#include "ggml.h" #include "gguf.h" #include "llama.h" #include "common.h" #include #include #include #include #include #include #include #include #include #include #if defined(_WIN32) #include #ifndef PATH_MAX #define PATH_MAX MAX_PATH #endif #include #endif enum split_operation : uint8_t { OP_NONE, OP_SPLIT, OP_MERGE, }; enum split_mode : uint8_t { MODE_NONE, MODE_TENSOR, MODE_SIZE, }; struct split_params { split_operation operation = OP_NONE; split_mode mode = MODE_NONE; size_t n_bytes_split = 0; int n_split_tensors = 128; std::string input; std::string output; bool no_tensor_first_split = false; bool dry_run = false; }; static void split_print_usage(const char * executable) { const split_params default_params; printf("\n"); printf("usage: %s [options] GGUF_IN GGUF_OUT\n", executable); printf("\n"); printf("Apply a GGUF operation on IN to OUT."); printf("\n"); printf("options:\n"); printf(" -h, --help show this help message and exit\n"); printf(" --version show version and build info\n"); printf(" --split split GGUF to multiple GGUF (enabled by default)\n"); printf(" --merge merge multiple GGUF to a single GGUF\n"); printf(" --split-max-tensors max tensors in each split (default: %d)\n", default_params.n_split_tensors); printf(" --split-max-size N(M|G) max size per split\n"); printf(" --no-tensor-first-split do not add tensors to the first split (disabled by default)\n"); printf(" --dry-run only print out a split plan and exit, without writing any new files\n"); printf("\n"); } // return convert string, for example "128M" or "4G" to number of bytes static size_t split_str_to_n_bytes(std::string str) { size_t n_bytes = 0; int n; if (str.back() == 'M') { sscanf(str.c_str(), "%d", &n); n_bytes = (size_t)n * 1000 * 1000; // megabytes } else if (str.back() == 'G') { sscanf(str.c_str(), "%d", &n); n_bytes = (size_t)n * 1000 * 1000 * 1000; // gigabytes } else { throw std::invalid_argument("error: supported units are M (megabytes) or G (gigabytes), but got: " + std::string(1, str.back())); } if (n <= 0) { throw std::invalid_argument("error: size must be a positive value"); } return n_bytes; } static void split_params_parse_ex(int argc, const char ** argv, split_params & params) { std::string arg; const std::string arg_prefix = "--"; bool invalid_param = false; int arg_idx = 1; for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) { arg = argv[arg_idx]; if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { std::replace(arg.begin(), arg.end(), '_', '-'); } bool arg_found = false; if (arg == "-h" || arg == "--help") { split_print_usage(argv[0]); exit(0); } else if (arg == "--version") { fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT); fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET); exit(0); } else if (arg == "--dry-run") { arg_found = true; params.dry_run = true; } else if (arg == "--no-tensor-first-split") { arg_found = true; params.no_tensor_first_split = true; } else if (arg == "--merge") { arg_found = true; if (params.operation != OP_NONE && params.operation != OP_MERGE) { throw std::invalid_argument("error: either --split or --merge can be specified, but not both"); } params.operation = OP_MERGE; } else if (arg == "--split") { arg_found = true; if (params.operation != OP_NONE && params.operation != OP_SPLIT) { throw std::invalid_argument("error: either --split or --merge can be specified, but not both"); } params.operation = OP_SPLIT; } else if (arg == "--split-max-tensors") { if (++arg_idx >= argc) { invalid_param = true; break; } arg_found = true; if (params.mode != MODE_NONE && params.mode != MODE_TENSOR) { throw std::invalid_argument("error: either --split-max-tensors or --split-max-size can be specified, but not both"); } params.mode = MODE_TENSOR; params.n_split_tensors = atoi(argv[arg_idx]); } else if (arg == "--split-max-size") { if (++arg_idx >= argc) { invalid_param = true; break; } arg_found = true; if (params.mode != MODE_NONE && params.mode != MODE_SIZE) { throw std::invalid_argument("error: either --split-max-tensors or --split-max-size can be specified, but not both"); } params.mode = MODE_SIZE; params.n_bytes_split = split_str_to_n_bytes(argv[arg_idx]); } if (!arg_found) { throw std::invalid_argument("error: unknown argument: " + arg); } } // the operation is split if not specified if (params.operation == OP_NONE) { params.operation = OP_SPLIT; } // the split mode is by tensor if not specified if (params.mode == MODE_NONE) { params.mode = MODE_TENSOR; } if (invalid_param) { throw std::invalid_argument("error: invalid parameter for argument: " + arg); } if (argc - arg_idx != 2) { throw std::invalid_argument("error: bad arguments"); } params.input = argv[arg_idx++]; params.output = argv[arg_idx++]; } static bool split_params_parse(int argc, const char ** argv, split_params & params) { bool result = true; try { split_params_parse_ex(argc, argv, params); } catch (const std::invalid_argument & ex) { fprintf(stderr, "%s\n", ex.what()); split_print_usage(argv[0]); exit(EXIT_FAILURE); } return result; } static void zeros(std::ofstream & file, size_t n) { char zero = 0; for (size_t i = 0; i < n; ++i) { file.write(&zero, 1); } } struct split_strategy { const split_params params; std::ifstream & f_input; struct gguf_context * ctx_gguf; struct ggml_context * ctx_meta = NULL; const int n_tensors; // one ctx_out per one output file std::vector ctx_outs; // temporary buffer for reading in tensor data std::vector read_buf; split_strategy(const split_params & params, std::ifstream & f_input, struct gguf_context * ctx_gguf, struct ggml_context * ctx_meta) : params(params), f_input(f_input), ctx_gguf(ctx_gguf), ctx_meta(ctx_meta), n_tensors(gguf_get_n_tensors(ctx_gguf)) { // because we need to know list of tensors for each file in advance, we will build all the ctx_out for all output splits int i_split = -1; struct gguf_context * ctx_out = NULL; auto new_ctx_out = [&](bool allow_no_tensors) { i_split++; if (ctx_out != NULL) { if (gguf_get_n_tensors(ctx_out) == 0 && !allow_no_tensors) { fprintf(stderr, "error: one of splits have 0 tensors. Maybe size or tensors limit is too small\n"); exit(EXIT_FAILURE); } ctx_outs.push_back(ctx_out); } ctx_out = gguf_init_empty(); // Save all metadata in first split only if (i_split == 0) { gguf_set_kv(ctx_out, ctx_gguf); } gguf_set_val_u16(ctx_out, LLM_KV_SPLIT_NO, i_split); gguf_set_val_u16(ctx_out, LLM_KV_SPLIT_COUNT, 0); // placeholder gguf_set_val_i32(ctx_out, LLM_KV_SPLIT_TENSORS_COUNT, n_tensors); }; // initialize ctx_out for the first split new_ctx_out(false); // skip first split if no_tensor_first_split is set if (params.no_tensor_first_split) { new_ctx_out(true); } // process tensors one by one size_t curr_tensors_size = 0; // current size by counting only tensors size (without metadata) for (int i = 0; i < n_tensors; ++i) { struct ggml_tensor * t = ggml_get_tensor(ctx_meta, gguf_get_tensor_name(ctx_gguf, i)); // calculate the "imaginary" size = the current size + next tensor size size_t n_bytes = GGML_PAD(ggml_nbytes(t), GGUF_DEFAULT_ALIGNMENT); size_t next_tensors_size = curr_tensors_size + n_bytes; if (should_split(i, next_tensors_size)) { new_ctx_out(false); curr_tensors_size = n_bytes; } else { curr_tensors_size = next_tensors_size; } gguf_add_tensor(ctx_out, t); } // push the last ctx_out ctx_outs.push_back(ctx_out); // set the correct n_split for all ctx_out for (auto & ctx : ctx_outs) { gguf_set_val_u16(ctx, LLM_KV_SPLIT_COUNT, ctx_outs.size()); } } ~split_strategy() { for (auto & ctx_out : ctx_outs) { gguf_free(ctx_out); } } bool should_split(int i_tensor, size_t next_size) { if (params.mode == MODE_SIZE) { // split by max size per file return next_size > params.n_bytes_split; } else if (params.mode == MODE_TENSOR) { // split by number of tensors per file return i_tensor > 0 && i_tensor < n_tensors && i_tensor % params.n_split_tensors == 0; } // should never happen GGML_ABORT("invalid mode"); } void print_info() { printf("n_split: %zu\n", ctx_outs.size()); int i_split = 0; for (auto & ctx_out : ctx_outs) { // re-calculate the real gguf size for each split (= metadata size + total size of all tensors) size_t total_size = gguf_get_meta_size(ctx_out); for (int i = 0; i < gguf_get_n_tensors(ctx_out); ++i) { struct ggml_tensor * t = ggml_get_tensor(ctx_meta, gguf_get_tensor_name(ctx_out, i)); total_size += ggml_nbytes(t); } total_size = total_size / 1000 / 1000; // convert to megabytes printf("split %05d: n_tensors = %" PRIi64 ", total_size = %zuM\n", i_split + 1, gguf_get_n_tensors(ctx_out), total_size); i_split++; } } void write() { int i_split = 0; int n_split = ctx_outs.size(); for (auto & ctx_out : ctx_outs) { // construct file path char split_path[PATH_MAX] = {0}; llama_split_path(split_path, sizeof(split_path), params.output.c_str(), i_split, n_split); // open the output file printf("Writing file %s ... ", split_path); fflush(stdout); std::ofstream fout = std::ofstream(split_path, std::ios::binary); fout.exceptions(std::ofstream::failbit); // fail fast on write errors // write metadata std::vector data(gguf_get_meta_size(ctx_out)); gguf_get_meta_data(ctx_out, data.data()); fout.write((const char *)data.data(), data.size()); // write tensors for (int i = 0; i < gguf_get_n_tensors(ctx_out); ++i) { // read tensor meta and prepare buffer const char * t_name = gguf_get_tensor_name(ctx_out, i); struct ggml_tensor * t = ggml_get_tensor(ctx_meta, t_name); auto n_bytes = ggml_nbytes(t); read_buf.resize(n_bytes); // calculate offset auto i_tensor_in = gguf_find_tensor(ctx_gguf, t_name); // idx of tensor in the input file auto offset = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, i_tensor_in); // copy tensor from input to output file copy_file_to_file(f_input, fout, offset, n_bytes); zeros(fout, GGML_PAD(n_bytes, GGUF_DEFAULT_ALIGNMENT) - n_bytes); } printf("done\n"); // close the file fout.close(); i_split++; } } void copy_file_to_file(std::ifstream & f_in, std::ofstream & f_out, const size_t in_offset, const size_t len) { // TODO: detect OS and use copy_file_range() here for better performance if (read_buf.size() < len) { read_buf.resize(len); } f_in.seekg(in_offset); f_in.read((char *)read_buf.data(), len); f_out.write((const char *)read_buf.data(), len); } }; static void gguf_split(const split_params & split_params) { struct ggml_context * ctx_meta = NULL; struct gguf_init_params params = { /*.no_alloc = */ true, /*.ctx = */ &ctx_meta, }; std::ifstream f_input(split_params.input.c_str(), std::ios::binary); if (!f_input.is_open()) { fprintf(stderr, "%s: failed to open input GGUF from %s\n", __func__, split_params.input.c_str()); exit(EXIT_FAILURE); } auto * ctx_gguf = gguf_init_from_file(split_params.input.c_str(), params); if (!ctx_gguf) { fprintf(stderr, "%s: failed to load input GGUF from %s\n", __func__, split_params.input.c_str()); exit(EXIT_FAILURE); } // prepare the strategy split_strategy strategy(split_params, f_input, ctx_gguf, ctx_meta); int n_split = strategy.ctx_outs.size(); strategy.print_info(); if (!split_params.dry_run) { // write all output splits strategy.write(); } // done, clean up gguf_free(ctx_gguf); f_input.close(); fprintf(stderr, "%s: %d gguf split written with a total of %d tensors.\n", __func__, n_split, strategy.n_tensors); } static void gguf_merge(const split_params & split_params) { fprintf(stderr, "%s: %s -> %s\n", __func__, split_params.input.c_str(), split_params.output.c_str()); int n_split = 1; int total_tensors = 0; // avoid overwriting existing output file if (std::ifstream(split_params.output.c_str())) { fprintf(stderr, "%s: output file %s already exists\n", __func__, split_params.output.c_str()); exit(EXIT_FAILURE); } std::ofstream fout(split_params.output.c_str(), std::ios::binary); fout.exceptions(std::ofstream::failbit); // fail fast on write errors auto * ctx_out = gguf_init_empty(); std::vector read_data; std::vector ctx_metas; std::vector ctx_ggufs; char split_path[PATH_MAX] = {0}; strncpy(split_path, split_params.input.c_str(), sizeof(split_path) - 1); char split_prefix[PATH_MAX] = {0}; // First pass to find KV and tensors metadata for (int i_split = 0; i_split < n_split; i_split++) { struct ggml_context * ctx_meta = NULL; struct gguf_init_params params = { /*.no_alloc = */ true, /*.ctx = */ &ctx_meta, }; if (i_split > 0) { llama_split_path(split_path, sizeof(split_path), split_prefix, i_split, n_split); } fprintf(stderr, "%s: reading metadata %s ...", __func__, split_path); auto * ctx_gguf = gguf_init_from_file(split_path, params); if (!ctx_gguf) { fprintf(stderr, "\n%s: failed to load input GGUF from %s\n", __func__, split_params.input.c_str()); exit(EXIT_FAILURE); } ctx_ggufs.push_back(ctx_gguf); ctx_metas.push_back(ctx_meta); if (i_split == 0) { auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT); if (key_n_split < 0) { fprintf(stderr, "\n%s: input file does not contain %s metadata\n", __func__, LLM_KV_SPLIT_COUNT); gguf_free(ctx_gguf); ggml_free(ctx_meta); gguf_free(ctx_out); fout.close(); exit(EXIT_FAILURE); } n_split = gguf_get_val_u16(ctx_gguf, key_n_split); if (n_split < 1) { fprintf(stderr, "\n%s: input file does not contain a valid split count %d\n", __func__, n_split); gguf_free(ctx_gguf); ggml_free(ctx_meta); gguf_free(ctx_out); fout.close(); exit(EXIT_FAILURE); } // Verify the file naming and extract split_prefix if (!llama_split_prefix(split_prefix, sizeof (split_prefix), split_path, i_split, n_split)) { fprintf(stderr, "\n%s: unexpected input file name: %s" " i_split=%d" " n_split=%d\n", __func__, split_path, i_split, n_split); gguf_free(ctx_gguf); ggml_free(ctx_meta); gguf_free(ctx_out); fout.close(); exit(EXIT_FAILURE); } // Do not trigger merge if we try to merge again the output gguf_set_val_u16(ctx_gguf, LLM_KV_SPLIT_COUNT, 0); // Set metadata from the first split gguf_set_kv(ctx_out, ctx_gguf); } auto n_tensors = gguf_get_n_tensors(ctx_gguf); for (int i_tensor = 0; i_tensor < n_tensors; i_tensor++) { const char * t_name = gguf_get_tensor_name(ctx_gguf, i_tensor); struct ggml_tensor * t = ggml_get_tensor(ctx_meta, t_name); gguf_add_tensor(ctx_out, t); } total_tensors += n_tensors; fprintf(stderr, "\033[3Ddone\n"); } // placeholder for the meta data { auto meta_size = gguf_get_meta_size(ctx_out); ::zeros(fout, meta_size); } // Write tensors data for (int i_split = 0; i_split < n_split; i_split++) { llama_split_path(split_path, sizeof(split_path), split_prefix, i_split, n_split); std::ifstream f_input(split_path, std::ios::binary); if (!f_input.is_open()) { fprintf(stderr, "%s: failed to open input GGUF from %s\n", __func__, split_path); for (uint32_t i = 0; i < ctx_ggufs.size(); i++) { gguf_free(ctx_ggufs[i]); ggml_free(ctx_metas[i]); } gguf_free(ctx_out); fout.close(); exit(EXIT_FAILURE); } fprintf(stderr, "%s: writing tensors %s ...", __func__, split_path); auto * ctx_gguf = ctx_ggufs[i_split]; auto * ctx_meta = ctx_metas[i_split]; auto n_tensors = gguf_get_n_tensors(ctx_gguf); for (int i_tensor = 0; i_tensor < n_tensors; i_tensor++) { const char * t_name = gguf_get_tensor_name(ctx_gguf, i_tensor); struct ggml_tensor * t = ggml_get_tensor(ctx_meta, t_name); auto n_bytes = ggml_nbytes(t); if (read_data.size() < n_bytes) { read_data.resize(n_bytes); } auto offset = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, i_tensor); f_input.seekg(offset); f_input.read((char *)read_data.data(), n_bytes); // write tensor data + padding fout.write((const char *)read_data.data(), n_bytes); zeros(fout, GGML_PAD(n_bytes, GGUF_DEFAULT_ALIGNMENT) - n_bytes); } gguf_free(ctx_gguf); ggml_free(ctx_meta); f_input.close(); fprintf(stderr, "\033[3Ddone\n"); } { // go back to beginning of file and write the updated metadata fout.seekp(0); std::vector data(gguf_get_meta_size(ctx_out)); gguf_get_meta_data(ctx_out, data.data()); fout.write((const char *)data.data(), data.size()); fout.close(); gguf_free(ctx_out); } fprintf(stderr, "%s: %s merged from %d split with %d tensors.\n", __func__, split_params.output.c_str(), n_split, total_tensors); } int main(int argc, const char ** argv) { split_params params; split_params_parse(argc, argv, params); switch (params.operation) { case OP_SPLIT: gguf_split(params); break; case OP_MERGE: gguf_merge(params); break; default: split_print_usage(argv[0]); exit(EXIT_FAILURE); } return 0; }