensors() }; struct ggml_context * ctx = ggml_init(params); struct ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, 128, 12, 30); ggml_set_name(inp_raw, "inp_raw"); ggml_set_input(inp_raw); struct ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 30 * 4); ggml_set_name(pos, "pos"); ggml_set_input(pos); std::vector dummy_q; dummy_q.resize(128 * 12 * 30); std::fill(dummy_q.begin(), dummy_q.end(), 0.1); // memcpy(inp_raw->data, dummy_q.data(), 128 * 12 * 30 * ggml_element_size(inp_raw)); std::vector pos_id; pos_id.resize(30 * 4); for (int i = 0; i < 30; i ++) { pos_id[i] = i; pos_id[i + 30] = i + 10; pos_id[i + 60] = i + 20; pos_id[i + 90] = i + 30; } int sections[4] = {32, 32, 0, 0}; // 4. Allocate a `ggml_backend_buffer` to store all tensors ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx, backend); // 5. Copy tensor data from main memory (RAM) to backend buffer ggml_backend_tensor_set(inp_raw, dummy_q.data(), 0, ggml_nbytes(inp_raw)); ggml_backend_tensor_set(pos, pos_id.data(), 0, ggml_nbytes(pos)); // 6. Create a `ggml_cgraph` for mul_mat operation struct ggml_cgraph * gf = NULL; struct ggml_context * ctx_cgraph = NULL; // create a temporally context to build the graph struct ggml_init_params params0 = { /*.mem_size =*/ ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead(), /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, // the tensors will be allocated later by ggml_gallocr_alloc_graph() }; ctx_cgraph = ggml_init(params0); gf = ggml_new_graph(ctx_cgraph); struct ggml_tensor * result0 = ggml_rope_multi( ctx_cgraph, inp_raw, pos, nullptr, 128/2, sections, LLAMA_ROPE_TYPE_VISION, 32768, 1000000, 1, 0, 1, 32, 1); // Add "result" tensor and all of its dependencies to the cgraph ggml_build_forward_expand(gf, result0); // 7. Create a `ggml_gallocr` for cgraph computation ggml_gallocr_t allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend)); ggml_gallocr_alloc_graph(allocr, gf); // 9. Run the computation int n_threads = 1; // Optional: number of threads to perform some operations with multi-threading if (ggml_backend_is_cpu(backend)) { ggml_backend_cpu_set_n_threads(backend, n_threads); } ggml_backend_graph_compute(backend, gf); // 10. Retrieve results (output tensors) // in this example, output tensor is always the last tensor in the graph struct ggml_tensor * result = result0; // struct ggml_tensor * result = gf->nodes[gf->n_nodes - 1]; float * result_data = (float *)malloc(ggml_nbytes(result)); // because the tensor data is stored in device buffer, we need to copy it back to RAM ggml_backend_tensor_get(result, result_data, 0, ggml_nbytes(result)); const std::string bin_file = "mrope_2d_" + backend_name +".bin"; std::ofstream outFile(bin_file, std::ios::binary); if (outFile.is_open()) { outFile.write(reinterpret_cast(result_data), ggml_nbytes(result)); outFile.close(); std::cout << "Data successfully written to " + bin_file << std::endl; } else { std::cerr << "Error opening file!" << std::endl; } free(result_data); // 11. Free memory and exit ggml_free(ctx_cgraph); ggml_gallocr_free(allocr); ggml_free(ctx); ggml_backend_buffer_free(buffer); ggml_backend_free(backend); } static void debug_dump_img_embed(struct llava_context * ctx_llava) { int n_embd = llama_n_embd(llama_get_model(ctx_llava->ctx_llama)); int ne = n_embd * 4; float vals[56 * 56 * 3]; // float embd[ne]; std::vector embd; embd.resize(ne); for (int i = 0; i < 56*56; i++) { for (int c = 0; c < 3; c++) vals[i * 3 + c] = (float)(i % (56 * 56)) / (56*56); } clip_encode_float_image(ctx_llava->ctx_clip, 16, vals, 56, 56, embd.data()); std::ofstream outFile("img_embed.bin", std::ios::binary); if (outFile.is_open()) { outFile.write(reinterpret_cast(embd.data()), ne * sizeof(float)); outFile.close(); std::cout << "Data successfully written to mrope.bin" << std::endl; } else { std::cerr << "Error opening file!" << std::endl; } } #endif int main(int argc, char ** argv) { ggml_time_init(); common_params params; if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, print_usage)) { return 1; } common_init(); if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) { print_usage(argc, argv); return 1; } auto * model = llava_init(¶ms); if (model == NULL) { fprintf(stderr, "%s: error: failed to init llava model\n", __func__); return 1; } if (prompt_contains_image(params.prompt)) { auto * ctx_llava = llava_init_context(¶ms, model); auto * image_embed = load_image(ctx_llava, ¶ms, ""); // process the prompt process_prompt(ctx_llava, image_embed, ¶ms, params.prompt); llama_perf_context_print(ctx_llava->ctx_llama); llava_image_embed_free(image_embed); ctx_llava->model = NULL; llava_free(ctx_llava); #ifndef NDEBUG } else if (params.image[0].empty()) { auto ctx_llava = llava_init_context(¶ms, model); debug_test_mrope_2d(); debug_dump_img_embed(ctx_llava); llama_perf_context_print(ctx_llava->ctx_llama); ctx_llava->model = NULL; llava_free(ctx_llava); #endif } else { for (auto & image : params.image) { auto * ctx_llava = llava_init_context(¶ms, model); auto * image_embed = load_image(ctx_llava, ¶ms, image); if (!image_embed) { LOG_ERR("%s: failed to load image %s. Terminating\n\n", __func__, image.c_str()); return 1; } // process the prompt process_prompt(ctx_llava, image_embed, ¶ms, params.prompt); llama_perf_context_print(ctx_llava->ctx_llama); llava_image_embed_free(image_embed); ctx_llava->model = NULL; llava_free(ctx_llava); } } llama_model_free(model); return 0; }